Interactive Functional Medical Image Analysis

A Demo using Functional Languages and VIGRA

Dr. Benjamin Seppke, Prof. Dr. Leonie Dreschler-Fischer
Agenda

1. Introduction
2. Fitting VigRacket for Medical Image Analysis
3. Demonstration
4. Conclusions
Agenda

1. Introduction
 - Medical image analysis
 - Interactive work-flow

2. Fitting VigRacket for Medical Image Processing

3. Demonstration

4. Conclusions
Medical Image Analysis

• Imaging in medical context often 3D, here we refer to 2D images only
• Images may come from:
 – 3D-Scanners (like CT, MRT) as slices
 – (Fluorescent) microscopy etc.
• Main applications take place on object level
 – Measure (e.g. size of objects)
 – Classify (e.g. normal vs. strange cells)
• Step from image to object level alone is non-trivial!
Interactive Workflow

• Experts prefer interactive workflows
• Use or define heuristics:
 – Try different approaches,
 – Eventually find the best fitting one for their application.
• Start with building blocks!
• Aim of the interactive procedure:
 – Get better insights in algorithms and
 – get better results while modelling the solution!
• At the end: Solution/product.
Agenda

1. Introduction
2. Fitting VigRacket for Medical Image Analysis
 – Segmentation and Labelling
 – From Labels to Region Features
3. Demonstration
4. Conclusions
Segmentation and Labelling

- Segmentation algorithms:
 - From image to regions (e.g. thresholding + pre-processing)

- Labelling of connected components:
From Labels to Region Features

<table>
<thead>
<tr>
<th>ID</th>
<th>size</th>
<th>left</th>
<th>upper</th>
<th>right</th>
<th>lower</th>
<th>...</th>
<th>min color</th>
<th>mean color</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>94177</td>
<td>0</td>
<td>0</td>
<td>461</td>
<td>248</td>
<td>...</td>
<td>(171.0 148.0 150.0)</td>
<td>(241.91 237.51 241.11)</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>229</td>
<td>55</td>
<td>0</td>
<td>76</td>
<td>12</td>
<td>...</td>
<td>(178.0 146.0 164.0)</td>
<td>(205.09 166.81 187.51)</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>371</td>
<td>0</td>
<td>391</td>
<td>12</td>
<td>...</td>
<td>(180.0 150.0 166.0)</td>
<td>(204.93 170.70 192.07)</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>361</td>
<td>233</td>
<td>1</td>
<td>257</td>
<td>22</td>
<td>...</td>
<td>(168.0 137.0 171.0)</td>
<td>(206.03 173.12 199.91)</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>226</td>
<td>272</td>
<td>1</td>
<td>295</td>
<td>12</td>
<td>...</td>
<td>(158.0 118.0 143.0)</td>
<td>(193.21 145.39 168.17)</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>277</td>
<td>403</td>
<td>9</td>
<td>424</td>
<td>26</td>
<td>...</td>
<td>(144.0 103.0 99.0)</td>
<td>(190.96 144.58 155.25)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

03.04.17
Benjamin Seppke, Universität Hamburg, Dept. Informatics, SAV
Modelling in GUI-based Approaches
Agenda

1. Introduction
2. Fitting VigRacket for Medical Image Analysis
3. Demonstration
 – Preliminaries
 – Demo: Sickle Cell Anaemia
4. Conclusions
Preliminaries

• Racket 6.8 http://racket-lang.org
• VigRacket 1.5 https://github.com/bseppke/vigracket
 – For Linux and macOS:
 • VIGRA Computer Vision Library (v. 1.11.0 or newer)
 • FFTW lib
 • Image format libs of choice, e.g. libpng, libtiff...
 – Installation:
 • Run “install.rkt” – that’s all!
 – Tested under Windows, Linux (Ubuntu) and macOS!
Demo Time
Still time? New Preliminaries

- Any/SteelBank Common Lisp
- VigraCL (master) https://github.com/bseppke/vigracl
 - For Linux and macOS:
 - VIGRA Computer Vision Library (v. 1.11.0 or newer)
 - FFTW lib
 - Image format libs of choice, e.g. libpng, libtiff...
 - Installation:
 - Copy to any folder to work with
 - Tested under Windows and macOS with SBCL!
Demo Time
Agenda

1. Introduction
2. Fitting VigRacket for Medical Image Processing
3. Demonstration
4. Conclusions
Conclusions

• The History: 8 years of VigRacket (f.k.a. vigra-plt)
 – Improved Datatypates and interaction
 – Improved Functional Programming layer
 – Improved execution speed
 – Continuously expanding functionality
 – Improved documentation (scribble’d!)

• Currently:
 – VigRacket release 1.5
 – VigraCL (no current release, sorry – but master works) for CommonLisp integration (tested with SBCL)
Conclusions

• Now, powerful enough for interactive image and region analysis!
 – Independent of the application context
 – E.g. material research, general scene analysis tasks

• Understandable and usable by “newbies”
 – Students in our B.Sc. practice “Image Processing”
 – Even pupils visiting our lab for interactive “first contact” with the topic
 – Even if they do not know about functional programming so far.
Conclusions

- Functional vs. GUI-based approaches

Arrows may now represent either argument passing or function composition!

(image)

(curryr thresholdimage 230)

(curryr openingimage 1)

(curryr labelimage #t 0.0)

extractfeatures