
Making a Common Lisp FE library
high-performant

Marco Heisig*, Nicolas Neuss**

* Computer science 10 (System simulation)
Friedrich-Alexander-Universität Erlangen-Nürnberg

** Applied Mathematics 3 (Scientific computing)
Friedrich-Alexander-Universität Erlangen-Nürnberg

1 / 19

Contents

I Partial Differential Equations

I The Finite Element Method

I What is Femlisp?

I Model problem

I Working towards high performance

I Outlook

2 / 19

Motivation of Partial Differential Equations (PDE)

I OBSERVATION: Phenomena which are characterized by
instantaneous and short-range interactions in a
continuum can be modelled by partial differential
equations (PDEs).

I EXAMPLES: continuum mechanics, fluid mechanics,
reaction and transport, general relativity, quantum
mechanics

I APPLICATIONS: Physics, chemistry, biology, economy, . . . ,
many engineering disciplines

3 / 19

Definition and Examples

Definition
A PDE is an equation for an unknown function u : Ω→ R which
has to be satisfied for all points x ∈ Ω ⊂ Rd (d ≥ 2) involving
only the values of the function and its derivatives at each x .

Examples

I 2D-Diffusion: ∆u ≡
(
∂2

∂x2 +
∂2

∂y2

)
u(x , y) = s(x , y)

I Stokes (d + 1 equations): −∆u +∇p = f
div u = 0

I Not a PDE: Search u : R→ Rm with
du
dt

(t) = f (t ,u(t)).

4 / 19

Difficulties when solving PDEs

I The solution of a PDE is a function defined on a continuum
⇒ Often a large number of unknowns is necessary for
approximating it well.

I Existence, uniqueness and regularity of solutions to PDEs
is often a difficult (sometimes even an unsolved) problem.
⇒ Also the discretized equations may be “ill-conditioned”
and difficult to solve.

I Already the precise definition of the problem can be
nontrivial (e.g. when the domain Ω is geometrically
complex)

5 / 19

The Finite Element Method

I Mathematical theory starts from “variational form”:
Find u ∈ V with a(u, v) = f (v) for all v ∈ V .

I V is an (infinite-dimensional) function space adapted to the
problem at hand.

I IDEA OF FEM: Approximate V with a space Vh made from
piecewise polynomial functions defined on a mesh.

I Construct discrete equations by restricting the variational
form to Vh.

I PROPERTIES: Flexibility, good theoretical foundation,
somewhat more complex than e.g. Finite Difference
Methods

6 / 19

Femlisp

Femlisp (FEMlisp?) is a Common Lisp FEM framework with:

I Arbitrary-dimensional meshes consisting of simplex
and/or simplex-product cells (like cubes or prisms)

I Anisotropic and local mesh refinement

I Conforming FE of arbitrary order

I Geometric and algebraic multigrid

I Interactive graphics (interface to OpenDX and VTK)

I Can handle several types of PDEs:
convection-diffusion, elasticity, Navier-Stokes, . . .

7 / 19

Model problem: 3D linear elasticity

I A periodically perforated elastic
medium satisfies an effective
elasticity law.

I The effective elasticity tensor is

Âkr
iq =

∫
Y

Akl
ij (y)

(
δjqδlr +

∂N lr
q

∂yj
(y)
)

dy

I where the corrector N : Y → Rd3

satisfies

− ∂

∂yi

(
Akl

ij (y)
∂N lr

q

∂yj
(y)
)

=
∂Akr

iq

∂yi
(y) .

8 / 19

Femlisp results (state from 2005-2015)

I Test 1: 2D, hole inlay, uniform refinement, Q5-FE:

Cells Unknowns Matrix entries Time (s) Â11
11

4 872 18.836K 3.2 1.7928477139
16 4.224K 78.780K 10.6 1.7925713781
64 17.336K 314.716K 34.3 1.7925694507

256 69.168K 1.257M 136.6 1.7925694414
1024 275.240K 5.022M 597.0 1.7925694414

I Test 2: 3D, hole inlay, uniform refinement, Q5-FE:

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.125M 76 2.6235177047
48 192.024K 18.571M 2373 2.6231458888

9 / 19

How to increase performance?

SYSTEMATIC APPROACH:

I Check if algorithm is good enough

I Check for possible use of high-performant libraries
(BLAS, LAPACK, . . .)

I Optimize single core performance (profiling!)

I Shared-memory parallelization (OS threads)

I Distributed-memory parallelization (MPI)

10 / 19

Using libraries and choice of algorithm

I The results above already used the BLAS/LAPACK
libraries (before they were worse by a factor of about 2).

I They also used multigrid with a special p-robust smoother
(“vertex-centered SSC”) which is ok in 2D, but costly in 3D
 Multigrid with simple block-Gauss-Seidel gives:

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.12473M 19 2.6235177047
48 192.024K 18.5712M 165 2.6231458888

I Gauss-Seidel is not parallelizable
BPX (CG, additive V-cycle, block-Jacobi smoother) gives:

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.12473M 9 2.6235177047
48 192.024K 18.5712M 114 2.6231458888

11 / 19

Improvement of the serial code

I Profiling shows bottleneck in generic function MREF

In Lisp, it is easy to write fast code.
Unfortunately, it is very easy to write slow code.
(Paul Graham, “On Lisp”)

I REMEDY: Block-wise updates of the global matrix during
discretization eliminates bottleneck and gives:

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.125M 3.7 2.6235177047
48 192.024K 18.5712M 47 2.6231458888

384 1.520M 148.704M 378 2.6231424485

I Profiling does not show easily removable bottlenecks

12 / 19

Shared-memory parallelization – 1

I Defect calculation can be performed in parallel
(HOWEVER: might not be completely unproblematic
depending on matrix/vector data structure)

I Discretization can be performed in parallel (HOWEVER:
update of the global stiffness matrix must be synchronized)

I We used a worker pool working on assembly pipelines
containing assembly tasks and global matrix update tasks

I Results (on my laptop with two threads):

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.125 2.7 2.6235177047
48 192.024K 18.571M 36 2.6231458888

384 1.520M 148.704M 290 2.6231424485

13 / 19

Shared-memory parallelization – 2

I Results on sultana (older workstation with large memory):

Cells Unknowns Matrix entries Time (s) Â11
11

6 22.167K 2.125M 4 2.6235177047
48 192.024K 18.571M 40 2.6231458888

384 1.520M 148.704M 300 2.6231424485
3072 12.017M 1.188G 2400 2.6231424309

I Speedups on level 3 (384 cells):
Threads 1 2 3 4 5 6

Speedup 1 1.7 2.1 2.2 2.8 2.9

14 / 19

Distributed-memory parallelization in Common Lisp

I CL-MPI (Marco Heisig): CL interface to MPI

I LFARM (James M. Lawrence): Interactive control of the
workers

I DDO -“Dynamic Distributed Objects”
I Creation, removal and changes for distributed objects are

communicated at synchronization points.
I Distributed objects can be dropped and left to GC
I Basic administrative data structure:

Triple relation (local-index, processor, distant-index)

15 / 19

Distributed-memory parallelization for Femlisp

1. Starting from identical coarse meshes, parts belonging to
other processors are dropped, and the interfaces are
DDO-identified (distributed). Refinement of distributed
interfaces remains distributed.

2. Discretization works without synchronization, because we
work with inconsistent stiffness-matrix Ai and load-vector fi .

3. BPX solving needs some synchronization (SI→C):
I One-time calculation of consistent diagonal Dc := SI→CDi .
I Correction: ci := D−1

c ri followed by cc := SI→Cci before
correcting uc := uc + cc . 1

I For monitoring: rc := SI→Cri and ‖r‖2
2 := 〈rc , ri〉.

1ri = fi − Aiuc denotes the inconsistent residual.
16 / 19

Distributed-memory parallelization – Results

I Results on sultana
MPI workers

Cells 1 2 3
6 3.7 2.8 2.4

48 38 24 17
384 295 164 115

3072 2400 1250 840

I And using the LiMa cluster of the RRZE
MPI workers

Cells 2 4 6 8 12 16 24 48
48 20 13 11 9 8 8 9 10

384 100 58 45 36 27 24 23 20
3072 — — 240 190 130 105 82 53

17 / 19

Current work on Femlisp

I Solving this model problem still faster and more accurate

I Thread-parallel DDO

I Load-balancing with DDO

I More functional approach to PDE solution (?)

I Applications
I Benchmark flow problems (driven cavity, flow around a

cylinder)
I Interactive demo at “Long Night of Sciences”
I Research on “Multiscale Finite Elements”
I . . .

18 / 19

References

I http://www.femlisp.org

I M. HEISIG, N. NEUSS: “Distributed High Performance
Computing in Common Lisp”, in Proc. 9th European Lisp
Symposium (2016)

I M. HEISIG, N. NEUSS: “Making a Common Lisp Finite
Element library high-performing — a case study” (2017,
submitted)

19 / 19

