
LispThis Old

rme@acm.org
R. Matthew Emerson

Who is this fellow, anyway?

•Worked on OpenMCL / Clozure CL since
2007 (both as a Clozure Associates
employee and now independently)

•First used Allegro CL on the NeXT machine,
and then used MCL

LispThis Old

http://turnoff.us/geek/developers/
as modified at https://twitter.com/nihirash/status/880829816072802304

Clozure CL background

1958 Lisp

1984 Common Lisp (CLTL1)

1987 Coral Common Lisp 1MB Macintosh Plus

1988 Macintosh Common Lisp Apple acquires Coral

1994 MCL transferred to
Digitool

Apple starts switch to
PowerPC

1995 MCL ported to PowerPC MCL 4.0 released as a
product by Digitool

1998
MCL (without GUI/

IDE) ported to VxWorks
and LinuxPPC

done at JPL

2001 OpenMCL Digitool grants permission
to redistribute under LLGPL

port to Darwin (macOS)

port to FreeBSD

port to Solaris-ish

port to Windows

port to x86-64

port to 32-bit x86

port to 32-bit ARM

port to 64-bit PowerPC

native threads

and more...

Objective-C interface

In 2007, Alice Hartley of Digitool announced that the code for the
original MCL would be open sourced (under the LLGPL).

Thus, to avoid confusion between OpenMCL and
the newly open-sourced MCL, OpenMCL was renamed to

Clozure CL

As a bonus, this made the CCL package name make sense again.

Why did Digitool throw in
the towel on MCL?

Digression:

ClozureClosure
Clojure

Closzjure?🙄

Clozure CL today

•general purpose implementation

•targets x86, x86-64, ARM (ppc32, ppc64
not supported after release 1.10)

•runs on Linux, macOS, FreeBSD, Solaris,
Windows

It’s old
;;; from slisp reader2.lisp, and apparently not touched
;;; in 20 years.

(defun parse-integer (string &key (start 0) end
 (radix 10) junk-allowed)
 ...)

fancy loop macro, pretty printer, format, etc.

old subproblems

•printing and reading floating-point numbers

•bignum operations

•disassembler

•random number generation

Who uses it?

Linux

macOS

FreeBSD

Solaris-ish

Windows

0% 20% 40% 60% 80%

64-bit x86

32-bit x86

ARM

0% 25% 50% 75% 100%

Multiple constituencies

•“batch” users on large memory machines

•hackers using Emacs and SLIME

•macOS Cocoa IDE users (Mac App Store or
otherwise)

Some CCL technologies

•compiler

•garbage collector

•threads

•FFI

https://xkcd.com/303/

compiler

•Generates reasonable code quickly.

•With some effort with declarations, floating-
point code can be halfway decent.

•It could afford to work a little harder and still be
fast.

more compiler

•builds CCL itself in under a minute

•new users uncover new categories of bugs
(including performance bugs)

Native threads

•use multiple cpu cores

•hash tables

•streams

•thread-local shallow binding for special vars

Single-space compacting GC

old objects young objects

generations

GC implications

•Objects may move at any time

•Passing data to foreign code generally requires
copying

•current GC stops other threads

Convenient FFI

? (external-call "getpid" :pid_t)
4771

It’s easy to call C functions if you know their names.

more FFI

(rletz ((x (:array :double 10)))
 (setf (paref x (:array :double) 5) 100d0
 (paref x (:array :double) 8) -1000d0)
 (external-call "cblas_idamax" :int 10
 (:* double) x :int 1 :int))

There is notation to describe and access foreign data.

Interface translator
Interface translator (based on gcc or libclang)
turns .h files into s-expression representation.
CURL_EXTERN CURLcode curl_global_init(long
flags);

(function ("/usr/include/curl/curl.h" 2143)
 "curl_global_init"
 (function
 ((long ()))
 (typedef "CURLcode")) (extern))

FFI reader macros
Lisp code parses the s-expression data and makes a
database used by reader macros. This way, you don’t
have to specify foreign types, because they are known
from the database.

? (open-shared-library "libcurl.dylib")
#<SHLIB /usr/lib/libcurl.dylib #x30200091FF6D>
? (#_curl_global_init #$CURL_GLOBAL_DEFAULT)
0

related projects

•Test suite based on Paul Dietz’s ANSI CL tests
(github.com/Clozure/ccl-tests)

•documentation written using CCLDoc system
(github.com/Clozure/ccldoc)

•updated libclang-based ffigen

future plans

•keep up

•continue work on experimental register
allocator (which is opt-in via a special optimize
quality in 1.12 development branch)

•port to 64-bit ARM

•fix bugs

future plans

•New macOS IDE

•Emacs and SLIME are perhaps a locally-
optimal plateau

•your wish here; get in touch

Who owns CCL?

•Clozure Associates has supported CCL
development for many years, but the project has
never been Clozure’s product or private
playground.

•Copyright obtained from Digitool

•Apache 2.0 license instead of LLGPL

Who hacks on CCL?

•Gary Byers, a great hacker and long-term
driving force behind CCL, has retired.

•maybe you?

You can help CCL

•On GitHub: https://github.com/Clozure/ccl

•#ccl on Freenode

•openmcl-devel@clozure.com mailing list

•Do cool stuff

You can get help for CCL

•Clozure Associates can offer paid support for
Clozure CL

•You can hire me to do anything whatever with
Clozure CL

I ❤ Common Lisp and
Clozure CL

•The standard is stable, and provides a baseline
of much useful functionality

•Multiple CL implementations to choose from

•I like Clozure CL. Maybe you like something
else. We can still be friends.

•Built-in support for collections

•Automatic storage management

•Dynamic typing

•First-class functions

•Interactive environment

•Extensibility (functions, classes, syntax, reader)

•Uniform syntax (macros)

language & interactivity

•CL has a built-in assumption that the
programming environment is going to be
interactive

•e.g., trace, break, update-instance-for-
redefined-class

The spirit inside the computer

•early micros said “Ready”

•interactive, incremental approach to
programming is great for exploring a new
problem domain, or working on a problem that
you don’t know how to solve

Counterpoint

•CL’s interactive nature lets you jump right in
and start messing around with code, when
maybe it would be better to think a bit first.

•Furious activity is no substitute for
understanding.

I never look back, darling. It
distracts from the now.

“Indeed, one of my major complaints about the
computer field is that whereas Newton could
say, ‘If I have seen a little farther than others it is
because I have stood on the shoulders of
giants,’ I am forced to say, ‘Today we stand on
each other’s feet.’ Perhaps the central problem
we face in all of computer science is how we are
to get to the situation where we build on top of
the work of others rather than redoing so much
of it in a trivially different way.”

Richard Hamming

http://www.commitstrip.com/en/2018/01/08/new-year-new-frameworks/

Four well-defined
directions

Brushes and chisels

The enjoyment of one’s
tools is an essential

ingredient of successful
work.

Vol. II, Seminumerical Algorithms, Section 4.2.2 part A, final paragraph

http://opusmodus.com

http://opusmodus.com

“For years, CCL has been the Lisp of
choice for performing hardware
verification with ACL2. The hash
cons / static cons tables make it
particularly adept at analyzing the
Verilog itself.”

En garde, Lisp naysayers!

🤺

Thank you.
Let’s hack more Lisp.

rme@acm.org

