A Lisp way to Type Theory and Formal Proofs

a Domain Specific Language Study

Frédéric Peschanski
UPMC - LIP6 - Complex - APR team
Me, myself and I

Associate professor at the University Pierre et Marie Curie

- Research: formal methods, concurrency, automata, combinatorics
- Teaching: programming languages (including Clojure, Ocaml, Scheme)

Amateur programmer and free software enthusiast

- Polyglot: Lisps (for sure!), Ocaml, Haskell, Scala, Java, C++, Python, etc.
- Ex.: LaTTe, cl-jupyter, arbogen, Tikz-editor, pave, piccolo ... (cf. github)

Lisp background

- PhD thesis (co-)advised by Christian Queinnec ⇒ Scheme by “name”
- Programming language programmer ⇒ (Common) Lisp by “value”
- Community member (and converted to FP) ⇒ Clojure by “need”
a Proof Assistant

- Formalize mathematical content (definitions, axioms, theorems, ...) on a computer
- Assist in proving theorems

implemented as a Clojure library

- Small purely functional kernel based on type theory
- “Live coding mathematics” experience (using e.g. cider)
- Proving in the large (compile-time type checking, clojars ecosystems)

and some basic mathematical content

- Integer arithmetics, typed set theory, fixed points theorems (more to come)
In this presentation

LaTTe from the developer point of view

- Proof assistants = a kind of a “deep” Domain Specific Language
- (enriched) Lisp as a universal (e.g. mathematical) notation
- The Clojure way: small purely functional kernel, data-oriented, a sip of macros, prog. in the large, ...

LaTTe for the user?

⇒ cf. LaTTe@Eucoclojure2016 and latte-central on github
Disclaimer

Other proof assistants are much more advanced

- LatTe is (mostly) a personal project (with a few contributors) focusing on minimalism
- it is aimed at enthusiasts of the Lisp notation (with Clojure enhancements)
 ⇒ most mathematicians favor the (highly informal) “standard” mathematical notations (including all the quirks, ambiguities, historical incidents, ...)

Many of the underlying ideas come from the (excellent) book :

- **Type Theory and Formal Proof : an Introduction**
 Rob Nederpelt and Herman Geuvers
 Cambridge University Press - 2014
Example: a natural deduction proof

(from Francis Jeffry Pelletier, Allen P. Hazen: A History of Natural Deduction, 2012)
Coq is a famous, successful proof assistant

Some notable features:

- **External DSL** implemented in Ocaml
- Based on a very rich type theory (universes, inductives, sigma-types, etc.)
- (thus) has a rather complex kernel implementation
- Supports a complex notation system
- Use tactic-based imperative proof scripts
- User-defined tactics are written in a dedicated DSL (LTac)
- Plugins can be implemented in Ocaml (but it is not for “normal” users)
In comparison, some LaTTe features:

- Internal DSL with Clojure as host
- based on a very simple, less expressive, type theory
- (thus) has a very small kernel implementation
- uses the Lisp notation for mathematical contents (with Clojure extensions)
- use declarative proof scripts based on fitch-style natural deduction.
- can be extended (in various ways) directly in the host (Clojure) language.

Claim:

We do not claim that LaTTe is better, only smaller and lispier...
Existential question

What makes a DSL
Beautiful Domain Specific Languages: a personal Agenda

- An interesting and rich domain
 ⇒ e.g.: html (imho) cannot be a beautiful DSL!

- Internal DSL
 ⇒ proving is programming, programming is proving

- Declarative-first
 ⇒ faithfully convey the domain principles

- (but) Programmable/extendable in the host language
 ⇒ example of (what I think is) a counter-example: syntax-rules ...

- Small kernel
 ⇒ core abstractions vs. “sugars”

- Macros (only) when required
 ⇒ with great power comes great … but hey: GREAT POWER!

- The Clojure way: data-oriented ⇐ new!
 ⇒ for me an important piece of the “Lisp programming puzzle” …
Proof steps

A proof step in LaTTe is of the form:

\[(\text{have } \text{<step> } (\text{some proposition } P) : \text{by } (\text{some proof of } P))\]

- (some proposition P) is a type \(T\)
- (some proof of P) is a term \(u\)

Principle (Curry-Howard) : \(u\) has type \(T \iff u\) is a proof of \(T \iff \text{proposition } T\) is true

\(\Rightarrow\) LaTTe first infers a canonical type \(U\) of \(u\)
\(\Rightarrow\) the proof \(<\text{step}>\) is accepted iff \(U\) and \(T\) are (β-)equivalent
\(\Rightarrow\) in this case \(<\text{step}>\) becomes a local variable of value \(u\) and type \(T\).
Proof automation: synthesize propositions?

A proof step in LaTTe may also be of the form:

\[(\text{have } \text{<step> } _ : \text{by (some proof of } P))\]

- (some proof of P) is a term u

→ LaTTe first infers a canonical type U of u
→ the proof <step> is accepted if U is a valid type (term of type ★)
→ in this case <step> becomes a local variable of value u and type U.

Remark: such a proof step is not declarative (but can help reduce redundancy)
Proof automation : synthesize terms?

A proof step in LaTTe is of the form:

\[
\text{(have <step> (some proposition P) :by ???)}
\]

- (some proposition P) is a type T

Question: is there a term t of type T? (⇔ is type T inhabited?)

This problem is (thankfully!) not decidable in the general case. But such a term t can be generated programmatically using `defspecial`.

Remark: any term t will do, as long as it has type T ⇐ proof irrelevance
Proof automation: the `defspecial` form

```
(defspecial auto%
    [def-env ctx arg1 … argN]
    <arbitrary Clojure code to generate a term t of the expected type>
    … )
```

Using a special in a proof step:

```
(have <step> (some proposition P) :by (auto% arg1 … argN))
```

Ultimately type-checking ensures correctness of the automated step (if `auto%` terminates)
Proof generation?

(ongoing development)

What if you want to generate proofs (or parts of proofs) programmatically?

⇒ LaTTe proofs are macro-calls:

```
(proof <myproof> :script
  (assume [H1 <blabla>
    H2 <blablabla>]
  (have <a> (good prop P) :by (nice proof p))
  (have <b> (good prop Q) :by (nice proof q))
  ...
  ...
)
```

⇒ can quote/quasiquote proofs, but it’s rather cumbersome to manipulate proofs as lists …
(at least in Clojure) and we lose the benefits of macros (transparency)...
Proof generation: the Clojure (data-oriented) way

Alternative proof representation:

```clojure
[:proof <myproof> :script
   [:assume ['H1 <blabla>
              'H2 <blablabla>]
    [:have '<a> (good prop P) :by (nice proof p)]
    [:have '<b> (good prop Q) :by (nice proof q)]
    ...
    ...
    ]
⇒ This is a Clojure literal, very easy to generate/manipulate programmatically
```
Example: the hence form

(defmacro hence [prop by proof]
 [:have (gensym "hence") ~prop ~by ~proof])

An unexpected limitation (for compile-time type checking):

The literal representation must be generated in a bottom-up way
⇒ the macro-expander works the other way around

Hence we need a user-level macro-expander
⇒ clojure.core/macroexpand (usable but somewhat limited)
⇒ ridley : a powerful code walker/macro-expander as a library
Conclusion

Lisp and Clojure rock! (you don’t say …)

- A beautiful universal notation
 (mathematical concepts are just an example)
- Programming as a generalized computer interaction principle
 (doing mathematics is just an example)
- Macros “rock-” … data-oriented macros “-ably”

Type theory is a beautiful and rich domain!

Want to try?
⇒ https://github.com/latte-central/LaTTe