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Context

Emacs is likely the most common editor for Common Lisp code.

I The current package is not taken into account.

I The indent function can not distinguish between forms and
bindings.

I No distinction between different roles of symbols.

I Incorrect indentation is not indicated.
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Taking packages into account

Emacs does not take packages into account for syntax highlighting.

This code is highlighted correctly:

(defpackage :p (:use :common-lisp))

(in-package :p)

(defun f (x) x)
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Taking packages into account

Emacs does not take packages into account for syntax highlighting.

This code is not highlighted correctly:

(defpackage :p (:use))

(in-package :p)

(defun f (x) x)
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Distinguishing between forms and bindings

Emacs does not distinguish between forms and bindings.

This binding is indented in one way:

(let ((temp

(find key *entries* :test #’eq :key #’car)))

...)
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Distinguishing between forms and bindings

Emacs does not distinguish between forms and bindings.

This binding is indented in a different way:

(let ((prog1

(find key *entries* :test #’eq :key #’car)))

...)

And the role of prog1 is not taken into account.
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Indicating incorrect indentation

Emacs does not indicate bad indentation.

This form contains an incorrect indentation:

(let* ((x (expt *result* 3))

(declare (float x)))

(+ x 1.0))
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Objectives

An excellent editor for Common Lisp code:

I Take current package into account.

I Distinguish forms from other entities.

I Show incorrect indentation.

I Take roles of symbols into account.

I Provide refactoring functionality.
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First step towards objectives

Create an incremental parser for Common Lisp code that yields a
considerably more accurate result than existing parsers.
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Recapitulation: Editor buffer protocol

Presented at ELS 2016.

Two sub-protocols:

I Edit protocol. Access, insert, or delete an item. Can be
invoked a large number of times for each keystroke.

I Update protocol. Determine changes since last update.
Typically invoked once for each keystroke.

For the current work, we are only interested in the update protocol.
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Our technique: Parse result

The analysis of the buffer contents returns parse results.

A parse result contains:

I The start position and end position (line, column) in the
buffer of the parse result.

I The type (expression, comment, etc) of the parse result.

I A possibly empty list of children.
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Our technique: Cache of parse results

We maintain a cache that maps buffer positions to parse results.
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Our technique: Two phases

Our incremental parser has two phases:

I Invalidation.

I Rehabilitation.

13/41



Invalidation phase

Step 1: Invoke the update protocol of the buffer.

Editor buffer

Editor buffer copy

Invalidate

update
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Invalidation phase

Step 2: Update protocol emits update information.

Editor buffer

Editor buffer copy

Invalidate

update
modify

insert

skip

sync

15/41



Invalidation phase

Step 3: Compare to buffer copy.

Editor buffer

Editor buffer copy

Invalidate Compare

update
modify

insert

skip

sync
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Invalidation phase

Step 4: Convert to modify, insert, delete.

Editor buffer

Editor buffer copy

Invalidate Compare

update
modify

insert

skip

sync

modify

insert

delete
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Invalidation phase

Step 5: Check whether any parse result is affected.

Editor buffer

Editor buffer copy

Invalidate Compare

update
modify

insert

skip

sync

modify

insert

delete

acess
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Invalidation phase

Step 6: If so, remove or split it.

Editor buffer

Editor buffer copy

Invalidate Compare Remove

update
modify

insert

skip

sync

modify

insert

delete

acess

remove

split
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Invalidation phase

Step 7: Keep parse results that are still valid.

Editor buffer

Editor buffer copy

Invalidate Compare Remove

update
modify

insert

skip

sync

modify

insert

delete

acess

remove

split
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Rehabilitation phase

We use a modified version of the standard Common Lisp function
read:

I It returns parse results instead of expressions.

I It also returns parse results corresponding to non-expressions.
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Rehabilitation phase

The modified read function uses a Gray stream that accesses the
contents of the text buffer.
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Rehabilitation phase

Step 1: Conceptually invoke read on entire buffer copy.

Editor buffer copy

Gray

stream

read

Reader

call

Rehabilitiate
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Rehabilitation phase

Step 2: Check whether a parse result exists in the cache.

Editor buffer copy

Gray

stream

read

Reader

accesscall

Rehabilitiate
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Rehabilitation phase

Step 3a: If so, update position and return from reader.

Editor buffer copy

Gray

stream

read

Reader

update−

position
return

return

call

Rehabilitiate
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Rehabilitation phase

Step 3b: If not, access characters from buffer copy.

access−

characters

Editor buffer copy

Gray

stream

read

Reader

call

Rehabilitiate
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Rehabilitation phase

Step 3b: The result is a new parse result.

access−

characters

Editor buffer copy

Gray

stream

read

Reader

call

Rehabilitiate
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Rehabilitation phase

Step 4b: Remove overlapping parse results from cache.

Editor buffer copy

Gray

stream

read

Reader

call

Rehabilitiate

remove−overlap
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Rehabilitation phase

Step 5b: Insert new parse result into cache.

Editor buffer copy

Gray

stream

read

Reader

call

Rehabilitiate

insert
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Rehabilitation phase

Step 6b: Return the new parse result.

Editor buffer copy

Gray

stream

read

Reader

return

return

call

Rehabilitiate
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Optimizations

I We skip a prefix of unmodified material.

I We skip a suffix of unmodified material, provided that
structure is preserved.

I The cache representation is optimized for small modifications.
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Performance

Tests run on a 4-core Intel Core processor clocked at 3.3GHz,
running SBCL version 1.3.11.
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Performance Inserting and deleting a constituent character

nb forms form size time
120 10 0.14ms

80 15 0.14ms
60 20 0.14ms
24 100 0.23ms
36 100 0.32ms
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Performance Inserting and deleting a constituent character
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Performance Inserting and deleting a left parenthesis

nb forms form size time
120 10 1.3ms

80 15 1.0ms
60 20 0.5ms
40 30 0.7ms
30 40 0.6ms
24 50 0.5ms
12 100 0.5ms
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Performance Inserting and deleting a left parenthesis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120

T
im

e
 i
n

 m
s

Number of forms

Inserting and deleting a left parenthesis

36/41



Performance Inserting and deleting a double quote

nb forms form size characters per line time
120 10 1 18ms

80 15 1 15ms
60 20 1 17ms
24 100 1 33ms
36 100 1 50ms

120 10 30 70ms
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Future work

I Use parse result to compute indentation.

I Implement incremental version of first-class global
environments.

I Use new environment implementation to compile top-level
forms at typing speed.

I Display information from compilation.

I Implement refactoring tools based on compilation.
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Thank you

Questions?
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