Accessing local variables during debugging

Michael Raskin, raskin@mccme.ru Nikita Mamardashvili (Shviller)

May 10, 2016

Michael Raskin, raskin@mccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 1/20

Context

Hopefully, all large programs use local variables

Some programs even use closures

Interactive debugging benefits from inspection of all the relevant state

@ Common Lisp implementations provide access to local variables during

debugging

However...

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 2 /20

Local variable availability
Local variables can be optimised away by the optimizer. SBCL manual has
a special section (in version 1.3.4 it is section 5.4.1) «Variable Value

Availability»

But even avoiding triggering any of the listed optimizations isn't always

enough.

For example, constant propagation can also optimize variables away.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 3 /20

Brute-force solution
Copy the lexical environment into global variables using dynamic-scope

rebindings.

Code-walk the code, notice where lexical environment changes (1et,
lambda, labels,..) and push the names and the values into a stack with a

global name.

How to support modification of variables from a debugging REPL?
Currently we save anonymous functions that can return or modify the

values. Not sure if there is any other portable way.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 4 /20

Demonstration
@ with-local-wrapper
@ wrap-rest-of-input
@ pry-light
@ pry
© pkg-pry
@ list-locvars, list-locfuncs

@ locvar, locfunc

@ lexenv-stack-cursor-set

@ push-lexenv-to-saved

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016

with-local-wrapper
Code-walk the body to apply the magic
wrap-rest-of-input

Wrap all the forms (except defmacro forms) until the end of file

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 6 /20

pry-light

Just a small helper to launch a debugging session using cerror.
pry

Launch a debugging session with all lexical variables temporarily copied to
dynamic environment
Note: you still need to use the locvar function to make any modifications
the values of the local variables.

pkg-pry
Create a temporary package, and copy all the local variables and functions
to global variables and functions with the same symbol-name in the new

package. Launch a debugging session with this package as *packagex;

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 7 /20

list-locvars (alias for list-local-variables)
List the local variables in the currently inspected captured lexical
environment

list-locfuncs (alias for list-local-functions)
List the local functions in the currently inspected captured lexical
environment

lexenv-stack-cursor-set

Choose the captured lexical environment to inspect. The stack position
can be specified as an absolute number or an offset with respect to the

current position.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 8 /20

locvar (local-variable)
(locvar x): read x
(locvar x 1): set x

locfunc (local-function)

(locfunc £ 1 2): call f with arguments 1 and 2

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 9 /20

push-lexenv-to-saved
Pushes the current lexical environment to the stack for the dynamic extent
of executing body.
The with-local-wrapper macro puts a layer of push-lexenv-to-saved
around the code in a new environment.
The pry macro uses push-lexenv-to-saved if no saved lexical

environments are available.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 10 / 20

Portability

Portability is currently limited by hu.dwim.walker
Currently: SBCL, CCL work fine; but ECL and CLISP known not to work

Work in progress: a simple portable universal code walker for migration

from hu.dwim.walker

May 10, 2016 11 /20

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging

Performance impact
A really inefficient exponential-time Fibonacci function.

Completely consists of entering lexical environments.

We hope it is the worst case for the wrapper.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 12 /20

Performance impact

The horribly inefficient code

(defun fib-uw (n)
(if (<= n 1)
(progn (when *pry-on-bottom* (pry)) 1)
(+ (fib-uw (- n 1)) (fib-uw (- n 2)))))

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016

Performance measurements

n=40
time, s slower than CCL | bytes consed per call
CCL 3.18 16
SBCL 3.50 1.10x 16
ECL 50.53 15.88x 32
CLISP 259.90 81.68x 0
CCL w/wrap | 28.29 (8.89x%) 8.89x 160 (+144)
SBCL w/wrap | 13.95 (3.98x) 4.38x% 128 (+112)

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging

May 10, 2016

14 / 20

Limitations
You cannot just setf the local variables in a pry session and have the
program use the new value.
There is no access to the local macros.

hu.dwim.walker doesn't like to walk defmacro forms.

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 15 / 20

Why are portable walkers hard to write?

Because things are complicated..

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 16 / 20

Things are complicated (CLISP)

[11> (load "clisp-impossible-value.lisp")

;; Loading file clisp-impossible-value.lisp ...

;3 Loaded file clisp-impossible-value.lisp

T

[21> (et ((x (£))) x)

T

[31> (let ((x (£))) (not x))

NIL

[4]> (let ((x (£))) (setf x nil) x)

*x% — SETQ: T is a constant, may not be used as a variable
The following restarts are available:

USE-VALUE :R1 Input a value to be used instead.
ABORT :R2 Abort main loop

Break 1 [5]>

May 10, 2016

17 / 20

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging

Things are complicated (CLISP)

[11> (load "clisp-impossible-value.lisp")

;; Loading file clisp-impossible-value.lisp ...

;3 Loaded file clisp-impossible-value.lisp

T

[21> (et ((x (£))) x)

T

[31> (let ((x (£))) (not x))

NIL

[4]> (let ((x (£))) (setf x nil) x)

*x% — SETQ: T is a constant, may not be used as a variable
The following restarts are available:

USE-VALUE :R1 Input a value to be used instead.
ABORT :R2 Abort main loop

Break 1 [5]>

(61> (£)
#<SYMBOL-MACRO T>

May 10, 2016

17 / 20

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging

Things are complicated (macroexpand-dammit)

* (load "macroexpand-dammit.lisp")
* (defmacro £ () 1)

* ()
1
* (macroexpand-dammit:macroexpand-dammit '(let ((x 1)) (£)))

(LET ((X 1)) 1

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 18 / 20

Things are complicated (macroexpand-dammit)

* (load "macroexpand-dammit.lisp")
* (defmacro £ () 1)

* ()
1
* (macroexpand-dammit:macroexpand-dammit '(let ((x 1)) (£)))

(LET ((X 1)) 1

x(flet ((£ O 2)) (£))
2

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 18 / 20

Things are complicated (macroexpand-dammit)

* (load "macroexpand-dammit.lisp")
* (defmacro £ () 1)

* ()
1
* (macroexpand-dammit:macroexpand-dammit '(let ((x 1)) (£)))

(LET ((X 1)) 1

x(flet ((£ O 2)) (£))
2

* (macroexpand-dammit:macroexpand-dammit '(flet ((£ () 2)) (£)))

debugger invoked on a SB-KERNEL::ARG-COUNT-ERROR in thread

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 18 / 20

Thanks for your attention

Questions?

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 19 /20

OK, now | have a question.

What other annoying (but easy to solve) problems are often overlooked?

Michael Raskin, raskin@meccme.ru, Nikita Mai Accessing local variables during debugging May 10, 2016 20 / 20

