/™ European Lisp Symposium

Massimiliano Ghilardi

May 5-6, 2014
IRCAM, Paris, France

TiBlS |~

TELEMATIC AND BIOMEDICAL SERVICES

High performance concurrency

In Common Lisp

hybrid transactional memory

with STMX
T T T AT T | TV VV VP

Beautiful and fast concurrency

In Common Lisp

hybrid transactional memory
with STMX

STMX: hybrid transactional memory

" Motivations: why now

" STMXis...

" Examples and API

" Main features

" Strengths & weaknesses
" Performance

" Q&A

Ay T T L AT 1 Y VTV VY PP

Motivations: why now (1/3)

Parallel programming CANNOT be avoided

Recent tablets and smartphones are usually dual-core or quad-core

Consumer CPUs are increasingly multi-core

" Dual-core Intel Pentium D (2005)
AMD Athlon 64 X2 (2005)

" Quad-core Intel Xeon X 32xx (2007)
AMD Opteron 8xxx (2007)

" Qcta-core Intel Xeon E7xxx (2008)
AMD Opteron Magny-Cours (2010)

" 12-core Intel Xeon E5-269x v2 (2013)
AMD Opteron Magny-Cours (2010)
" 16-core AMD Opteron Interlagos (2011)

Commercial & high-end systems are even more parallel

Ay T T L AT 1 Y VTV VY PP

Motivations: why now (2/3)

Parallel programming is NOT a solved problem:
many different programming paradigms exist,
each with its (strengths and) weaknesses

" Multi-threading with locks and mutable shared state
" Message passing

" Futures and promises

" T1r-calculus

" Coroutines, continuations, channels...

" Transactional memory (TM)

Many paradigms choose to avoid mutable shared state;
transactional memory promises to tame it.

Ay T T L AT 1 Y VTV VY PP

Motivations: why now (3/3)

Transactional memory — a quick history

1986 Initial idea, requires unavailable HW support

1995 New idea: SW-only transactions

2005 First public implementation in Haskell

2006 Improvement: guaranteed read consistency

2006 CL-STM born and immediately abandoned
2007-2012 Further improvements, libraries for many languages:

C/C++, Java, C#, OCaml, Python...
2012 IBM and Intel announce HW implementation in one year
2013, March Hybrid transactional memory designed for Intel HW
2013, May STMX released, SW-only transactions
2013, August STMX adds hybrid transactions for Intel HW

vyspptaan I L OOk b ddggae e et

STMX is... (1/2)

Transactional memory is an alternative synchronization mechanism
for mutable shared state.

Gives strong correctness & thread-safety guarantees.
Elegant and intuitive to use.

Immune from: Disadvantages:

" Deadlocks " Prone to near-livelocks under

* Starvation high contention

= Priority inversion " Historically poor performance —

= Non-composability solved by hybrid implementations

= Non-determinism
= Race conditions

Ay T T L AT 1 Y VTV VY PP

STMX is... (2/2)

An actively maintained, highly optimized implementation
of hybrid transactional memory

Developed in approximately 3 months of spare time (probably less)

One of the first published implementations of hybrid transactional
memory (August 2013)

Freely available under LLGPL - http://www.stmx.org/

Portable — runs on ABCL, CCL, CMUCL, SBCL (~ECL)
tested on x86, x86-64, arm, powerpc

Ay T T L AT 1 Y VTV VY PP

http://www.stmx.org/

Examples and API (1/2)

(quicklisp:quickload :stmx)
(use-package :stmx)

(quicklisp:quickload :stmx.test)
(fiveam:run! 'stmx.test:suite)

(defvar *v* (tvar 42))
(print ($ *v*)) ;3 prints 42

(atomic
(1f (oddp ($ *v*))
(incf ($ *v*))
(decf ($ *v*)))) ;5 *v* now contains 41

TVAR is the smallest unit of transactional memory: it holds a single value (of any type)
The functions $ and (setf $) read and write a TVAR value.
The macro (atomic &body body) executes Lisp forms inside a transaction.

TVARSs are versioned using a global clock “GV1” — needed to guarantee read consistency

Ay T T L AT 1 Y VTV VY PP

Examples and API (2/2)

It is usually more convenient to take advantage of STMX integration with closer-mop

(transactional
(defclass bank-account ()
((balance :type rational :initform 0
raccessor account-balance))))

(defun bank-transfer (from-acct to-acct amount)

(atomic
(when (< (account-balance from-acct) amount)
(error "not enough funds for transfer"))

(decf (account-balance from-acct) amount)
(incf (account-balance to-acct) amount)))

The macro (transactional (defclass ...)) defines a transactional class:
its instance slots are transparently wrapped by TVARs. (slot-value) and accessors
work as expected: they read or write the value inside the TVAR

A macro (transactional-struct (defstruct ...)) is currently under development

vyspptaan I L OOk b ddggae e et

Main features (1/5)

STMX guarantees full A.C.1.B-semantics inside (atomic ...) forms:

e Atomicity: (atomic ...) forms are committed if they complete normally,
they are rolled back in case of non-local exit: signal a condition, (throw), (go), (return) ...
Effects of an (atomic ...) form are invisible to other threads until it commits.

* Consistency: an (atomic ...) form sees a consistent snapshot of transactional memory.
If consistency cannot be guaranteed, STMX aborts and restarts the (atomic ...) form.

* Isolation: inside an (atomic ...) form, effects of transactions committed by other threads are
not visible. They become visible only after the current (atomic ...) form commits or rolls
back.

* STMX transactions are NOT durable — but we are working on it*

* Composability: multiple transactions can be composed into a single, larger transaction:

(atomic
(atomic ...)
(atomic ...)

)
https://github.com/cosmos72/hyperluminal-db

vyspptaan I L OOk b ddggae e et

Main features (2/5)

* Waiting for changes: the function (retry) aborts the current transaction, waits until
another thread changes some of the TVARS read since the beginning of the transaction,
then re-executes the transaction from scratch. Examples:

(defmethod put ((v tvar) value)
(atomic

(1f ($ v)
(retry)
(setf ($ v) value))))

(defmethod take ((v tvar))
(atomic
(1f ($ v)
($ v)
(retry))))

* Nested, alternative transactions: (atomic (orelse forml form2 ...))
If forml calls (retry) or aborts spontaneously, form2 is invoked and so on.

e Delayed execution: (before-commit ...) and (after-commit ...)

Ay T T L AT 1 Y VTV VY PP

Main features (3/5)

Transactional version of popular data structures:

* TCONS and TLIST

* TVECTOR

* THASH-TABLE

* TMAP — sorted map, backed by red-black tree

e TSTACK and TFIFO

* TCHANNEL and TPORT - reliable multicast channel

Ready to use, they show how to write transactional structures and algorithms

Changes are usually small and mechanic:

* replace Lisp built-in structures with transactional counterparts
* replace (defclass ...) with (transactional (defclass ...))

* insert (atomic ...) where appropriate

Ay T T L AT 1 Y VTV VY PP

Main features (4/5)

Hardware transactional memory

* IBM Power ISAv.2.0.7 — currently NOT supported by STMX
* Intel TSX — supported by STMX on 64-bit SBCL, requires latest Intel Core i5/i7°

e XBEGIN start a HW memory transaction; needs address of fallback routine
« XEND commit

e XABORT abort and jump to fallback routine
e XTEST check whether a HW transaction is running

All CPU memory accesses (MOV, PUSH, POP...) become transactional.

L1 cache currently used as transactional buffer.

Memory conflicts, context switches, syscalls ... “may” abort the HW transaction.
Never guaranteed to succeed, requires fallback routine.

Very fast. ~20 nanoseconds initial overhead,
memory accesses maintain native, non-transactional speed

*’Haswell” generation (June 2013) — except some models

vyspptaan I L OOk b ddggae e et

Main features (5/5)

Hybrid transactional memory

(2013, March) A. Matveev and N. Shavit describe how to efficiently mix
Intel TSX and SW transactional memory

STMX implements a three-level strategy (requires 64-bit SBCL)
1. HW transactions using Intel TSX
2. SW transactions, with commit implemented by a HW transaction

3. Fully SW transactions, disabling HW ones

Some details:
* Adaptive global clock (GV1 + GV5 = GV6)
e HW transactions use un-instrumented reads. Writes also set TVAR version.

* Fallback 2 allows to run HW and SW transactions concurrently.

Ay T T L AT 1 Y VTV VY PP

Strengths & weaknesses (1/2)

e (Correct Vulnerable to near-livelocks
* Intuitive * Requires legacy code changes
e Powerful |/O and other irreversible

+ Elegant — can | say beautiful? operations should be avoided

* Heavily optimized — not slow
anymore

Misquote:
Every sufficiently complex lock-based algorithm
contains a bug-ridden implementation
of half transactional memory

T T T Y | TV UV VPP

Strengths & weaknesses (2/2)

Optimizations

Transparent HW acceleration (requires 64-bit SBCL + Intel TSX)
Specialized hash table with thread-local pools and sortless TVAR locking
NoO consing in most cases

lteratively inserted type declarations and optimizations based on profiling
and disassembly

Fast compare-and-swap locks + memory barriers (requires SBCL)

Optimizes away redundant TVAR writes during commit

Transactional I/O

Intel TSX limitations can be worked around — result is HW accelerated

transactional output on memory-mapped files and/or shared memory.

Extremely useful for database-like workloads requiring persistence.

SN LIV e d e il

Performance (1/2)

Micro-benchmarks — Intel Core i7 4770, Linux, SBCL 1.1.5 (64-bit)

nanoseconds per operation

Name Code SWitx | Hybridtx | No tx

read ($ v) 87 22 <1

write (setf ($ v) 1) 113 27 <1

incf (incf ($ v)) 148 27 3

10 incf (dotimes (1 10) 272 59 19
(incf ($ v)))

100 incf (dotimes (i 100) 1399 409 193
(incf ($ v)))

1000 incf (dotimes (1 1000) 12676 3852 1939
(incf ($ v)))

map read (get-gmap tm 1) 274 175 51

map update (incf (get-gmap tm 1)) 556 419 117

hash-table read (get-ghash th 1) 303 215 74

hash-table update | (incf (get-ghash th 1)) 674 525 168

L T T T T L TV VYV VPP

Performance (2/2)

Lee-TM benchmark 1200 F A ' global write lock —— -
Intel Core 17 4770 | | | stmx transactions
Debian GNU/Linux | | hreaded —¥—

SBCL 1.1.5 (64-bit) & °0°

Input: discrete grid, g

pairs of points to

connected routes per second

connect 600
(ex. a mainboard)

400 |
output — - Al
non-intersecting 2001 e o
B P i o

0 TN BN R |

0 5 10 15 20 25 30 35 40 45 50
threads

T T T T L Y VPP

Questions & answers

http://www.stmx.org/

massimiliano.ghilardi@gmail.com

L T T T T L TV VYV VPP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

