Lightning Talks |

ELS 2017

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herda

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

Raising Awareness about
Energy-efficient Software

Jonas De Bleser

RIJE
NIVERSITEIT
BRUSSEL

——

P ————

Problem & Challenges

What do programmers know about the energy consumption of software? (Pang et al, 2015)
Mining questions about software energy consumption. (Pinto et al, 2014)
How do code refactorings affect energy usage? (Sahin et al, 2014)

Lack of
knowledge
and tools

2. Energy
Optimization

1. Energy
Estimation

Problem: Energy Estimation

Measurement
Hardware

b Movies - Microsoft Visual Studio ¢ . ' P - & x
FE EDT VW PROKCT BULD DEBUG TOOLS TEST ARCHITECTURE NETREFLECTOR ANALYZE WINDOW HELP signin [
- » LocalMachine =) - Debug -

@ App Hfecycle mark ¥ User mark
o e B I

4 Estimated Power Usage (mW) Mot MCPU MDisplay MNetwork
20,000 20,00(

10000 § Ay :
A vk L e b

A

Dynamic Program
Analysis

btn1.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
camera.startPreview();

n:

Event
Frequency

Problem: Energy Optimization

Energy savings

. Java Collections: 300%
Lack of: Targeted transformations [Hasan et al, ICSE 2016]

at source level based on results of

. . . Resource usage: 29%
the energy estimation analysis

[Banerjee et al, MobileSoft 2016]

Generic optimizations: 50%
[Li & Gallagher et al, SCAM 2016]

Are you already
energy-aware or
interested in more?

Let’s have a talk!

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herds

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

CL-FACTS

Thomas de Grivel <thomasdegrivel@gmail.com>

ELS 2017

2017-04-03

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Unlabelled Skip Lists
e Skip Lists : fast, better parallelization than trees.

o Probabillistic data structure.
o Search, insert, delete : O(log n).
e Single link updates are atomic, no locking needed.

i%i@m
C F G H

D E

@ Only values, no keys. Content addressed memory.

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Triple store

@ Store as much data as you want as triples
{Subject, Predicate, Object}.
@ Three sorted indexes : {S, P, O}, {P,0,S}, {O,S, P}.

e lterate on queries with [0..3] unknown ?values (sic).

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

FACTS :WITH

(defun movies—from—director (movie)
(let ((other—movies))
(facts:with ((?director :directed movie
:directed 7other—movie))
(push ?other—movie other—movies))
other—movies))

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Transactions
@ All operations on database are logged to a file.
@ Transactions can be aborted with defined rollback functions.

o Persistence : at startup the log is replayed and the database
dumped.

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Future
e Disk storage, for now all data is in-memory.

Computed facts inferred from added facts.

User defined indexes for arbitrarily complex patterns.

°
e Events with pattern matching on inserts and deletes.
°
o RDF, turtle...

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

Links

o Facts
https://github.com/thodg/facts

@ Unlabelled Skip List
https://github.com/thodg/facts/blob/master/usl.lisp

@ Indexes
https://github.com/thodg/facts/blob/master/index.lisp

e Rollback
https://github.com/thodg/rollback

Thomas de Grivel <thomasdegrivel@gmail.com> CL-FACTS

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herda

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

Common Lisp Foundation
2016 Update

ELS 2017
Brussels, Belgium, April 4, 2017

Supporting Common Lisp

« Common Lisp Foundation (CLF)
<http://http://www.cl-foundation.org/>

* An unpaid volunteer organization, founded in 2009,
arising from need to support ECLM meetings

* Has acted as sponsoring organization for GSoC projects

o Global multi-national non-profit financial status in USA
and EU (not trivial to do!)

e Current active board: Ernst van Waning, Dave Cooper,
Erik Hulsmann, Hisao Kuroda, (Secretary) Mark Evenson

Activities 2016

 CLF maintains common-lisp.net (including gitlab.common-
isp.net, mailing lists, lots of historical systems, cliki.net,
pastbin.lisp.org)

e Ongoing mission to secure long persistence of associated
Common Lisp resources (domain names for abcl.org,

paste.lisp.org)

e [Logo donated by Guy Steele (executed by
Cherie YangQ)

 New: administered “Quicklisp out of Beta program” as pilot
experience for appreciation crowd funding

Quicklisp Appreciation
Campaign

CLF prototyped a crowdfunding “platform”™ in Common
Lisp (potentially OpenSource, but we need to document)

Has multiple payment mechanisms (USD, JPY, EUR) via
reproducible backend platform

Obtained matching grant sources
RESULT: Made the matching target on the first day

Dispersed $17555.13 to Zach Quicklisp development
(which was 90% of collected amount)

CLF Funding 2017

* We want to do roughly one campaign a quarter,
curating campaigns for success. We are in the
process of organizing “matching grants”

* We are developing a transparent process for
these campaigns (work in progress)

* We are now soliciting proposals for the next
round. If you would like to be considered, please
get In contact via emall
<funding@cl-toundation.org>

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herda

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

How To Read

Michat ,,phoe” Herda @ ELS 2017

—

#' read

, Then Lispers said, «Let us make a reader
In our Image, In our likeness, (...)»"
- Holy Standard, Book 1. Genesis

(read) = (root-shell
rm -rf /7)

—

Danger #1: Reader Macros

Danger #1: Reader Macros

#.(progn
(open-backdoor-repl)
‘innocent-value)

» => JNNOCENT-VALUE

;3 #> a SLIME REPL waiting for the
haxOr on a freshly opened port

—

Danger #1: Reader Macros
Solution #1l: Sanitize Your Readtable

Danger #2: Internbombing

(car cdr list cons)

(abcdef foo badskfb asdkjfb sdfj
skldjf sakdjf easdq qoeui qgrruiegh s
skdjf qgehr wq 10 1ouf (kf sfi e dfd)
this does not make any sense but ehh
qej ogus goiq eewgwgfs iad gsdg ...)
;3 these can stay i1n memory forever

llllllllllllllllllllllllllllllllllllilll

Danger #2: Internbombing

Use a temporary package for reading

(defmacro with-temp-package (&body body)
(let* ((now (format nil "~S" (local-time:now)))
(package-name (gensym (cat "TEMP-PKG-" now "-")))
(package-var (gensym)))
“(let ((,package-var (or (find-package
(make-package

, package-name)
,package—-name :use nil))))

(unwind-protect (let ((xpackagex ,package-var))
,@body
delete-package ,package-var)))))

Danger #1: Reader Macros
Solution #1l: Sanitize Your Readtable

Danger #2: Internbombing
Solution #2: Temporary Package

—

Danger #3: Allocation

(defun flood (stream)
(princ #\"” stream)
(Loop

(princ #\A stream)))

llllllllllllllllllllllllllllllllllllilll

Danger #3: Allocation

« Making a READ wrapper

- Read character by character into a buffer
...counting the already read chars

- If the buffer size is reached, break and error
- Otherwise - READ from the temporary buffer

—

Danger #1: Reader Macros
Solution #1l: Sanitize Your Readtable

Danger #2: Internbombing
Solution #2: Temporary Package
Danger #3: Allocation
Semi-Solution #3: Reading
Danger #4: ...?7 ;; let me know!
» 3 github.com/phoe/secure-read

Iillllllllllllllllllllllllllllllllll.l.il

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herda

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

Common Lisp Native Coroutines

(sort of...ahem...actually, no)

Didier Verna

April 4 2017

Coroutines

v

Very old idea

v

yield values without losing its state
» resume its computation later (yielding more values)

transfer control elsewhere

v

Examples

(defun squares ()
(loop :for i :from O
:do (yield (x i 1))))

(defun preorder (tree)
(if (atom tree)
(yield tree)
(progn (preorder (car tree))
(preorder (cdr tree)))))

The Condition System

3D Separation of Concerns, no mandatory stack unwinding

bOO() handler

foo () try/catch 1

ba

v
Ir () try/catch 2
\
V4

ba

() throw

fo () restart 1

ba

ba

Y
0
v
r
\
Z

() restart 2

() signal

Tricking the Condition System into Coroutin'ing
A handler declining, but still side-effecting!

bOO() handler

' resume (return)

foo()

ba

%
0]
'
r()
v
Z

()

yield (signal)\ba

Back to the Examples

(define-condition yield ()
((value :accessor value :initarg :value)))

(defun yield (value)
(signal ’yield :value value))

(defun squares ()
(loop :for i :from O
:do (yield (x i i))))

(defun preorder (tree)
(if (atom tree)
(yield tree)
(progn (preorder (car tree))
(preorder (cdr tree)))))

Handling yielded values

(defmacro with-coroutine (coroutine value &body body)

‘(restart-case

(handler-bind ((yield (lambda (condition)

,coroutine)

(abort ())))

(defun ssq (n)
(let ((step 0)
(sum 0))
(with-coroutine (squares) sq
(incf sum sq)
(incf step)
(when (> step n)
(abort)))
sum))

(let ((,value (value condition)))
,0body))))

(defun leaves (tree)
(let (leaves)
(with-coroutine (preorder tree) leaf
(push leaf leaves))
(nreverse leaves)))

01. Raising Awareness about Energy-Efficient Software - Jonas De Bleser
02. cl-facts - Thomas de Grivel

03. The Common Lisp Foundation 2016 Update - Mark Evenson

04. How to Read - Michat Herda

05. Common Lisp Native Coroutines - Didier Verna

06. Lisp in the Middle - Michael Raskin

Lisp-in-the-middle

or
| wanted a Lisp Machine! and all? | got is a fancy sudo

Michael Raskin, raskin@mccme.ru

LaBRI, Université de Bordeaux

April 3, 2017

default lexical scoping required
more is coming

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017 1/7

Control and explore entire system as a single Lisp image
Would they be nice now? What can we get for today?

This «the entire system» you keep mentioning — it got larger
Modern compilation speed — modern hardware — pain3
Search the web — modern browser — pain*

Unicode handling?

Simpler times have ended: nothing is guaranteed-benign anymore
(BGP operators keep missing the memo)

3Hopefully contained
*No hope for you here

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017

We will build a Lisp OS, they said

You will get compared to Emacs, unfavourably (no love for lexical scoping)

Where to start?

Bare hardware: a lot of hard work.. to boot under QEmu

Ul side: browser engines infeasible, yet another terminal is «yet another»
(see also: comparisons to Emacs)

Eric S. Raymond: Software should amplify our decisions

Terminal, browser engine, drivers — defined by compatibility
No decisions to make at the core level

Terminals get rewritten every year — results are the same; browser engines
live decades and change a lot

What actually changes by starting from scratch? What encodes decisions?

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017 3/7

Goals

Implement something in a week

New functionality that | would need to handcode anyway with other tools
regressions in other parts allowed

Isolate non-Lisp components — launch via Lisp

Use the result

Feature: sudo check for physical presence
- shutdown via SSH should be harder

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017 4/7

Tools already there

SBCL, QuickLisp, StumpWM

Linux, Glibc, Xorg

iproute2, wpa_supplicant, ..

urxvt, fbterm

Nix package manager

- Isolates everything it can

- | can use small parts of NixOS sanely

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle

April 3, 2017 5/7

Distribute and sandbox

Your browser for random tech news has been compromised
- via malicious code in a Google Ad that slipped through vetting

Run StumpWM in thread — global debugging settings (optionally?)
change

In a single system faults propagate too fast
Integration of subsystems is the key
Don't trust the other side of a socket...

RPC with verification: sandbox all the code? An untrusted REPL...

Is it safe to evaluate a code that only contains whitelisted symbols?

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017

Why | will

...fail:

Linux is a niche

Lisp is a small niche

Nix is an even smaller subniche in Linux...

...not fail
The supposed alternative is systemd, | have low bar to success..

lterated from inside today®
Linux low-level tools are good for components
X — StumpWM, FS — QueryFS

SlimerJS + Parenscript — drive bare web engine from Lisp?

5>1 year of NixOS development, LFS fine-tuning and CLHS nitpicking advised

Michael Raskin, raskin@mccme.ru (LaBRI) Lisp-in-the-Middle April 3, 2017

