
Defmacro for C
Lightweight, Ad Hoc Code Generation

Kai Selgrad1, Alexander Lier1

Markus Wittman2, Daniel Lohmann1, Marc Stamminger1

1 Friedrich-Alexander University Erlangen-Nuremberg
2 Erlangen Regional Computing Center

European Lisp Symposium
May 6 2014, Paris, France

Defmacro for C

Proposition

We implemented an S-Expression syntax for C, embedded in CL,
to enable meta programming in application domains where C is
strongly established.

Outline

• Background information

• Presentation of syntax

• Implementation details

• Usage examples

Defmacro for C

Origins

The purpose of our work is to
facilitate research in performance
critical application domains, e.g.

• Computer Graphics,

• HPC / Simulation, and

• Systems Configuration.

The predominant environment in
those areas is C-like.

Defmacro for C

Computer Graphics

Advanced computer graphics typically relies on
Shader programming

(e.g. using the OpenGL shading language)

or general purpose GPU programming languages.
(e.g. OpenCL, Cuda)

Heterogenous programming is not easily managed.

Defmacro for C

High Performance Computing

In HPC it is crucial to determine the optimal
implementation of an algorithm for the hardware at
hand.
The optimal approach for each combination of
hardware platfrom

(e.g. Geforce GTX 780 vs Xeon Phi vs Unix cluster)

and algorithms
(e.g. Stencil computation to solve the heat equation)

is hard to maintain.
Current findings have to be continuously reevaluated
as hardware and algorithms evolve.

Defmacro for C

Why and how

• Wrote algorithm in GL Shading Language, need Cuda today.

• Wrote 900 ray tracers in 5000 lines of (C++ template) code.
Can’t change a single one.

• Want to check 7th alternative version of my algorithm,
– can’t read my code for #ifdef
– copy&paste again?

Being able to do comprehensive meta programming would
be very nice for our applications, too.
S-Exps are easily parsed and manipulated, all the mechanism is provided, too :)

We would be (and have been) very happy about
feedback from the community.
Our approach is comparable to Parenscript, but for
C-like languages.

Defmacro for C

Why and how

• Wrote algorithm in GL Shading Language, need Cuda today.

• Wrote 900 ray tracers in 5000 lines of (C++ template) code.
Can’t change a single one.

• Want to check 7th alternative version of my algorithm,
– can’t read my code for #ifdef
– copy&paste again?

Being able to do comprehensive meta programming would
be very nice for our applications, too.
S-Exps are easily parsed and manipulated, all the mechanism is provided, too :)

We would be (and have been) very happy about
feedback from the community.
Our approach is comparable to Parenscript, but for
C-like languages.

Defmacro for C

Why and how

• Wrote algorithm in GL Shading Language, need Cuda today.

• Wrote 900 ray tracers in 5000 lines of (C++ template) code.
Can’t change a single one.

• Want to check 7th alternative version of my algorithm,
– can’t read my code for #ifdef
– copy&paste again?

Being able to do comprehensive meta programming would
be very nice for our applications, too.
S-Exps are easily parsed and manipulated, all the mechanism is provided, too :)

We would be (and have been) very happy about
feedback from the community.
Our approach is comparable to Parenscript, but for
C-like languages.

Defmacro for C

An S-Exp Syntax for C

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar)) EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

wc -l

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ()) != EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

Defmacro for C

An S-Exp Syntax for C

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar)) EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

wc -l

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ()) != EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

Defmacro for C

Implementation

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar))

EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ())

!= EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

• Completely embedded in CL:

– Case sensitive symbol names via reader.
– Lisp vs CGen symbols via packages.
– Destructuring of simple C expressions via

reader.

• Evaluation of CGen forms builds AST:

(* (+ 1 2) x)

(* #<arith :op ’+ :lhs 1 :rhs 2>

#<name :name "x" >)

#<arith :op ’*

:lhs #<arith :op ’+

:lhs 1

:rhs 2>

:rhs #<name :name "x">>

Defmacro for C

Implementation

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar))

EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ())

!= EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

• Completely embedded in CL:

– Case sensitive symbol names via reader.
– Lisp vs CGen symbols via packages.
– Destructuring of simple C expressions via

reader.

• Evaluation of CGen forms builds AST:

(* (+ 1 2) x)

(* #<arith :op ’+ :lhs 1 :rhs 2>

#<name :name "x" >)

#<arith :op ’*

:lhs #<arith :op ’+

:lhs 1

:rhs 2>

:rhs #<name :name "x">>

Defmacro for C

Implementation

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar))

EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ())

!= EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

• Completely embedded in CL:

– Case sensitive symbol names via reader.
– Lisp vs CGen symbols via packages.
– Destructuring of simple C expressions via

reader.

• Evaluation of CGen forms builds AST:

(* (+ 1 2) x)

(* #<arith :op ’+ :lhs 1 :rhs 2>

#<name :name "x" >)

#<arith :op ’*

:lhs #<arith :op ’+

:lhs 1

:rhs 2>

:rhs #<name :name "x">>

Defmacro for C

Implementation

(function main () -> int

(decl ((int c)

(int nl 0))

(while (!= (set c (getchar))

EOF)

(if (== c #\ newline)

++nl))

(printf "%d\n" nl))

(return 0))

cgen

int main(void) {

int c;

int nl = 0;

while ((c = getchar ())

!= EOF) {

if (c == ’\n’)

++nl;

}

printf("%d\n", nl);

return 0;

}

• Completely embedded in CL:

– Case sensitive symbol names via reader.
– Lisp vs CGen symbols via packages.
– Destructuring of simple C expressions via

reader.

• Evaluation of CGen forms builds AST:

(* (+ 1 2) x)

(* #<arith :op ’+ :lhs 1 :rhs 2>

#<name :name "x" >)

#<arith :op ’*

:lhs #<arith :op ’+

:lhs 1

:rhs 2>

:rhs #<name :name "x">>

Defmacro for C

Demonstrations

We’ll show:

• A small DSL.

• A comparison of different approaches to C code generation.

• Direct use of our generated AST is not covered.

See the paper for:

• Numerous small examples.

• A larger evaluation of an example from HPC.

Defmacro for C

A Simple DSL
Higher level scripting languages usually have nice support for
Regular Expressions. Libc is rather verbose.
Using (match text

("([^.]*)" (printf "proper list.\n"))

(".*\." (printf "improper list.\n")))

instead of

regex_t reg;

int reg_err;

reg_err = regcomp (® , "([^.]*)", REG_EXTENDED);

if (regexec (® , text , 0, 0, 0))

printf (" proper list.\n");

else {

reg_err = regcomp (® , ".*\." , REG_EXTENDED);

if (regexec (® , text , 0, 0, 0))

printf (" improper list.\n");

}

is easily accomplished using cgen.

Defmacro for C

A Simple DSL

(defmacro match (expression &rest clauses)

‘(macrolet

((match-int (expression &rest clauses)

‘(progn

(set reg_err

(regcomp ® ,(caar clauses) REG_EXTENDED))

(if (regexec ® ,expression 0 0 0)

(progn ,@(cdar clauses))

,(lisp (if (cdr clauses)

‘(match-int

,expression

,@(cdr clauses))))))))

(decl ((regex_t reg)

(int reg_err))

(match-int ,expression ,@clauses))))

Defmacro for C

A Simple DSL

(defmacro match (expression &rest clauses)

‘(macrolet

((match-int (expression &rest clauses)

‘(progn

(set reg_err

(regcomp ® ,(caar clauses) REG_EXTENDED))

(if (regexec ® ,expression 0 0 0)

(progn ,@(cdar clauses))

,(lisp (if (cdr clauses)

‘(match-int

,expression

,@(cdr clauses))))))))

(decl ((regex_t reg)

(int reg_err))

(match-int ,expression ,@clauses))))

Defmacro for C

A Simple DSL

(defmacro match (expression &rest clauses)

‘(macrolet

((match-int (expression &rest clauses)

‘(progn

(set reg_err

(regcomp ® ,(caar clauses) REG_EXTENDED))

(if (regexec ® ,expression 0 0 0)

(progn ,@(cdar clauses))

,(lisp (if (cdr clauses)

‘(match-int

,expression

,@(cdr clauses))))))))

(decl ((regex_t reg)

(int reg_err))

(match-int ,expression ,@clauses))))

Defmacro for C

Comparison: Providing a SIMD Notation

In the following we’ll describe several variants to add a notation for
SIMD operations to C.

__m128 x, y, z;

__m128 c_0_5 = _mm_set_ps (0.5);

_mm_mul_ps(

_mm_add_ps(

x,

_mm_add_ps(y, z)),

c_0_5);

This is a nice example of why people like operator overloading, but
please bear with me.

Defmacro for C

SIMD Notation: Engineering
intrinsify: A simple preprocessor copying input to output.

• Recognizing //#.

• Parses calculator grammer using Flex and Bison.

• Pretty prints after whole expression is read.

__m128d accum , factor;

for (int i = 0; i < N; i++) {

__m128d curr = _mm_load_pd(base + i);

//# INT accum = accum + factor * curr;

}

__m128d accum , factor;

for (int i = 0; i < N; i++) {

__m128d curr = _mm_load_pd(base + i);

//# INT accum = accum + factor * curr;

accum = _mm_add_pd(accum , _mm_mul_pd(factor , curr));

}

Defmacro for C

SIMD Notation: Hacking

We also show a very ad hoc solution using Python (with Mako).

__m128d accum , factor;

for (int i = 0; i < N; i++) {

__m128d curr = _mm_load_pd(base + i);

${with_sse(set_var(’accum ’,

add(’accum’,

mul(’factor ’, ’curr’))))};

}

Defmacro for C

SIMD Notation: t ∈ (0, 1)

Using our generator:

(decl ((__m128d accum)

(__m128d factor))

(for ((int i 0) (< i N) i++)

(intrinsify

(decl ((mm curr (load-val (aref base i))))

(set accum (+ accum (* factor curr)))))))

Flex&Bison: 1,500 sloc / String based: 60 sloc / Cgen: 45 sloc

Extensibility. Convert numbers to SIMD constants:

Flex&Bison: X / String based: – / Cgen: X

Defmacro for C

SIMD Notation: t ∈ (0, 1)

Using our generator:

(decl ((__m128d accum)

(__m128d factor))

(for ((int i 0) (< i N) i++)

(intrinsify

(decl ((mm curr (load-val (aref base i))))

(set accum (+ accum (* factor curr)))))))

Flex&Bison: 1,500 sloc / String based: 60 sloc / Cgen: 45 sloc

Extensibility. Convert numbers to SIMD constants:

Flex&Bison: X / String based: – / Cgen: X

Defmacro for C

SIMD Notation: t ∈ (0, 1)

Using our generator:

(decl ((__m128d accum)

(__m128d factor))

(for ((int i 0) (< i N) i++)

(intrinsify

(decl ((mm curr (load-val (aref base i))))

(set accum (+ accum (* factor curr)))))))

Flex&Bison: 1,500 sloc / String based: 60 sloc / Cgen: 45 sloc

Extensibility. Convert numbers to SIMD constants:

Flex&Bison: X / String based: – / Cgen: X

Defmacro for C

Conclusion

Limitations

• New target languages require changes at the AST level.

• Late type checking.

• Line Numbers.

Summary

• Lightweight, especially when compared to general purpose
code generation for C.
Lowering the entry barrier to code generation.

• Complete support for CL macros.

• Very simple meta programming targetting C.

Defmacro for C

Thank you for your attention.

Defmacro for C

Defmacro for C

References

Page 3 Stanford dragon, Stanford 3D Scanning Repository.

Page 5 https://computing.llnl.gov/tutorials/parallel_comp/,
http://spectrum.ieee.org/semiconductors/processors/

what-intels-xeon-phi-coprocessor-means-for-the-future-of-supercomputing,
http://www.pc-erfahrung.de/hardware/grafikkarte/vga-grafikchips-desk/geforce-gtx-serie/

nvidia-geforce-gtx-285-295-gt200b.html

Page 6 http://michellewelti.blogspot.de/2010/11/frustration-common-emotional-response.html

Page 7 http://www.lisperati.com/logo.html

Page 8 http://researchinprogress.tumblr.com/

Page 10 Sample from “The C Programming Language”, K&R

Page 14 Sample from “The C Programming Language”, K&R

Page 23 https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/

CellProgrammingTutorial/BasicsOfSIMDProgramming.html

Defmacro for C

https://computing.llnl.gov/tutorials/parallel_comp/
http://spectrum.ieee.org/semiconductors/processors/what-intels-xeon-phi-coprocessor-means-for-the-future-of-supercomputing
http://spectrum.ieee.org/semiconductors/processors/what-intels-xeon-phi-coprocessor-means-for-the-future-of-supercomputing
http://www.pc-erfahrung.de/hardware/grafikkarte/vga-grafikchips-desk/geforce-gtx-serie/nvidia-geforce-gtx-285-295-gt200b.html
http://www.pc-erfahrung.de/hardware/grafikkarte/vga-grafikchips-desk/geforce-gtx-serie/nvidia-geforce-gtx-285-295-gt200b.html
http://michellewelti.blogspot.de/2010/11/frustration-common-emotional-response.html
http://www.lisperati.com/logo.html
http://researchinprogress.tumblr.com/
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html

