
1 of 16

Extending Software Transactional Memory in Clojure with
Side-Effects and Transaction Control

Søren Kejser Jensen
Lone Leth Thomsen

Department of Computer Science
Aalborg University, Denmark

{skj,lone}@cs.aau.dk



2 of 16

Agenda

Introduction

Extensions

Implementation

Conclusion



3 of 16

Problem Definition

I The free lunch is over.

I Multi-core processors have become the default.

I Development of multi-threaded programs is a complicated task:

I Deadlocks.

I Race Conditions.

I Non Determinism.



4 of 16

Contributions

I Extended a software transactional memory implementation, based on
multi-version concurrency control, in a dynamic Lisp language with:

I An interface for multiple methods for synchronising side-effects.

I Known methods for transaction control with additional novel extensions.

I eClojure, an implementation of both extensions with unit tests in Clojure.

I https://github.com/skejserjensen/eclojure

https://github.com/skejserjensen/eclojure


5 of 16

Clojure

I Clojure provides a good platform for developing multi-threaded programs:

I Implemented on the Java Virtual Machine and Common Language Runtime.

I Can interoperate with existing libraries developed for each platform.

I Uses immutable data structures by default, facilitating concurrent access.

I Provides software transactional memory to simplify sharing of mutable data.



6 of 16

Software Transactional Memory

I Alleviates the problem of locking order by restarting on conflicts.

I In Clojure implemented using multi-version concurrency control.

I Clojure’s implementation of software-transactional memory provides:

I Snapshot isolation.

I Concurrent read and writes.

I The possibility of write skew.



7 of 16

Software Transactional Memory Example

I Synchronised summation of [1 2 3 4 5 6 7 8 9 10] to the value 55.

(def shared-data (ref [1 2 3 4 5 6 7 8 9 10]))

(dosync
(alter shared-data

(fn [elements] (reduce + elements ))))



8 of 16

Synchronisation of Side-Effects

I Software transactional memory cannot synchronise forms with side-effects.

(def keys-ref (ref []))
(def rows-ref (ref vector-of-rows ))

(dosync
(let [row (first (deref rows-ref ))

next-key (database-insert row)]
(alter keys-ref conj next-key)
(alter rows-ref rest )))



9 of 16

Controlling a transaction

I Clojure provides no capability for controlling a running transaction.

(try
(dosync

(throw TerminateException ))
(catch TerminateException te))

I Such functionality can be emulated but would add additional complexity.



10 of 16

Event Manager

(listen event-key event-fn & event-args)
(listen-with-params event-key thread-local

delete-after-run event-fn & event-args)

(dismiss event-key event-fn dismiss-from)

(notify event-key)
(notify event-key context)

(context)



11 of 16

Synchronisation of Side-Effects

(after-commit & body)
(after-commit-fn event-fn & event-args)

(on-abort & body)
(on-abort-fn event-fn & event-args)

(on-commit & body)
(on-commit-fn event-fn & event-args)

(lock-refs func & body)

(java-ref x)
(java-ref x & options)

(alter-run input-ref func & args)
(commute-run input-ref func & args)



12 of 16

Transaction Control

(retry [])
(retry [refs])
(retry [refs func & args])

(retry-all [])
(retry-all [refs])
(retry-all [refs func & args])

(or-else & funcs)
(or-else-all & funcs)

(terminate)



13 of 16

Implementation of Software Transactional Memory in Clojure



14 of 16

Implementation of Software Transactional Memory in eClojure



15 of 16

Conclusion

I eClojure extends the implementation of software transactional memory in
Clojure with support for synchronising side-effects and transaction control.

I Initial evaluation indicates a usability improvement at the cost of overhead.

I We anticipate the overhead could be further reduced through optimisation.

I Future work includes a larger evaluation, optimisation and automation.



16 of 16

Questions?


	Introduction
	Extensions
	Implementation
	Conclusion

