
Lightning Talks II
ELS 2017

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herda

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

Raising Awareness about

Energy-efficient Software
Jonas De Bleser

Problem	&	Challenges

1.	Energy	
Estimation

2.	Energy	
Optimization

Lack of	
knowledge
and	tools

What	do	programmers	know	about	the	energy	consumption	of	software? (Pang	et	al,	2015)	
Mining	questions	about	software	energy	consumption.	(Pinto	et	al,	2014)

How	do	code	refactorings	affect	energy	usage?	(Sahin	et	al,	2014)

Problem:	Energy	Estimation

Measurement	
Hardware

Dynamic	Program	
Analysis

Event	
Frequency

Problem:	Energy	Optimization

Resource	usage:	29%
[Banerjee	et	al,	MobileSoft	2016]

Generic	optimizations:	50%
[Li	&	Gallagher	et	al,	SCAM	2016]

Java	Collections:	300%
[Hasan	et	al,	ICSE	2016]Lack	of:	Targeted	transformations

at	source	level based	on	results	of	
the	energy	estimation	analysis

Energy	savings

Are you already

energy-aware or

interested in more?

Let’s have a talk!

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herds

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

CL-FACTS

Thomas de Grivel <thomasdegrivel@gmail.com>

ELS 2017

2017-04-03

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Unlabelled Skip Lists
Skip Lists : fast, better parallelization than trees.

Probabillistic data structure.

Search, insert, delete : O(log n).
Single link updates are atomic, no locking needed.

A B C D E F G H

Only values, no keys. Content addressed memory.

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Triple store
Store as much data as you want as triples
{Subject,Predicate,Object}.
Three sorted indexes : {S ,P ,O}, {P,O, S}, {O, S ,P}.
Iterate on queries with [0..3] unknown ?values (sic).

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

FACTS :WITH

(defun mov ies� f rom�d i rec tor (movie)

(l e t ((other�movies))

(f a c t s : w i th ((? d i r e c t o r : d i r e c t e d movie

: d i r e c t e d ? other�movie))

(push ? other�movie other�movies))

other�movies))

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Transactions
All operations on database are logged to a file.
Transactions can be aborted with defined rollback functions.
Persistence : at startup the log is replayed and the database
dumped.

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Future
Disk storage, for now all data is in-memory.
Computed facts inferred from added facts.
Events with pattern matching on inserts and deletes.
User defined indexes for arbitrarily complex patterns.
RDF, turtle...

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Links
Facts
https://github.com/thodg/facts

Unlabelled Skip List
https://github.com/thodg/facts/blob/master/usl.lisp

Indexes
https://github.com/thodg/facts/blob/master/index.lisp

Rollback
https://github.com/thodg/rollback

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herda

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

Common Lisp Foundation  
2016 Update

ELS 2017
Brussels, Belgium, April 4, 2017

Supporting Common Lisp
• Common Lisp Foundation (CLF)  

<http://http://www.cl-foundation.org/>

• An unpaid volunteer organization, founded in 2009,
arising from need to support ECLM meetings

• Has acted as sponsoring organization for GSoC projects

• Global multi-national non-profit financial status in USA
and EU (not trivial to do!)

• Current active board: Ernst van Waning, Dave Cooper,
Erik Hülsmann, Hisao Kuroda, (Secretary) Mark Evenson

Activities 2016
• CLF maintains common-lisp.net (including gitlab.common-

lisp.net, mailing lists, lots of historical systems, cliki.net,
pastbin.lisp.org)

• Ongoing mission to secure long persistence of associated
Common Lisp resources (domain names for abcl.org,
paste.lisp.org)

• Logo donated by Guy Steele (executed by
Cherie Yang)

• New: administered “Quicklisp out of Beta program” as pilot
experience for appreciation crowd funding

Quicklisp Appreciation
Campaign

• CLF prototyped a crowdfunding “platform” in Common
Lisp (potentially OpenSource, but we need to document)

• Has multiple payment mechanisms (USD, JPY, EUR) via
reproducible backend platform

• Obtained matching grant sources

• RESULT: Made the matching target on the first day

• Dispersed $17555.13 to Zach Quicklisp development
(which was 90% of collected amount)

CLF Funding 2017
• We want to do roughly one campaign a quarter,

curating campaigns for success. We are in the
process of organizing “matching grants”

• We are developing a transparent process for
these campaigns (work in progress)

• We are now soliciting proposals for the next
round. If you would like to be considered, please
get in contact via email  
<funding@cl-foundation.org>

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herda

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

How To Read
Michał „phoe” Herda @ ELS 2017

#’read
„Then Lispers said, «Let us make a reader

in our image, in our likeness, (...)»”
- Holy Standard, Book 1: Genesis

(read) + =

(read) = (root-shell

 ”rm -rf /”)

Danger #1: Reader Macros

#.

Danger #1: Reader Macros

#.(progn

 (open-backdoor-repl)

 ‘innocent-value)

;; => INNOCENT-VALUE

;; #> a SLIME REPL waiting for the
 hax0r on a freshly opened port

Danger #1: Reader Macros

Solution #1: Sanitize Your Readtable

Danger #2: Internbombing

(car cdr list cons)

(a b c d e f foo badskfb asdkjfb sdfj

 skldjf sakdjf easdq qoeui qrruieqh s

 skdjf qehr wq io iouf (kf sfi e dfd)

 this does not make any sense but ehh

 qej ogus goiq eewgwgfs iad gsdg ...)

;; these can stay in memory forever

Danger #2: Internbombing

Use a temporary package for reading

Danger #1: Reader Macros

Solution #1: Sanitize Your Readtable

Danger #2: Internbombing

Solution #2: Temporary Package

Danger #3: Allocation

(defun flood (stream)

 (princ #\” stream)

 (loop

 (princ #\A stream)))

Danger #3: Allocation

● Making a READ wrapper

– Read character by character into a bu�er
...counting the already read chars

– If the bu"er size is reached, break and error

– Otherwise – READ from the temporary bu�er

Danger #1: Reader Macros

Solution #1: Sanitize Your Readtable

Danger #2: Internbombing

Solution #2: Temporary Package

Danger #3: Allocation

Semi-Solution #3: Reading

Danger #4: ...? ;; let me know!

;; github.com/phoe/secure-read

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herda

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

Common Lisp Native Coroutines
(sort of. . . ahem. . . actually, no)

Didier Verna

April 4 2017

Coroutines

I
Very old idea

I yield values without losing its state

I resume its computation later (yielding more values)

I
transfer control elsewhere

I
. . .

Examples

(defun squares ()

(loop :for i :from 0

:do (yield (* i i))))

(defun preorder (tree)

(if (atom tree)

(yield tree)

(progn (preorder (car tree))

(preorder (cdr tree)))))

The Condition System
3D Separation of Concerns, no mandatory stack unwinding

Tricking the Condition System into Coroutin’ing
A handler declining, but still side-e↵ecting!

Back to the Examples

(define-condition yield ()

((value :accessor value :initarg :value)))

(defun yield (value)

(signal ’yield :value value))

(defun squares ()

(loop :for i :from 0

:do (yield (* i i))))

(defun preorder (tree)

(if (atom tree)

(yield tree)

(progn (preorder (car tree))

(preorder (cdr tree)))))

Handling yielded values

(defmacro with-coroutine (coroutine value &body body)

‘(restart-case

(handler-bind ((yield (lambda (condition)

(let ((,value (value condition)))

,@body))))

,coroutine)

(abort ())))

(defun ssq (n)

(let ((step 0)

(sum 0))

(with-coroutine (squares) sq

(incf sum sq)

(incf step)

(when (> step n)

(abort)))

sum))

(defun leaves (tree)

(let (leaves)

(with-coroutine (preorder tree) leaf

(push leaf leaves))

(nreverse leaves)))

• 01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser

• 02. cl-facts - Thomas de Grivel

• 03. The Common Lisp Foundation 2016 Update - Mark Evenson

• 04. How to Read - Michał Herda

• 05. Common Lisp Native Coroutines - Didier Verna

• 06. Lisp in the Middle - Michael Raskin

