Making a Common Lisp FE library
high-performant

Marco Heisig*, Nicolas Neuss**

* Computer science 10 (System simulation)
Friedrich-Alexander-Universitat Erlangen-Nurnberg

** Applied Mathematics 3 (Scientific computing)
Friedrich-Alexander-Universitat Erlangen-Nirnberg

/19



Contents

v

Partial Differential Equations

The Finite Element Method

v

v

What is Femlisp?

v

Model problem

v

Working towards high performance

Outlook

v

19



Motivation of Partial Differential Equations (PDE)

» OBSERVATION: Phenomena which are characterized by
instantaneous and short-range interactions in a
continuum can be modelled by partial differential
equations (PDESs).

» EXAMPLES: continuum mechanics, fluid mechanics,
reaction and transport, general relativity, quantum
mechanics

» APPLICATIONS: Physics, chemistry, biology, economy, ...

many engineering disciplines

b

19



Definition and Examples

Definition

A PDE is an equation for an unknown function u : Q — R which
has to be satisfied for all points x € Q ¢ R? (d > 2) involving
only the values of the function and its derivatives at each x.

Examples
92 92

S+ ) UxY) = s(x.p)

» 2D-Diffusion: Au = (

» Stokes (d + 1 equations): —Au+Vp="f
divu=0

» Not a PDE: Search u: R — R with Zt(t) f(t, u(t)).



Difficulties when solving PDEs

» The solution of a PDE is a function defined on a continuum
= Often a large number of unknowns is necessary for
approximating it well.

» Existence, uniqueness and regularity of solutions to PDEs
is often a difficult (sometimes even an unsolved) problem.
= Also the discretized equations may be “ill-conditioned”
and difficult to solve.

» Already the precise definition of the problem can be
nontrivial (e.g. when the domain Q is geometrically
complex)

19



The Finite Element Method

» Mathematical theory starts from “variational form”:
Find u € V with a(u, v) = f(v) forall v € V.

» Vs an (infinite-dimensional) function space adapted to the
problem at hand.

» IDEA OF FEM: Approximate V with a space V}, made from
piecewise polynomial functions defined on a mesh.

» Construct discrete equations by restricting the variational
form to V.

» PROPERTIES: Flexibility, good theoretical foundation,
somewhat more complex than e.g. Finite Difference
Methods



Femlisp

Femlisp (FEMIisp?) is a Common Lisp FEM framework with:

>

Arbitrary-dimensional meshes consisting of simplex
and/or simplex-product cells (like cubes or prisms)

Anisotropic and local mesh refinement

Conforming FE of arbitrary order

Geometric and algebraic multigrid

Interactive graphics (interface to OpenDX and VTK)

Can handle several types of PDEs:
convection-diffusion, elasticity, Navier-Stokes, . ..



Model problem: 3D linear elasticity

» A periodically perforated elastic
medium satisfies an effective
elasticity law.

» The effective elasticity tensor is

Ak Ki ONg
Alg :/YAij (Y)(5jq5/r+7”(Y))dy

» where the corrector N : Y — R?

satisfies
o aNlr aAkr
_ 9 (pM q _ _'iq _
8y,-( 7) o, y)) 3y, ¥)

b

19



Femlisp results (state from 2005-2015)

» Test 1: 2D, hole inlay, uniform refinement, Q°-FE:

Cells  Unknowns Matrix entries  Time (s) All
4 872 18.836K 3.2 1.7928477139
16 4.224K 78.780K 10.6 1.7925713781
64 17.336K 314.716K 34.3 1.7925694507
256 69.168K 1.257M 136.6 1.7925694414
1024  275.240K 5.022M 597.0 1.7925694414

» Test 2: 3D, hole inlay, uniform refinement, Q°-FE:

Cells Unknowns Matrix entries  Time (s) All

6 22.167K 2.125M 76 2.6235177047
48 192.024K 18.571M 2373 2.6231458888

19



How to increase performance?

SYSTEMATIC APPROACH:

» Check if algorithm is good enough

» Check for possible use of high-performant libraries
(BLAS, LAPACK, ...)

» Optimize single core performance (profiling!)
» Shared-memory parallelization (OS threads)

» Distributed-memory parallelization (MP1)

10/19



Using libraries and choice of algorithm

» The results above already used the BLAS/LAPACK
libraries (before they were worse by a factor of about 2).

» They also used multigrid with a special p-robust smoother
(“vertex-centered SSC”) which is ok in 2D, but costly in 3D
~» Multigrid with simple block-Gauss-Seidel gives:

Cells Unknowns Matrix entries  Time (s) Al
6 22.167K 2.12473M 19 2.6235177047
48 192.024K 18.5712M 165 2.6231458888

» Gauss-Seidel is not parallelizable ~~
BPX (CG, additive V-cycle, block-Jacobi smoother) gives:

Cells Unknowns Matrix entries  Time (s) Al

6 22.167K 2.12473M 9 2.6235177047
48  192.024K 18.5712M 114 2.6231458888

11/19



Improvement of the serial code

» Profiling shows bottleneck in generic function MREF

In Lisp, it is easy to write fast code.
Unfortunately, it is very easy to write slow code.
(Paul Graham, “On Lisp”)

» REMEDY: Block-wise updates of the global matrix during
discretization eliminates bottleneck and gives:

Cells Unknowns Matrix entries  Time (s) All
6 22.167K 2.125M 3.7 2.6235177047
48 192.024K 18.5712M 47 2.6231458888
384 1.520M 148.704M 378 2.6231424485

» ~~ Profiling does not show easily removable bottlenecks

12/19



Shared-memory parallelization — 1

» Defect calculation can be performed in parallel
(HOWEVER: might not be completely unproblematic
depending on matrix/vector data structure)

» Discretization can be performed in parallel (HOWEVER:
update of the global stiffness matrix must be synchronized)

» We used a worker pool working on assembly pipelines
containing assembly tasks and global matrix update tasks

» Results (on my laptop with two threads):

Cells  Unknowns Matrix entries  Time (s) All
6 22.167K 2.125 2.7 2.6235177047
48  192.024K 18.571M 36 2.6231458888

384 1.520M 148.704M 290 2.6231424485

13/19



Shared-memory parallelization — 2

» Results on sultana (older workstation with large memory):

Cells Unknowns Matrix entries  Time (s) All
6 22.167K 2.125M 4 2.6235177047
48 192.024K 18.571M 40 2.6231458888
384 1.520M 148.704M 300 2.6231424485
3072 12.017M 1.188G 2400 2.6231424309

» Speedups on level 3 (384 cells):

Threads 1 2 3 4 5 6
Speedup 1 1.7 21 22 28 29

14/19



Distributed-memory parallelization in Common Lisp

» CL-MPI (Marco Heisig): CL interface to MPI

» LFARM (James M. Lawrence): Interactive control of the
workers

» DDO -“Dynamic Distributed Objects”
» Creation, removal and changes for distributed objects are
communicated at synchronization points.
» Distributed objects can be dropped and left to GC
» Basic administrative data structure:
Triple relation (local-index, processor, distant-index)

15/19



Distributed-memory parallelization for Femlisp

1. Starting from identical coarse meshes, parts belonging to
other processors are dropped, and the interfaces are
DDO-identified (distributed). Refinement of distributed
interfaces remains distributed.

2. Discretization works without synchronization, because we
work with inconsistent stiffness-matrix A; and load-vector f;.

3. BPX solving needs some synchronization (S, ¢):
» One-time calculation of consistent diagonal D, := S,_,¢D;.
» Correction: ¢; := D3 'r; followed by ¢, := S/_, cc; before
correcting U == Ug + C.
» For monitoring: re := S;_,crand ||r||3 := {(re, 1i).

'r, = f, — Aiu. denotes the inconsistent residual.
16/19



Distributed-memory parallelization — Results

» Results on sultana

MPI workers
Cells 1 2 3
6 3.7 28 24
48 38 24 17
384 | 295 164 115
3072 | 2400 1250 840
» And using the LiMa cluster of the RRZE
MPI workers
Cells 2 4 6 8 12 16 24 48
48 | 20 13 11 9 8 8 9 10
384 | 100 58 45 36 27 24 23 20
3072 | — — 240 190 130 105 82 53

17/19



Current work on Femlisp

v

Solving this model problem still faster and more accurate

v

Thread-parallel DDO

v

Load-balancing with DDO

v

More functional approach to PDE solution (?)

v

Applications
» Benchmark flow problems (driven cavity, flow around a
cylinder)
» Interactive demo at “Long Night of Sciences”

» Research on “Multiscale Finite Elements”
| SN

18/19



References

» http://www.femlisp.org

» M. HEISIG, N. NEUSS: “Distributed High Performance

Computing in Common Lisp”, in Proc. 9th European Lisp
Symposium (2016)

» M. HEISIG, N. NEUSS: “Making a Common Lisp Finite

Element library high-performing — a case study” (2017,
submitted)

19/19



