
Massimiliano Ghilardi

May 5-6, 2014

IRCAM, Paris, France

7th European Lisp Symposium

2

High performance concurrency

in Common Lisp

—

hybrid transactional memory

with STMX

3

Beautiful and fast concurrency

in Common Lisp

—

hybrid transactional memory

with STMX

STMX: hybrid transactional memory

 Motivations: why now

 STMX is…

 Examples and API

 Main features

 Strengths & weaknesses

 Performance

 Q&A

Motivations: why now (1/3)

Parallel programming CANNOT be avoided

Recent tablets and smartphones are usually dual-core or quad-core

Consumer CPUs are increasingly multi-core

 Dual-core Intel Pentium D (2005)
AMD Athlon 64 X2 (2005)

 Quad-core Intel Xeon X 32xx (2007)
AMD Opteron 8xxx (2007)

 Octa-core Intel Xeon E7xxx (2008)
AMD Opteron Magny-Cours (2010)

 12-core Intel Xeon E5-269x v2 (2013)
AMD Opteron Magny-Cours (2010)

 16-core AMD Opteron Interlagos (2011)

Commercial & high-end systems are even more parallel

Motivations: why now (2/3)

Parallel programming is NOT a solved problem:
many different programming paradigms exist,
each with its (strengths and) weaknesses

 Multi-threading with locks and mutable shared state

 Message passing

 Futures and promises

 π-calculus

 Coroutines, continuations, channels…

 Transactional memory (TM)

Many paradigms choose to avoid mutable shared state;
transactional memory promises to tame it.

Motivations: why now (3/3)

Transactional memory – a quick history

1986 Initial idea, requires unavailable HW support

1995 New idea: SW-only transactions

2005 First public implementation in Haskell

2006 Improvement: guaranteed read consistency

2006 CL-STM born and immediately abandoned

2007-2012 Further improvements, libraries for many languages:

C/C++, Java, C#, OCaml, Python…

2012 IBM and Intel announce HW implementation in one year

2013, March Hybrid transactional memory designed for Intel HW

2013, May STMX released, SW-only transactions

2013, August STMX adds hybrid transactions for Intel HW

STMX is… (1/2)

Transactional memory is an alternative synchronization mechanism
for mutable shared state.

Gives strong correctness & thread-safety guarantees.

Elegant and intuitive to use.

Immune from:
 Deadlocks

 Starvation

 Priority inversion

 Non-composability

 Non-determinism

 Race conditions

Disadvantages:
 Prone to near-livelocks under

high contention

 Historically poor performance –
solved by hybrid implementations

STMX is… (2/2)

An actively maintained, highly optimized implementation
of hybrid transactional memory

Developed in approximately 3 months of spare time (probably less)

One of the first published implementations of hybrid transactional
memory (August 2013)

Freely available under LLGPL - http://www.stmx.org/

Portable – runs on ABCL, CCL, CMUCL, SBCL (~ECL)
tested on x86, x86-64, arm, powerpc

http://www.stmx.org/

Examples and API (1/2)

(quicklisp:quickload :stmx)
(use-package :stmx)

(quicklisp:quickload :stmx.test)
(fiveam:run! 'stmx.test:suite)

(defvar *v* (tvar 42))
(print ($ *v*)) ;; prints 42

(atomic
 (if (oddp ($ *v*))
 (incf ($ *v*))
 (decf ($ *v*)))) ;; *v* now contains 41

TVAR is the smallest unit of transactional memory: it holds a single value (of any type)

The functions $ and (setf $) read and write a TVAR value.

The macro (atomic &body body) executes Lisp forms inside a transaction.

TVARs are versioned using a global clock “GV1” – needed to guarantee read consistency

Examples and API (2/2)

It is usually more convenient to take advantage of STMX integration with closer-mop

(transactional
 (defclass bank-account ()
 ((balance :type rational :initform 0
 :accessor account-balance))))

(defun bank-transfer (from-acct to-acct amount)
 (atomic
 (when (< (account-balance from-acct) amount)
 (error "not enough funds for transfer"))

 (decf (account-balance from-acct) amount)
 (incf (account-balance to-acct) amount)))

The macro (transactional (defclass ...)) defines a transactional class:
its instance slots are transparently wrapped by TVARs. (slot-value) and accessors
work as expected: they read or write the value inside the TVAR

A macro (transactional-struct (defstruct ...)) is currently under development

Main features (1/5)

STMX guarantees full A.C.I.D. semantics inside (atomic …) forms:

• Atomicity: (atomic …) forms are committed if they complete normally,
they are rolled back in case of non-local exit: signal a condition, (throw), (go), (return) …
Effects of an (atomic …) form are invisible to other threads until it commits.

• Consistency: an (atomic …) form sees a consistent snapshot of transactional memory.
If consistency cannot be guaranteed, STMX aborts and restarts the (atomic …) form.

• Isolation: inside an (atomic …) form, effects of transactions committed by other threads are
not visible. They become visible only after the current (atomic …) form commits or rolls
back.

• STMX transactions are NOT durable – but we are working on it1

• Composability: multiple transactions can be composed into a single, larger transaction:
(atomic
 (atomic ...)
 (atomic ...)
 ...)

1https://github.com/cosmos72/hyperluminal-db

Main features (2/5)

• Waiting for changes: the function (retry) aborts the current transaction, waits until
another thread changes some of the TVARs read since the beginning of the transaction,
then re-executes the transaction from scratch. Examples:

(defmethod put ((v tvar) value)
 (atomic
 (if ($ v)
 (retry)
 (setf ($ v) value))))

(defmethod take ((v tvar))
 (atomic
 (if ($ v)
 ($ v)
 (retry))))

• Nested, alternative transactions: (atomic (orelse form1 form2 ...))
If form1 calls (retry) or aborts spontaneously, form2 is invoked and so on.

• Delayed execution: (before-commit ...) and (after-commit ...)

Main features (3/5)

Transactional version of popular data structures:
• TCONS and TLIST

• TVECTOR

• THASH-TABLE

• TMAP – sorted map, backed by red-black tree

• TSTACK and TFIFO

• TCHANNEL and TPORT – reliable multicast channel

Ready to use, they show how to write transactional structures and algorithms

Changes are usually small and mechanic:

• replace Lisp built-in structures with transactional counterparts

• replace (defclass …) with (transactional (defclass …))

• insert (atomic …) where appropriate

Main features (4/5)

Hardware transactional memory

• IBM Power ISA v.2.0.7 – currently NOT supported by STMX

• Intel TSX – supported by STMX on 64-bit SBCL, requires latest Intel Core i5/i72

• XBEGIN start a HW memory transaction; needs address of fallback routine

• XEND commit

• XABORT abort and jump to fallback routine

• XTEST check whether a HW transaction is running

All CPU memory accesses (MOV, PUSH, POP…) become transactional.

L1 cache currently used as transactional buffer.

Memory conflicts, context switches, syscalls … “may” abort the HW transaction.

Never guaranteed to succeed, requires fallback routine.

Very fast: ~20 nanoseconds initial overhead,
memory accesses maintain native, non-transactional speed

 2”Haswell” generation (June 2013) – except some models

Main features (5/5)

Hybrid transactional memory

(2013, March) A. Matveev and N. Shavit describe how to efficiently mix
Intel TSX and SW transactional memory

STMX implements a three-level strategy (requires 64-bit SBCL)

1. HW transactions using Intel TSX

2. SW transactions, with commit implemented by a HW transaction

3. Fully SW transactions, disabling HW ones

Some details:

• Adaptive global clock (GV1 + GV5 = GV6)

• HW transactions use un-instrumented reads. Writes also set TVAR version.

• Fallback 2 allows to run HW and SW transactions concurrently.

Strengths & weaknesses (1/2)

Misquote:
Every sufficiently complex lock-based algorithm

contains a bug-ridden implementation
of half transactional memory

• Correct

• Intuitive

• Powerful

• Elegant – can I say beautiful?

• Heavily optimized – not slow
anymore

• Vulnerable to near-livelocks

• Requires legacy code changes

• I/O and other irreversible
operations should be avoided

Optimizations

• Transparent HW acceleration (requires 64-bit SBCL + Intel TSX)

• Specialized hash table with thread-local pools and sortless TVAR locking

• No consing in most cases

• Iteratively inserted type declarations and optimizations based on profiling
and disassembly

• Fast compare-and-swap locks + memory barriers (requires SBCL)

• Optimizes away redundant TVAR writes during commit

Transactional I/O

• Intel TSX limitations can be worked around – result is HW accelerated
transactional output on memory-mapped files and/or shared memory.
Extremely useful for database-like workloads requiring persistence.

Strengths & weaknesses (2/2)

Performance (1/2)

Micro-benchmarks – Intel Core i7 4770, Linux, SBCL 1.1.5 (64-bit)
nanoseconds per operation

Name Code SW tx Hybrid tx No tx

read ($ v) 87 22 <1

write (setf ($ v) 1) 113 27 <1

incf (incf ($ v)) 148 27 3

10 incf (dotimes (i 10)
 (incf ($ v)))

272 59 19

100 incf (dotimes (i 100)
 (incf ($ v)))

1399 409 193

1000 incf (dotimes (i 1000)
 (incf ($ v)))

12676 3852 1939

map read (get-gmap tm 1) 274 175 51

map update (incf (get-gmap tm 1)) 556 419 117

hash-table read (get-ghash th 1) 303 215 74

hash-table update (incf (get-ghash th 1)) 674 525 168

Performance (2/2)

Lee-TM benchmark
Intel Core i7 4770
Debian GNU/Linux
SBCL 1.1.5 (64-bit)

Input: discrete grid,
pairs of points to
connect
(ex. a mainboard)

Output:
non-intersecting
routes

Questions & answers

http://www.stmx.org/

massimiliano.ghilardi@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

