
A Lisp way to Type Theory 
and Formal Proofs

Frédéric Peschanski
UPMC - LIP6 - Complex - APR team  

a Domain Specific Language Study



Me, myself and I
Associate professor at the University Pierre et Marie Curie

● Research : formal methods, concurrency, automata, combinatorics
● Teaching : programming languages (including Clojure, Ocaml, Scheme)

Amateur programmer and free software enthusiast

● Polyglot : Lisps (for sure !), Ocaml, Haskell, Scala, Java, C++, Python, etc.
● Ex.: LaTTe, cl-jupyter, arbogen, Tikz-editor, pave, piccolo ... (cf. github)

Lisp background

● PhD thesis (co-)advised by Christian Queinnec ⇒ Scheme by “name”
● Programming language programmer  ⇒  (Common) Lisp by “value”
● Community member (and converted to FP) ⇒ Clojure by “need” 



A   Laboratory of  Type  Theory   experiments

a Proof Assistant

● Formalize mathematical content (definitions, axioms, theorems, ...) on a computer
● Assist in proving theorems

implemented as a Clojure library

● Small purely functional kernel based on type theory
● “Live coding mathematics” experience (using e.g. cider)
● Proving in the large (compile-time type checking, clojars ecosystems)

and some basic mathematical content

● Integer arithmetics, typed set theory, fixed points theorems (more to come)

https://github.com/latte-central



In this presentation
LaTTe from the developer point of view

● Proof assistants = a kind of a “deep” Domain Specific Language

● (enriched) Lisp as a universal (e.g. mathematical) notation
● The Clojure way : small purely functional kernel, data-oriented, a sip of 

macros, prog. in the large, ...

LaTTe for the user ?

⇒ cf. LaTTe@Eucoclojure2016 and latte-central on github



Disclaimer
Other proof assistants are much more advanced

● LaTTe is (mostly) a personal project (with a few contributors) focusing on minimalism
● it is aimed at enthusiasts of the Lisp notation (with Clojure enhancements)

⇒ most mathematicians favor the (highly informal) “standard” mathematical 
notations (including all the quirks, ambiguities, historical incidents, ...)

Many of the underlying ideas come from the (excellent) book :

● Type Theory and Formal Proof : an Introduction
Rob Nederpelt and Herman Geuvers
Cambridge University Press - 2014



Example: a natural deduction proof

(from Francis Jeffry Pelletier, Allen P. Hazen: A History of Natural Deduction, 2012) 



... in Coq
Coq is a famous, successful proof assistant

Some notable features :

● External DSL implemented in Ocaml
● based on a very rich type theory (universes, inductives, sigma-types, etc.)
● (thus) has a rather complex kernel implementation
● supports a complex notation system
● use tactic-based imperative proof scripts
● user-defined tactics are written in a dedicated DSL (LTac)
● plugins can be implemented in Ocaml (but it is not for “normal” users)



… in LaTTe
In comparison, some LaTTe features :

● Internal DSL with Clojure as host
● based on a very simple, less expressive, type theory
● (thus) has a very small kernel implementation
● uses the Lisp notation for mathematical contents (with Clojure extensions)
● use declarative proof scripts based on fitch-style natural deduction.
● can be extended (in various ways) directly in the host (Clojure) language.

   We do not claim that LaTTe is better, only 
smaller and lispier ...

Claim:



Existential question

What makes a DSL 

?



Beautiful Domain Specific Languages : a personal Agenda
❏ An interesting and rich domain

⇒ e.g.: html (imho) cannot be a beautiful DSL !

❏ Internal DSL
⇒ proving is programming, programming is proving

❏ Declarative-first
⇒ faithfully convey the domain principles

❏ (but) Programmable/extendable in the host language
⇒ example of (what I think is) a counter-example : syntax-rules ...

❏ Small kernel
⇒ core abstractions vs. “sugars”

❏ Macros (only) when required
⇒ with great power comes great … but hey : GREAT POWER !

❏ The Clojure way: data-oriented ⇐ new !
⇒ for me an important piece of the “Lisp programming puzzle” ...



Proof steps

A proof step in LaTTe is of the form:

● (some proposition P) is a type T
● (some proof of P) is a term u

Principle (Curry-Howard) : u has type T ⇔ u is a proof of T ⇔ proposition T is true

⇒ LaTTe first infers a canonical type U of u
⇒ the proof <step> is accepted iff U and T are (β-)equivalent
⇒ in this case <step> becomes a local variable of value u and type T.

 

(have <step> (some proposition P) :by (some proof of P)) 



Proof automation : synthesize propositions ?

A proof step in LaTTe may also by of the form:

● (some proof of P) is a term u

⇒ LaTTe first infers a canonical type U of u
⇒ the proof <step> is accepted if U is a valid type (term of type ★)
⇒ in this case <step> becomes a local variable of value u and type U.

Remark : such a proof step is not declarative (but can help reduce redundancy)

(have <step> _ :by (some proof of P)) 



Proof automation : synthesize terms ?

A proof step in LaTTe is of the form:

● (some proposition P) is a type T

Question: is there a term t of type T? (⇔ is type T inhabited?)

This problem is (thankfully!) not decidable in the general case.
But such a term t can be generated programmatically using defspecial.
 

Remark: any term t will do, as long as it has type T ⇐ proof irrelevance

(have <step> (some proposition P) :by ???) 



Proof automation: the defspecial form

(defspecial auto%
  [def-env ctx arg1 … argN]
  <arbitrary Clojure code to generate
   a term t of the expected type>
  … )

(have <step> (some proposition P) :by (auto% arg1 … argN)) 
Using a special in a proof step:

Ultimately type-checking ensures correctness of the automated step 
(if auto% terminates)



Proof generation ? (ongoing development)

What if you want to generate proofs (or parts of proofs) programmatically ?

⇒ LaTTe proofs are macro-calls:

(proof <myproof> :script
   (assume [H1 <blabla>
            H2 <blablabla>]
     (have <a> (good prop P) :by (nice proof p))
     (have <b> (good prop Q) :by (nice proof q))
     …
    …)
 …)

⇒ can quote/quasiquote proofs, but it’s rather cumbersome to manipulate proofs as lists …
    (at least in Clojure) and we lose the benefits of macros (transparency)...



Proof generation: the Clojure (data-oriented) way
Alternative proof representation:

[:proof <myproof> :script
   [:assume [’H1 <blabla>
             ’H2 <blablabla>]
     [:have ’<a> (good prop P) :by (nice proof p)]
     [:have ’<b> (good prop Q) :by (nice proof q)]
     …
    …]
 …]

⇒ This is a Clojure literal, very easy to generate/manipulate 
programmatically



Example: the hence form

(defmacro hence [prop by proof]
   [:have (gensym “hence”) ~prop ~by ~proof])

An unexpected limitation (for compile-time type checking):

 The literal representation must be generated in a bottom-up way
⇒ the macro-expander works the other way around

Hence we need a user-level macro-expander
⇒ clojure.core/macroexpand  (usable but somewhat limited)
⇒ ridley : a powerful code walker/macro-expander as a library



Conclusion
Lisp and Clojure rock !  (you don’t say …)

● A beautiful universal notation
(mathematical concepts are just an example)

● Programming as a generalized computer interaction principle
(doing mathematics is just an example)

● Macros “rock-” ... data-oriented macros “-abilly”

Type theory is a beautiful and rich domain !

Want to try ?
⇒ https://github.com/latte-central/LaTTe


