fotr
Common 5P

Narco Heisig



Motivation

(defgeneric two-arg-+ (a b)

(:method two-arg-+ ((a float) (b float)
(declare (method-properties inlineable))
(+ a b))

(:method two-arg-+ ((a number) (b number)

(:method two-arg-+ ((a string) (b string)

(seal-domain #'two-arg-+ '(number number))

(:generic-function-class fast-generic-function)

)
i)

-~ |nline expansion for arguments that are floats.
~ Fast calls for arguments that are numbers.

-~ Regular generic function call otherwise.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp




Project History

28.10.2018

beach: | figured out a few things that interested people could
help me with, If they want to, like astalla or heisig. One thing
would be to finish the implementation of the sequence functions,

[...]
29.01.2019

ldea to implement sequence functions via suitably restricted
generic functions. The yak shave begins!

27.04.2020
~ Quicklisp library #1: sealable-metaobjects
~ Quicklisp library #2: fast-generic-functions

~ Sequence functions are not finished.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



Introduction

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



The AMOP

~Published in 1991

~de facto standard for CLOS

Additional Resources
“~~ Closer MOP

(gl:quickload :closer-mop)

~HTML Reference:

http://metamodular.com/CLOS-MOP

}ﬁ.x Jim des Riviéres

Gregor Kiczales

e e
AT £ g s s
. I:"_-.-'I{-TJ e Matersal B

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



http://metamodular.com/CLOS-MOP

Metaobjects

(7))

(&) .

D built-in class » standard-class

3 4 i

3 :

5, E

= ;

% . integer string function foo 5

L_) i------T ------------- T --------------- T --------------------- T--------------E
42 "foo" #.#'car #.(make-instance 'foo)

Notation: A—> B "A Is an instance of B"

The AMOP defines generic function, method, slot-definition,
method-combination, class, and eql-specializer metaobjects.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 6



A Generic Function Call

1. Call to the discriminating function.
2.Computation of all applicable methods.
3. Computation of the effective method.

4. Invocation of the correct effective method.

~ Typically, steps 2. and 3. are cached.
~This cache is cleared when metaobjects are modified.

~\We want to perform 2. and 3. statically, and we want to replace
step 1. with step 4. when appropriate.

~\We can only do so (safely) if all involved metaobjects are

sealed.
27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 7



(defclass sealable-metaobject-mixin ()
((%ssealed-p
:initform nil
: reader metaobject-sealed-p)))

Metaobject Sealing

(defclass sealable-generic-function
(sealable-metaobject-mixin generic-function)
((%ssealed-domains
:1nitform ' ()
:type list
:accessor sealed-domains))
(:default-initargs
:method-class
(find-class 'potentially-sealable-method))
(:metaclass funcallable-standard-class))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



Properties of Sealable Metaobjects

~~ A sealable metaobject has two states — sealed and unsealed.
~~0nce a sealable metaobject is sealed, it remains sealed.

-~ Calling reinitialize-instance on a sealed metaobject has no effect.
~~|t is an error to change the class of a sealed metaobject.

~~|t is an error to change the class of any object to a sealed
metaobject.

~~[t Is an error to change the class of an instance of a sealed
metaobject.

~~Each superclass of a sealed metaobject must be a sealed
metaobject.

Note: System classes and structure classes fulfill these criteria.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



Domains

~ A domain is the cartesian product of the types denoted by
some specializers.

-~ A sealed domain is a domain whose constituting specializers
are sealed.

~ The domain of a method with n required arguments is the n-ary
cartesian product of the types denoted by the method's
specializers.

Example domain designators:
“ ' (1nteger)
“ '(string (eql 5))

“w ' (#<built-in-class single-float> #<eql-specializer 5.0>)

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 10



Sealable Generic Functions

-~ A sealed generic function can have any number of sealed domains.
~ New sealed domains can be added by calling seal-domain.
=~ All sealed domains of a generic function must be disjoint.

=~ Each method of a generic function must either be fully inside a
sealed domain, or fully outside.

- Each method inside of a sealed domain must be sealed, and all its
specializers must be sealed.

~ |t Is an error to add or remove methods inside of a sealed domain.

“~ |t IS an error to create a subclass of a sealed class that would
violate any of the previous rules for any sealed generic function (!).

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 11



Automatic Sealing

~ When a sealable metaobject is sealed, all its superclasses are
sealed automatically.

~ When a sealable method is sealed, all its specializers are
sealed automatically.

~ The function seal -domain automatically seals the supplied
generic function, and all methods inside of the designated
domain.

Result:

-~ The distinction between sealed and unsealed metaobjects is
mostly irrelevant to the user.

~ Everything "just works".

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 12



Summary So Far

We have presented a library called sealable-metaobjects with the
following properties:

~ |t provides the infrastructure for reasoning statically about both
bullt-in, and user-defined objects and metaobjects.

~ |t defines the classes sealable-class, sealable-generic-
function, and potentially-sealable-method.

~ |t provides the machinery for reasoning about generic function
domains.

~ |t is fully portable and has a single dependency — closer-mop.

The second half of the talk is about how we can use these
features to define fast generic functions.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 13



(defclass fast-method
(potentially-sealable-standard-method)

(w))

Fast Generic Functions

(defclass fast-generic-function
(sealable-standard-generic-function)
()
(:default-initargs
:method-class (find-class 'fast-method))
(:metaclass funcallable-standard-class))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 14



Three Challenges

We face three challenges when statically optimizing certain
calls to fast generic functions:

~ Telling the compiler if and how to optimize a call to a
sealed generic function.

~ Computing the set of methods applicable to those types
at compile time or at load time.

~ Computing either an inlineable effective method, or a
directly callable effective method function.

Bonus challenge:

~ 100% portable code.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 15



Compile Time Optimization #1

(defun fast-generic-function-compiler-macro (fgf)
(lambda (form env)
(block compiler-macro
(dolist (s-d (sealed-domains fgf))
(dolist (scs (compute-static-call-signatures fgf s-d))
(when (loop for argument in (rest form)
for type in (static-call-signature-types scs)
always (compiler-typep argument type env))
(return-from compiler-macro
" (funcall , (optimize-function-call fgf scs)
;atrest form))})))
form)))

(defun compiler-typep (form type env)
(or (constantp
“(unless (typep ,form ', type)
(tagbody label (go label)))
env)
(and (constantp form)
(typep (eval form) type env))))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 16



Compile Time Optimization #2

Unfortunately, our portable function for hooking into the
compiler has some flaws:

~ Slow — three nested loops over constantp and typep.
-~ Only works reliably for literal constants.

~ Depends on compiler macros, which a compiler might
ignore, especially for generic functions.

Instead, in practice, we use whatever mechanism an
Implementation provides, e.g., deftransform on SBCL.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 17



Computing Applicable Methods

~\Ne use the only sane way of computing all applicable
methods, by calling compute-applicable-methods.

~The challenge is that compute-applicable-methods
doesn't accept types or specializers, but arguments.

~~Qur solution is that we introduce static call signatures. A static
call signature consists of a domain, a list of types, and a list of
prototypes, each of the same length. The types denote a
subset of the domain with a fixed set of applicable methods.
Each prototype is of its corresponding type. The prototypes
are chosen such that they unambiguously identify that
particular subset of the domain.

~~Choosing suitable prototypes is a challenge!

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 18



Computing the Effective Method

Good news:

There is a function called compute-effective-method
Bad news:

The result iIs a form containing "magic macros".

Possible Solution:
(defmethod f :around ((arg-1 t) ..)
(1f *flag* #'call-next-method (call-next-method))

Actual Solution:

We expand the effective method ourselves, using our own
versions of call-method and make-method.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 19



Optimizations

We currently perform the following optimizations:

~ |nlining of effective methods.
~ Calling the effective method directly.
~ |nlining of keyword parsing only.

Further optimizations are planned.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp

20



27.04.2020

Examples

&
Benchmarks

Marco Heisig - Sealable Metaobjects for Common Lisp



SICL Sequence

(defclass sequence-function (fast-generic-function)

()

(:metaclass funcallable-standard-class))

(defgeneric elt
(sequence index)
(:generic-function-class sequence-function))

(defgeneric length
(sequence)
(:generic-function-class sequence-function))

(defgeneric find
(item sequence &key from-end test test-not start end key)
(:generic-function-class sequence-function))

Interested?
https://github.com/robert-strandh/SICL/tree/master/Code/Sequence

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp

22


https://github.com/robert-strandh/SICL/tree/master/Code/Sequence

Generic Find — Methods

(replicate-for-each-relevant-vectoroid #1=#:vectoroid
(defmethod find (item (vectoroid #1#)

(with-test-function (test test test-not)
(with-key-function (key key)
(for-each-relevant-element
(element index vectoroid start end from-end)
(when (test item (key element))
(return-from find element)))))))

(seal-domain #'find '(t vector))

&key from-end test test-not (start 0) end key)

Details: "Fast, Maintainable, and Portable Sequence Functions"
by Irene Durand and Robert Strandh

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp

23




Generic Find — Benchmarks

element 1 Element 50 Elements
type k| SBCL SICL Inline SBCL SICL Inline
* 0 30 32 32 447 342 343
* 1 36 60 60 454 371 372
* 2 39 87 87 454 397 396
* 4 51 140 140 466 507 490
single-float 0 20 17 2 422 360 181
single-float 1 20 18 6 444 354 213
single-float 2 21 18 9 445 354 305
single-float 4 21 21 9 436 406 474
list 0 15 15 5 404 424 175
list 1 17 17 7 422 422 263
list 2 17 21 9 402 585 224
list 4 18 23 9 574 696 337

All timings are given in nanoseconds. We used SBCL version 2.0.1

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp



Conclusions

~ The library sealable-metaobjects can be used as a
foundation for any project that attempts static reasoning
about objects or metaobjects.

~ The library fast-generic-functions is a drop-in
replacement for any generic function that is used In
performance-critical code.

~ Fast generic function almost always outperform
handcrafted solutions.

~ Feedback and experience reports are most welcome!

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp

25



27.04.2020

Thank you for listening!

Questions or Suggestions?
marco.heisig@fau.de
https://github.com/marcoheisig
heisig on #l1sp, #sicl, or #petalisp

Marco Heisig - Sealable Metaobjects for Common Lisp

26


mailto:marco.heisig@fau.de
https://github.com/marcoheisig

