
Lightning Talks I
ELS 2016

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

Nicolas Hafner

@Shinmera
https://everything.shinmera.com

https://everything.shinmera.com

Last Year...
• Qtools makes using Qt from CL neat

• But Qt itself is awkward sometimes:
• Layouts are lacklustre
• Some features can’t be changed
• Widgets are not extensible enough

Last Year...
• Qtools makes using Qt from CL neat
• But Qt itself is awkward sometimes:
• Layouts are lacklustre
• Some features can’t be changed
• Widgets are not extensible enough

What to Do?
• Qt sources can’t feasibly be changed
• There’s no way to hack fixes in otherwise

• So we need to rewrite it all
• but this time in Lisp! \o/

What to Do?
• Qt sources can’t feasibly be changed
• There’s no way to hack fixes in otherwise
• So we need to rewrite it all
• but this time in Lisp!

\o/

What to Do?
• Qt sources can’t feasibly be changed
• There’s no way to hack fixes in otherwise
• So we need to rewrite it all
• but this time in Lisp! \o/

Enter Qtools-UI
• Offers a new, dynamic layouting protocol
• Implements a few standard layouts and widgets
• Includes useful base-classes to work with
• And completely pre-made components

Things Like...

What’s Next?
• More layouts
• More components

• More everything!
• More extensive testing needed
• Contributors are more than welcome

What’s Next?
• More layouts
• More components
• More everything!

• More extensive testing needed
• Contributors are more than welcome

What’s Next?
• More layouts
• More components
• More everything!
• More extensive testing needed
• Contributors are more than welcome

https://shinmera.github.io/qtools-ui

Available on Quicklisp

https://shinmera.github.io/qtools-ui

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Contributing to the Common Lisp
ecosystem

Daniel "jackdaniel" Kochmański

May 4, 2016

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Outline

Write the software

Improve the existing software

Teach the Common Lisp

Get involved with the existing implementations

Improve implementations compatibility

Priorities (highly opinionated)

Still don’t know how to contribute?

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Write the software

Pros
I eternal fame
I growing

ecosystem
I freedom of choice

Cons
I yaXl - yet another X library
I NIH syndrome
I Reinventing the wheel

Duties
I State of the art
I Write portable code and tests
I Use portability layers if needed
I Write documentation

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Improve the existing software

I Provide the bug fixes
I Implement new features
I Maintain abandoned packages
I Write documentation
I Create tutorials
I Improve portability
I Perform cl-test-grid tests on your

platform/implementation

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Teach the Common Lisp

I Write a tutorial, a blog post or an essay
I Improve existing resources (cliki, llthw, . . .)
I Help new CL programmers (#clnoobs, #lisp,

stackoverflow, . . .)
I Participate in ECL Quarterly (shameless plug goes

here)
I Create local Common Lisp group
I Promote CL in your work environment

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Get involved with the existing
implementations

I Report bugs
I Write tests
I Improve documentation
I Fix bugs, improve code and implement features
I Build and run tests on your platform

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Improve implementations compatibility

I Contribute to the portability layers
I Before implementing the new exciting feature write

a specification and the test suite for it
I Contribute to ansi-test, cl-test-grid, portability

layers, . . .

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Priorities (highly opinionated)

I Documenting and writing the specification for
ASDF and UIOP

I Finding the CLISP maintainer
I Refactoring the libraries to use the portability layers

instead of maintaining their own hand-written
implementations

I Providing a good learn resources for the beginners
Learn Lisp the Hard Way

I Creating a non-Emacs IDE for Common Lisp

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Still don’t know how to contribute?

I If you have an extra money pass it to the Common
Lisp Foundation

I If you are a musician write a song about lisp
I If you have a project to outsource hire the Common

Lisp hackers
I If you don’t know Common Lisp yet go and learn

some!

Contributing to
the Common

Lisp ecosystem

Daniel
"jackdaniel"
Kochmański

Write the
software

Improve the
existing software

Teach the
Common Lisp

Get involved with
the existing
implementations

Improve
implementations
compatibility

Priorities (highly
opinionated)

Still don’t know
how to
contribute?

Questions?

This presentation is available at
www.turtleware.eu/static/talks/els-2016-lt.pdf
www.turtleware.eu/static/talks/els-2016-lt.org

Contact
Daniel "jackdaniel" Kochmański
daniel@turtleware.eu

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

Software Development Engineer (Temporary Job)

Irène Durand dept-info.labri.fr/~idurand

ANR GRAPHEN graphen.isima.fr

LaBRI www.labri.fr

University of Bordeaux www.u-bordeaux.fr

I Design a dynamic Web interface for the TRAG system (Term
Rewriting Automata and Graphs – written in CL).

I (if time left) Set up a database to store submitted examples

Required education: at least a Master degree in Computer Science

Montly salary: e 1972.5 (gross) e 1595.82 (net)

Duration: 18 months (start asap, end before September 2019)

Skills: Programming (all paradigms), Web programming and
technologies, Databases

dept-info.labri.fr/~idurand
graphen.isima.fr
www.labri.fr
www.u-bordeaux.fr

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

Lisp & AWS
An Experience

Andrew Lawson
RavenPack International S.L.

Big Data

• Buzzwords

• Big Data means big infrastructure

• Which is difficult to manage and utilize

• But it is the future, until the next big thing

RavenPack

• Convert unstructured data to structured data

• Mainly for the financial industry

• News and social media

• Which means databases in the 10s of teras

The Traditional Database

• A convenient single-point of worry

• The DBA has control most of the time

• But also a single point of failure

• And easily saturated

Amazon Web Services
• Managed by the lovely people at Amazon

• Well documented, but still full of surprises

• Support is good though

• All the power that we could possibly need

• At a price

Our Problem
• If we want to launch a new version of the product

• We have to reanalyze our entire corpus

• Saturate the DB, 6 weeks

• Assuming that no bugs are found …

• And some of that machinery is idle 10-months a
year

In AWS Land
• We use many services

• S3, DynamoDB, EC2, etc etc …

• We’ve had to rewrite large parts of the system

• In Lisp, so quickly

• And learn … a lot

• The API is documented, but not all behavior is

Lisp Means …

• For S3, we can use Zach’s ZS3 library

• For everything else, we wrote it

• It’s web, lots of JSON

• Which is really sort-of-s-expression-ish, if you
squint

DynamoDB Looks Like
(defmethod dynamodb-put-item ((context aws-context) table-name items)
 (let* ((target "DynamoDB_20120810.PutItem")
 (key-json-list
 (loop
 for (key type value) in items
 collect `(,(jsym key)
 ,(cons (symbol->dtype type)
 ;; All types must be supplied in strings
 (typecase value
 (string value)
 (t (princ-to-string value)))))))
 (json-list `((:*TABLE-NAME . ,table-name)
 (:*ITEM ,@key-json-list)
 (:*RETURN-CONSUMED-CAPACITY . "TOTAL")
 (:*RETURN-ITEM-COLLECTION-METRICS . "SIZE")
 (:*RETURN-VALUES . "ALL_OLD"))))
 (let ((results (run-dynamodb-request context target json-list table-name)))
 ;; Returns two values. The first is t if a line was overwritten, nil if
 ;; the put did not overwrite a line.
 (values
 (when (assoc :*ATTRIBUTES results) t)
 results))))

Free Your Lisp
• We have lots of worker images

• Each containing a full Lisp system

• The only central resource is a metadata DB

• And that’s only accessed to distribute jobs

• Otherwise the workers access S3 and DynamoDB

• Which seem to scale more or less linearly

Winning
• Lisp is great for interactive development

• But for developing AWS interfaces it wins big

• Because we’re just throwing JSON to see what sticks

• And that’s easily manipulated at the REPL

• We translate AWS’s errors to conditions automatically,
so we even get nicely-formatted failures

But ..

HTTP Keep-Alive

• Don’t forget to enable it, and you may have to
implement it

• Your Ops team will thank you

• And so will the routers

• And you’ll get fewer connection problems
(with-resource (socket (socket-pool aws-context))
 (do-some-aws-call)
 …)

Spot Instances

• Save money, bid for instances when you need them

• Then they take them away, when some big
company wants to calculate their profits

• Inconvenient

Spot Instances (2)

• Distribute your machines across zones. The market
is fairly zone-specific

• Make sure that your machines start quickly. Take
advantage of the time that they give you

• Lisp wins again: Pre-prepared images downloaded
from S3 on machine boot

DynamoDB Throughput

• You have to set it by hand

• High enough not to affect your systems

• Low enough not to pay a premium

• Major hassle … we want to automate this one day

So…
• We can run faster

• We don't need to go anywhere near our realtime
systems

• We only pay when we need to do some work

• The hum of hundreds of Lisp servers can be heard
for miles, it sounds like … victory

And …
We are always looking for good people

Lisp
Python
Java

Financial Mathematicians

http://ravenpack.com

Or talk to me

http://ravenpack.com

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

Backward compatibility of libraries
(case study in Common Lisp)

Anton Vodonosov

May 2016

There is a widespread belief, that if you change
you library API in an incompatible way, all you
need to do to protect clients is to upgrade the
major version number:

 (asdf:defsystem :my-lib
 :version "1.1.1"
 ...)

becomes

 (asdf:defsystem :my-lib
 :version "2.1.1"
 ...)

That's not enough. Let's consider a dependency tree of
an application which uses hunchentoot and
postmodern:

 my-application
 hunchentoot
 bordeaux-threads
 alexandria
 chunga
 trivial-gray-streams
 cl+ssl
 bordeaux-threads
 alexandria
 cffi
 alexandria
 babel
 alexandria
 trivial-features
 trivial-features
 uiop
 flexi-streams
 trivial-gray-streams
 trivial-garbage
 trivial-gray-streams
 uiop

 cl-base64
 cl-fad
 alexandria
 bordeaux-threads
 alexandria
 cl-ppcre
 flexi-streams
 trivial-gray-streams
 md5
 rfc2388
 trivial-backtrace
 usocket
 postmodern
 bordeaux-threads
 alexandria
 cl-postgres
 md5
 closer-mop
 s-sql
 cl-postgres
 md5

We can see that many libraries (alexandria, md5, cl-
postgres, flexi-streams, trivial-gray-streams, bordeaux-
threamds, and so on) appear in the dependency tree
several times, used by different clients:

 my-application
 hunchentoot
 md5
 postmodern
 cl-postgres
 md5

Lets imagine we refactor md5 functions in an
incompatible way and release it as md5 3.0.0.

Then cl-postgress adopts new md5

 (defsystem :cl-postgres
 :depends-on ((:version :md5 "3.0.0")
 ...

while hunchentoot still depends on old md5.

The application becomes broken as soon as we use new
cl-postgres, because the dependency tree now includes
two versions of md5.

 my-application
 hunchentoot
 md5 ;; version 2.x.x
 postmodern
 cl-postgres
 md5 ;; version 3.0.0

And the two versions can not be loaded simultaneously,
because they share the same package name:

 (cl:defpackage #:md5
 ...

THE MAIN POINT:

If we want to save our clients from
trouble, we need to ensure the new
version of our library can be loaded
simultaneously with the old version.

THE MAIN POINT:

If we want to save our clients from
trouble, we need to ensure the new
version of our library can be loaded
simultaneously with the old version.

In Common Lisp this means we at least should use new
package for new API. For example

 (cl:defpackage #:md5.v3
 ...

Another nuance.

IMHO the notion of major version number is redundant
and unnecessary. If that's a new API let's name its
ASDF system differently:

Instead of

 (asdf:defsystem :my-lib
 :version "2.1.1"
 ...)

use

 (asdf:defsystem :my-lib2
 ...)

Moreover.

It's the only way suitable for Common Lisp.

Major version numbers would only work if clients of
old API specified dependencies with major version too:

 (defsystem :hunchentoot
 :depends-on ((:version :md5 "2.0.0")
 ...

 (defsystem :cl-postgres
 :depends-on ((:version :md5 "3.0.0")
 ...

But people don't do this. Actually:

 (defsystem :hunchentoot
 :depends-on (:md5
 ...

Also, Quicklisp doesn't support several versions of the
same ASDF system in one dist.

And it's more in the spirit of functional programming to
avoid usage of the same name for different things.

CONCLUSION

● If you change you API incompatibly, allow
implementations of the old API and of the new API
to be used simultaneously. For CL this means at
least use new package for new implementation.

● If you ASDF system doesn't include the old API,
give that ASDF system new name.

Or...

don't break backward compatibility at all

Very often it's trivial to maintain backward
compatibility.

E.g. instead of changing function parameters, leave the
old function untouched (maybe deprecated) and
introduce new function.

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

SYMBOLS AS NAMESPACES
ON ABCL

• Lisp is ultimately all about lists and symbols

• Symbols name things:

• Have a string name (for reading and printing them)

• Have properties, built-in and user-defined

Monday, May 9, 16

SYMBOLS AS NAMESPACES ON ABCL

• Early Lisps: global namespace for symbols

•Different softwares, same Lisp image = conflicts!

• Packages disambiguate: (not (eq ‘foo:bar ‘baz:bar))

• Packages:

• Have a string name

• Have built-in properties

• Live in a global map and don’t exist outside of it

Monday, May 9, 16

SYMBOLS AS NAMESPACES ON ABCL

• Common Lisp: global namespace for packages

•Different softwares, same Lisp image = conflicts!

•Notice a pattern?

• Idea: conflate symbols and packages

• Symbols have a string name, properties, and can
contain other symbols

• :foo:bar :baz

Monday, May 9, 16

SYMBOLS AS NAMESPACES ON ABCL

• Compatibility with CL is preserved

• Packages remain as a facade over symbols

• Root symbol is the home of keywords

•Nice :keyword syntax out of the box

• Packages are symbols in :top-level-packages

• Too little time to explain, ask me why!

• ANSI test suite has same failures as regular ABCL

Monday, May 9, 16

SYMBOLS AS NAMESPACES ON ABCL

•Why?!?

• Conceptual purity (one less concept)

•Nicely map to hierarchical names

• file systems ‘home:alessio:symbols-as-namespaces.pdf

• we could get rid of pathnames too!

• Foreign languages ‘java.lang:String:valueOf

Monday, May 9, 16

SYMBOLS AS NAMESPACES ON ABCL

• Bonus: symbol aliasing (for package nicknames)

•Malus: delete-package is a mess (should be deprecated
in favor of unintern + GC)

• TODO

• Further verify ANSI CL conformance

• Polish (pun intended!)

• Port to other Lisps (verify feasibility)

• Standardize with a specification (CDR?)

Monday, May 9, 16

• 01 QTools UI - Nicolas Hafner

• 02 Contributing to the CL Ecosystem - Daniel Kochmański

• 03 A Job - Irène Durand

• 04 Lisp and AWS - Andrew Lawson

• 05 Backward Compatibility - Anton Vodonosov

• 06 Symbols as Namespaces - Alessio Stalla

• 07 FoCus - Didier Verna

FoCus

Didier Verna

FoCus
Format Customizations

Didier Verna

@didierverna
didier@didierverna.net

ELS 2016 – Lightning Talk

1/4

mailto:didier@didierverna.net

FoCus

Didier Verna

Make format customizable / extensible

Declt has a lot of this:
(format t "˜A" (escape str))

I would like a custom directive:
(format t "˜‘" str)

But all I can do is this:

(format t
"~/net.didierverna.declt::escape/"
str)

2/4

FoCus

Didier Verna

FoCus: format customizations

Wrapper around standard format[ter]

Fully programmable case-sensitive directives
format-table: similar to readtables

Optional compile-time behavior
Provides in-format-table
Requires asdf-flv

3/4

FoCus

Didier Verna

Get it

Lastest (Earliest) official version: 1.0 “Kokyu Ho”
http://github.com/didierverna/focus

4/4

http://github.com/didierverna/focus

	Write the software
	Improve the existing software
	Teach the Common Lisp
	Get involved with the existing implementations
	Improve implementations compatibility
	Priorities (highly opinionated)
	Still don't know how to contribute?
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

