| ightning Talks |

ELS 2017

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frederic Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

Meta-iImplementation Protocol

Semantics + Reflection = First-Class Implementations

Turn your Lisp into a Meta-Platform

Francois-René Rideau, TUNES Project

Lightning Talk at the European Lisp Symposium, 2017-04-03

http://fare.tunes.org/files/cs/fci-els2017.pdf

Teaser for my 2017-03-21 presentation at Lisp NYC

Basic Intuitions

Good programmers can mentally zoom in and out

of levels of abstraction

Interesting theorems allow you to change

your perspective on existing objects

Semantic Tower

myprog.lisp
A
DSL
A
CL
A
IR
A
x86 (Linux process)
A
x86 (bare PC)
A
Digital Electronics

\
Analog Electronics

\
Quantum Physics

Navigating, not mere debugging

Debugging
Local program state only
Only recover one level of abstraction

One way fixed magic operation

Navigating
Recurse to complete program state
Compose to recover any level you like

First-class operation both ways

Migration

I T <<
X
// \\
M M’
b
I I
. C '
WL S,
\ \ /
\ \ 7/

When your hammer is Migration...

Process Migration
Garbage Collection
Zero Copy Routing
Dynamic Configuration
JIT Compilation

etc.

Semantic Towers need not be linear!

A
Gap T
Uy
// \\
/
U2 \\\
. Ui
/
Vol
Uy y \\
I/ \ /// \\
| \ / \
U \
S t \
| \
Ci o s
/ o,
/ * /
Cs | //
R Cs
\ //V
Cs
*

New Insights on...

Computation Semantics

Compilation

Semantics-preserving transformations
Aspect-Oriented Programming

Code Instrumentation

Virtualization

Computational Reflection

Software Architecture

Security

First-Class Implementations

Formalizing Implementations: Categories!

Observability: Neglected key concept — safe
points

First-Class Implementations via Protocol Extraction

Explore the Semantic Tower — at runtime!

Principled Reflection: Migration

Natural Transformations generalize Instrumentation

Reflective Architecture: 3D Towers

Social Implications: Platforms, not Applications

Challenge

Put the "MIP" in your Lisp

Let’'s change software architecture!

Thank you

My blog: Houyhnhnm Computing

http://ngnghm.github.io/

10

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frederic Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

Enlightening lightning talk
ELS 2017

Reflectable CL functions

Too many functions. | get confused,
need help debugging.

(defmethod map-pxls ((p-pxl-iters parallel-pxl-iters)
&key unary aggregate
(mk-unary (lambda () unary)))
(let ((@-ary-functions
(mapcar (lambda (p-pxl-iter
&aux (unary (funcall mk-unary)))
(lambda ()
(map-pxls p-pxl-iter :unary unary)))
(pxl-iters p-pxl-iters))))
(1lparallel:preduce (lambda (v f)
(funcall aggregate v (funcall f)))
@-ary-functions)))

Declaring function types doesn't help.
Compiler ignores content.

(defmethod map-pxls ((p-pxl-iters parallel-pxl-iters)
&key unary aggregate
(mk-unary (lambda () unary)))

(declare (type (function (t) t) unary)

(type (function () (function (t) t)) mk-unary)
(type (function (t t) t) aggregate))

(let ((@-ary-functions
(mapcar (lambda (p-px1l-iter

&aux (unary (funcall mk-unary)))
(lambda ()

(map-pxls p-pxl-iter :unary unary)))
(px1l-iters p-pxl-iters))))

Run-time function assertion fails.

(defmethod map-pxls ((p-pxl-iters parallel-pxl-iters)
&key unary aggregate
(mk-unary (lambda () unary)))
(let ((@-ary-functions
(mapcar (lambda (p-pxl-iter
&aux (unary (funcall mk-unary)))
(assert (typep mk-unary ‘(function () t)))
(assert (typep unary ‘(function (t) t)))
(lambda ()
(map-pxls p-pxl-iter :unary unary)))
(pxl-iters p-pxl-iters))))
(1parallel:preduce (lambda (v f)
(funcall aggregate v (funcall f)))
@-ary-functions)))

CL specification of Function TYPEP

* An error of type error is signaled if type-
specifier is values, or a type specifier list

whose first element is either function or
values.

 (assert (typep unary ‘(function (t) t)))

Define class with :metaclass
closer-mop: :funcallable-standard-class

(defclass reflectable-function ()
((function :initarg :function :type function)
(body :initarg :body)
(lambda-1list :initarg :lambda-1list))
(:metaclass closer-mop:funcallable-standard-class))

(defmethod initialize-instance
:after ((self reflectable-function) &key)
(closer-mop:set-funcallable-instance-function
self (slot-value self 'function)))

(defmacro refl-lambda (lambda-1list &rest body)
" (make-instance 'reflectable-function
:function (lambda ,lambda-1list ,@body)
:body ',body
:lambda-1list ',lambda-1list))

Define a type intersecting the class

(defun refl-2-ary (obj)
(and (typep obj 'reflectable-function)
(= 2 (length (slot-value obj 'lambda-list)))))

(deftype refl-2-ary ()
“(and reflectable-function
(satisfies refl-2-ary)))

(map-pxls p-iters
:unary (refl-lambda (px1)
(red px1))
:aggregate (refl-lambda (v2 v2)
(max vl v2)))

Declare away! Assert away!

(defmethod map-pxls ((p-pxl-iters parallel-pxl-iters)
&key unary aggregate
(mk-unary (refl-lambda () unary)))
(declare (type refl-1-ary unary)
(type refl-0-ary mk-unary)
(type refl-2-ary aggregate))
(let ((@-ary-functions
(mapcar (lambda (p-px1l-iter
&aux (unary (funcall mk-unary)))
(assert (typep unary ‘refl-1-ary))
(refl-lambda ()
(map-pxls p-pxl-iter :unary unary)))
(px1l-iters p-pxl-iters))))
(1lparallel:preduce (lambda (v f)
(declare (type refl-0-ary f))
(funcall aggregate v (funcall f)))
@-ary-functions)))

Acknowledgement: Thanks to Pascal Costanza for CLOSER-TO-MOP

Questions?

UPMC

AAA1 SORBONNE

ECOLE D’INGENIEURS EN INFORMATIQUE I 2 I

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frédéric Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

Erlangen: asynchronous, distributed

message passing for Clozure CL
(lightning talk for ELS 2017)

Max Rottenkolber <max@mr.gy>

Saturday, 1 April 2017

Erlangen

e asynchronous message passing
o reliable (supervision trees)
e inherently distributed

e inspired by Erlang, yet very different

“You can’t do that, it won't be like Erlang!”

e uses native OS threads (can't have 10,000)
e does not enforce strict isolation (within the boundary of a node)

e Common Lisp is synchronous (blocking 1/0)
.. .there are also many reasons to prefer CL/Erlangen over Erlang

e for instance, Erlangen’s message queues are bounded and never
leak memory

| did it, its amazing: lessons learned

e uses native OS threads

even if processes are heavy, supervision trees are worth their weight in
gold

e does not enforce strict isolation
just don't modify objects you send (send = free)
e Common Lisp is synchronous (blocking 1/0)

tempted to look at asynchronous 1/O (IOLib): complete dead end, no
tasteful way to write code

blocking is fine as long as you always supply a timeout

Write reliable services in Common Lisp

root-supervisor (one-for-one)

service-supervisor (one-for-one)

Supervision tree of a real-life application (processes can be spread on remote
nodes)

Research: explore distributed designs

live visualization of 300 SLOC Kademlia DHT implementation on Erlangen

Numbers (on Intel Xeon E31245 3.30GHz)

e 5us for message delivery, 10x more than erts 7.3 (that’s not even
bad, actually)

e up to 2 million messages per second

e you can have 1,000 processes easily

... no serious optimization work done so far!

No SBCL, ... support because

e portability layers are boring

e portability layers are boring

e portability layers are boring

e | won't write one or maintain one

e Erlangen already includes modifications to CCL

e ... maybe | want to swap out CCL's threading, GC, 1/0, ...
implementations?

e erlangen-kernel is distributed as an executable that includes
Quicklisp

Hack it!

e github.com/eugeneia/erlangen AGPL-3.0
e branch, fork all you like
e nothing is set in stone yet, wild ideas welcome

e mail me at max@mr.gy

OHOOEM
®EOEOOE@O

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frederic Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

cgraph.inters.co
graphing implications of classical logic

loanna M. Dimitriou

European Lisp Symposium 2017 - lightning session

C’.'HC\E-ear(h ‘* B 4+ W

cgraph.inters.co

»

Choiceless Grapher

Diagram creator for consequences of the axiom of choice (AC).

Enter space separated integers to get the implication diagram between the statement
with these names.

List of names and statements
Enter space separated HR numbers as integers

Label style: ® fancy © numbers
Graph these | * Include top and bottom node

Hover over forms and buttons for more details.
Be prepared to wait a few minutes for diagrams with over 50 forms.

Get a (pseudo) random diagram of size: Get random graph

The Choiceless Grapher can produce any size of graph of the Implication and
non-implication relationships between consequences of the axiom of choice, as found in the
Consequences of the Axiom of Choice Project, by Prof. Paul Howard and Prof. Jean E.

Rubin.

P} Al Dl £1 0 £

31G)

cgraph.inters.co/names-and-statements @ | |Q search w B + & »

Names and statements of the forms.

Checl a form to include it in a diagram. Create this diagram using the button in the bottom
of the page.

- 0.0=0.

“J 1. €(oc,¢) : The Axiom of Choice: Every set of non-empty sets has a choice function.

- 2, Existence of successor cardinals: For every cardinal m there is a cardinal »
m<n and (Vp<n)(p<m).

~' 3. 2m =m : For all infinite cardinals m, 2m=m .

©I 4, Every infinite set is the union of some disjoint family of denumerable subsets. (Den
means v, .)

") 5. €Ny, %, R) : Every denumerable set of non-empty denumerable subsets of ® has
function.

") B. UT(Np.R,Ne.®): The union of a denumerable family of denumerable subsets
denumerable.

=1 7. There is no infinite decreasing sequence of cardinals.

— 8. C(¥g,) : Every denumerable family of non-empty sets has a choice function.

9. Finite < Dedekind finita: We. (see Tech 1973h)- FE(7 V) (see Howard/Yorke 198

OOOO
0000C0]

fiR 1. C(omo)m
Axiom of Choice: \

Every set of non-
empty sets has a
choice function.

HR 3. 2m = m:
For all infinite
cardinals m, 2m = m.

HR 7. There is no
infinite decreasing
sequence of cardinals.

Me & Dedekind finite: HR 23. (Va)(UT (R, Ra, Ry)):
W, (Jech (1973b)): E(1,1V) For every ordinal «, if A and
(Howard/Yorke (1989)): Every every member of A has cardi-

Dedekind finite set is finite. nality N,, then [[JA| = N,.

cgraph.inters.co

Stack

Common Lisp

backend:

maxpc
split-sequence
bash scripts
graphviz dot + tred
external-program

Quicklisp

frontend:

hunchentoot
html-template
a tiny JavaScript file

for more details: cgraph.inters.co
github.com/ioannad/jeffrey

posts on boolesrings.org/ioanna
ioanna.m.dimitriou@gmail.com

the full graph

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frederic Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

01. First-Class Implementations - Francois-René Rideau

02. Reflectable CL Functions Using the MOP - Jim newton

03. Erlangen: Async Distributed Msg Passing for CCL - Max Rottenkolber
04. A CL Grapher for Implications Between Axioms - loanna M. Dimitriou
05. cl-jupyter: Lisp-Powered Jupyter Notebooks - Frederic Peschanski

06. Trial, a New CL Game Engine - Nicolas Hafner

