Making a Common Lisp FE library high-performant

Marco Heisig*, Nicolas Neuss**

* Computer science 10 (System simulation) Friedrich-Alexander-Universität Erlangen-Nürnberg

** Applied Mathematics 3 (Scientific computing) Friedrich-Alexander-Universität Erlangen-Nürnberg

Contents

- Partial Differential Equations
- The Finite Element Method
- What is Femlisp?
- Model problem
- Working towards high performance
- Outlook

Motivation of Partial Differential Equations (PDE)

- OBSERVATION: Phenomena which are characterized by instantaneous and short-range interactions in a continuum can be modelled by partial differential equations (PDEs).
- EXAMPLES: continuum mechanics, fluid mechanics, reaction and transport, general relativity, quantum mechanics
- ► APPLICATIONS: Physics, chemistry, biology, economy, ..., many engineering disciplines

Definition and Examples

Definition

A PDE is an equation for an unknown function $u: \Omega \to \mathbb{R}$ which has to be satisfied for all points $x \in \Omega \subset \mathbb{R}^d$ $(d \ge 2)$ involving only the values of the function and its derivatives at each x.

Examples

► 2D-Diffusion:
$$\Delta u \equiv \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x,y) = s(x,y)$$

► Stokes (
$$d + 1$$
 equations): $-\Delta u + \nabla p = f$ div $u = 0$

▶ Not a PDE: Search
$$u : \mathbb{R} \to \mathbb{R}^m$$
 with $\frac{du}{dt}(t) = f(t, u(t))$.

Difficulties when solving PDEs

- The solution of a PDE is a function defined on a continuum ⇒ Often a large number of unknowns is necessary for approximating it well.
- Existence, uniqueness and regularity of solutions to PDEs is often a difficult (sometimes even an unsolved) problem.
 Also the discretized equations may be "ill-conditioned"
 - and difficult to solve.
- Already the precise definition of the problem can be nontrivial (e.g. when the domain Ω is geometrically complex)

The Finite Element Method

- ▶ Mathematical theory starts from "variational form": Find $u \in V$ with a(u, v) = f(v) for all $v \in V$.
- V is an (infinite-dimensional) function space adapted to the problem at hand.
- ► IDEA OF FEM: Approximate V with a space V_h made from piecewise polynomial functions defined on a mesh.
- ► Construct **discrete equations** by restricting the variational form to V_h .
- PROPERTIES: Flexibility, good theoretical foundation, somewhat more complex than e.g. Finite Difference Methods

Femlisp

Femlisp (FEMlisp?) is a Common Lisp FEM framework with:

- Arbitrary-dimensional meshes consisting of simplex and/or simplex-product cells (like cubes or prisms)
- Anisotropic and local mesh refinement
- Conforming FE of arbitrary order
- Geometric and algebraic multigrid
- Interactive graphics (interface to OpenDX and VTK)
- Can handle several types of PDEs: convection-diffusion, elasticity, Navier-Stokes, ...

Model problem: 3D linear elasticity

- A periodically perforated elastic medium satisfies an effective elasticity law.
- ► The effective elasticity tensor is

$$\hat{A}_{iq}^{kr} = \int_{Y} A_{ij}^{kl}(y) \left(\delta_{jq}\delta_{lr} + rac{\partial N_{q}^{lr}}{\partial y_{j}}(y)
ight) dy$$

• where the **corrector** $N: Y \to \mathbb{R}^{d^3}$ satisfies

$$-\frac{\partial}{\partial y_i} (A_{ij}^{kl}(y) \frac{\partial N_q^{lr}}{\partial y_i}(y)) = \frac{\partial A_{iq}^{kr}}{\partial y_i}(y).$$

Femlisp results (state from 2005-2015)

► **Test 1:** 2D, hole inlay, uniform refinement, Q⁵-FE:

Cells	s Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
-	4 872	18.836K	3.2	1.7928477139
16	6 4.224K	78.780K	10.6	<u>1.79257</u> 13781
64	4 17.336K	314.716K	34.3	1.7925694507
256	69.168K	1.257M	136.6	1.7925694414
1024	4 275.240K	5.022M	597.0	1.7925694414

▶ **Test 2:** 3D, hole inlay, uniform refinement, Q^5 -FE:

Cells	Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
6	22.167K	2.125M	76	2.6235177047
48	192.024K	18.571M	2373	2.6231458888

How to increase performance?

SYSTEMATIC APPROACH:

- Check if algorithm is good enough
- Check for possible use of high-performant libraries (BLAS, LAPACK, . . .)
- Optimize single core performance (profiling!)
- Shared-memory parallelization (OS threads)
- Distributed-memory parallelization (MPI)

Using libraries and choice of algorithm

- The results above already used the BLAS/LAPACK libraries (before they were worse by a factor of about 2).
- ► They also used multigrid with a special p-robust smoother ("vertex-centered SSC") which is ok in 2D, but costly in 3D → Multigrid with simple block-Gauss-Seidel gives:

Cells	Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
6	22.167K	2.12473M	19	<u>2.623</u> 5177047
48	192.024K	18.5712M	165	<u>2.62314</u> 58888

► Gauss-Seidel is not parallelizable ~→ BPX (CG, additive V-cycle, block-Jacobi smoother) gives:

Cel	ls	Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
	6	22.167K	2.12473M	9	<u>2.623</u> 5177047
4	18	192.024K	18.5712M	114	<u>2.62314</u> 58888

Improvement of the serial code

▶ Profiling shows bottleneck in generic function MREF In Lisp, it is easy to write fast code. Unfortunately, it is very easy to write slow code. (Paul Graham, "On Lisp")

REMEDY: Block-wise updates of the global matrix during discretization eliminates bottleneck and gives:

С	ells	Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
	6	22.167K	2.125M	3.7	<u>2.623</u> 5177047
	48	192.024K	18.5712M	47	2.6231458888
,	384	1.520M	148.704M	378	2.6231424485

► ~→ Profiling does not show easily removable bottlenecks

Shared-memory parallelization – 1

- Defect calculation can be performed in parallel (HOWEVER: might not be completely unproblematic depending on matrix/vector data structure)
- Discretization can be performed in parallel (However: update of the global stiffness matrix must be synchronized)
- We used a worker pool working on assembly pipelines containing assembly tasks and global matrix update tasks
- Results (on my laptop with two threads):

Cells	Unknowns	Matrix entries	Time (s)	A_{11}^{11}
6	22.167K	2.125	2.7	<u>2.623</u> 5177047
48	192.024K	18.571M	36	2.6231458888
384	1.520M	148.704M	290	<u>2.6231424</u> 485

Shared-memory parallelization – 2

Results on sultana (older workstation with large memory):

Cells	Unknowns	Matrix entries	Time (s)	\hat{A}_{11}^{11}
6	22.167K	2.125M	4	<u>2.623</u> 5177047
48	192.024K	18.571M	40	2.6231458888
384	1.520M	148.704M	300	2.6231424485
3072	12.017M	1.188G	2400	2.6231424309

▶ Speedups on level 3 (384 cells):

Threads	1	2	3	4	5	6
Speedup	1	1.7	2.1	2.2	2.8	2.9

Distributed-memory parallelization in Common Lisp

- CL-MPI (Marco Heisig): CL interface to MPI
- ► LFARM (James M. Lawrence): Interactive control of the workers
- DDO -"Dynamic Distributed Objects"
 - Creation, removal and changes for distributed objects are communicated at synchronization points.
 - Distributed objects can be dropped and left to GC
 - Basic administrative data structure:
 Triple relation (local-index, processor, distant-index)

Distributed-memory parallelization for Femlisp

- Starting from identical coarse meshes, parts belonging to other processors are dropped, and the interfaces are DDO-identified (distributed). Refinement of distributed interfaces remains distributed.
- 2. Discretization works without synchronization, because we work with inconsistent stiffness-matrix A_i and load-vector f_i .
- 3. BPX solving needs some synchronization ($S_{l\rightarrow C}$):
 - ▶ One-time calculation of consistent diagonal $D_c := S_{l \to C} D_i$.
 - ▶ Correction: $c_i := D_c^{-1} r_i$ followed by $c_c := S_{l \to C} c_i$ before correcting $u_c := u_c + c_c$.
 - ▶ For monitoring: $r_c := S_{l \to C} r_i$ and $||r||_2^2 := \langle r_c, r_i \rangle$.

 $^{^{1}}r_{i} = f_{i} - A_{i}u_{c}$ denotes the inconsistent residual.

Distributed-memory parallelization – Results

► Results on sultana

	MPI workers					
Cells	1	2	3			
6	3.7	2.8	2.4			
48	38	24	17			
384	295	164	115			
3072	2400	1250	840			

And using the LiMa cluster of the RRZE

		MPI workers							
Cells	2	4	6	8	12	16	24	48	
48	20	13	11			_	9	10	
384	100	58	45	36	27	24	23	20	
3072	_	_	240		130	105	82	53	

Current work on Femlisp

- Solving this model problem still faster and more accurate
- Thread-parallel DDO
- Load-balancing with DDO
- More functional approach to PDE solution (?)
- Applications
 - Benchmark flow problems (driven cavity, flow around a cylinder)
 - Interactive demo at "Long Night of Sciences"
 - Research on "Multiscale Finite Elements"
 - **>** ...

References

- http://www.femlisp.org
- M. HEISIG, N. NEUSS: "Distributed High Performance Computing in Common Lisp", in Proc. 9th European Lisp Symposium (2016)
- M. Heisig, N. Neuss: "Making a Common Lisp Finite Element library high-performing — a case study" (2017, submitted)