
Proceedings	 of	 ELS	 2012	
	

5th	 European	 Lisp	 Symposium	
Interoperability:	 Systems,	 Libraries,	

Workflows	
	
	

April	 30	 –	 May1	 2012	
University	 of	 Zadar,	 Zadar,	 Croatia	

	
	
	
	
	
	
	

	

	

	

	

ELS 2012 1

Contents	
	
Organization 3
 Programm Chair 3
 Local Chair 3
 Programm Committee 3

About ELS2012 4

Sponsors 5

Conference schedule 6

Invited Talks
Juan Jose Garcia-Ripoll: Embeddable Common Lisp 7
Ernst van Waning. Aura (Automated User-centered Reasoning and
Acquisition System) 7

Session I 8
Laurent Senta, Christopher Chedeau and Didier Verna: Generic Image
Processing with Climb 9
Giovanni Anzani: An iterative method to solve overdetermined systems of
nonlinear equations applied to the restitution of planimetric measurements 13

Session II 21
Alessio Stalla: Java interop with ABCL, a practical example 22
Nils Bertschinger: Embedded probabilistic programming in Clojure 26
Pascal Costanza: A little history of metaprogramming and reflection 30

Session III 31
Marco Benelli: Scheme in Industrial Automation 32
Gunnar Völkel, Johann M. Kraus and Hans A. Kestler: Algorithm Engineering
with Clojure 34

Session IV 42
Irène Anne Durand: Object enumeration 43
Alessio Stalla: Doplus, the high-level, Lispy, extensible iteration construct 58

Lightening Talks 60
Zoltan Varju, Richard Littauer and Peteris Ernis, Using Clojure
in Linguistic Computing 61
Mikhail Raskin. QueryFS, a virtual filesystem based on queries,
 and related tools 65

	

Organization	
	
Programme	 Chair	
Marco Antoniotti, Universita Milano Bicocca, ITALY
	
Local	 Chair	
Franjo Pehar, University of Zadar, CROATIA
Damir Kero, University of Zadar, CROATIA
	
Programme	 Committee	
	
Giuseppe Attardi, Università degli Studi di Pisa, Pisa, ITALY
Pascal Costanza, Intel, Bruxelles, BELGIUM
Damir Ćavar, Eastern Michigan University, USA
Marc Feeley, Université de Montreal, Montreal, CANADA
Scott McKay, Google, U.S.A.
Kent Pitman, Hypermeta Inc., U.S.A.
Christophe Rhodes, Department of Computing, Goldsmiths, University of London,
London, UNITED KINGDOM
Robert Strandh, LABRI, Université de Bordeaux, Bordaux, FRANCE
Didier Verna, EPITA / LRDE, FRANCE
Taiichi Yuasa, Kyoto University, JAPAN

ELS 2012 3

About	 ELS2012	
The purpose of the European Lisp Symposium is to provide a forum for the discussion and
dissemination of all aspects of design, implementation and application of any of the Lisp
and Lisp-inspired dialects, including Common Lisp, Scheme, Emacs Lisp, AutoLisp,
ISLISP, Dylan, Clojure, ACL2, ECMAScript, Racket, SKILL, and so on. We encourage
everyone interested in Lisp to participate.
The main theme of the 2012 European Lisp Conference is “Interoperability: Systems,
Libraries, Workflows”. Lisp based and functional-languages based systems have grown a
variety of solutions to become more and more integrated with the wider world of
Information and Communication Technologies in current use. There are several
dimensions to the scope of the solutions proposed, ranging from “embedding” of
interpreters in C-based systems, to the development of abstractions levels that facilitate
the expression of complex context dependent tasks, to the construction of exchange
formats handling libraries, to the construction of theorem-provers for the “Semantic
Web”. The European Lisp Symposium 2012 solicits the submission of papers with this
specific theme in mind, alongside the more traditional tracks which have appeared in the
past editions.

ELS 2012 4

Sponsors	
	
We would like to thank our sponsors for making the event possible.
	
	

	
	
	
	

	
	
	

	
	
	

	
	

ELS 2012 5

Conference	 schedule	
	

Sunday	 April	 29.
11:00	 Sea & Sun & Coffee (meeting place: The Sea organ & Greeting to

the Sun)	
19:30 – 21:30 19:30 – 21:30 Welcome Cocktail at the Maraschino Bar

Monday	 April	 30.	
8:30 – 09:00 Registration	
09:30 – 10:00 Welcome	
10:00 – 11:00 Juan Jose Garcia-Ripoll: Embeddable Common Lisp	
11:00 – 11:30	 Coffee Break
11:30 – 13:00	 Session 1
11:30 – 12:15	 Laurent Senta, Christopher Chedeau and Didier Verna: Generic

Image Processing with Climb
12:15 – 13:00	 Giovanni Anzani: An iterative method to solve overdetermined

systems of nonlinear equations applied to the restitution of
planimetric measurements

13:00 – 15:00	 Lunch Break
15:00 – 17:30	 Session 2
15:00 – 15:45	 Alessio Stalla: Java interop with ABCL, a practical example
15:45 – 16:30	 Nils Bertschinger: Embedded probabilistic programming in

Clojure
16:30 – 17:30	 Pascal Costanza, A little history of metaprogramming and

reflection
17:30 – 18:00	 Lightening Talk (1)

Zoltan Varju, Richard Littauer and Peteris Ernis: Using Clojure in
Linguistic Computing

18:00 – 20:00	 Buffet at the University of Zadar
Tuesday	 May	 1.	

10:00 – 11:00	 Ernst van Waning. Aura (Automated User-centered Reasoning and
Acquisition System).

11:00 – 11:30	 Coffee Break
11:30 – 13:00	 Session 3
11:30 – 12:15	 Marco Benelli: Scheme in Industrial Automation
12:15 – 13:00 Gunnar Völkel, Johann M. Kraus and Hans A. Kestler: Algorithm

Engineering with Clojure
13:00 – 15:00 Lunch Break
15:00 – 16:30 Session 4
15:00 – 15:45 Irène Anne Durand: Object enumeration
15:45 – 16:30 Alessio Stalla: Doplus, the high-level, Lispy, extensible iteration

construct
16:30 – 17:00 Lightening Talk (2)

Mikhail Raskin: QueryFS, a virtual filesystem based on queries,
and related tools

17:00 – 18:00 Announcements & Wrap-up
20:00 – 22:00 Dinner

Invited	 Talks	
	
Embeddable	 Common	 Lisp	
Juan	 Jose	 Garcia-‐Ripoll	 	

	
This	 talk	 presents	 an	 implementation	 of	 the	 Common	 Lisp	 language	 that	 is	 built	
as	 a	 statically	 or	 dynamically	 loadable	 C	 library,	 ready	 to	 be	 used	 in	 third	 party	
applications	 as	 an	 utility	 language	 (for	 instance,	 to	 run	 Maxima	 in	 the	 Sage	
environment),	 but	 also	 fully	 functional	 as	 the	 core	 of	 arbitrarily	 complex	
standalone	 applications.	 This	 paper	 discusses	 the	 history	 of	 this	 implementation,	
starting	 with	 its	 roots	 in	 the	 ECoLisp,	 KCL	 and	 AKCL	 programmes,	 and	 the	
difficulties	 faced	 in	 upgrading	 this	 software	 to	 make	 it	 fully	 standalone,	 self-‐
bootstrapable,	 thread-‐	 and	 async-‐interrupt	 safe	 and	 capable	 of	 interoperating	
with	 modern	 operating	 systems	 (Windows,	 Unix,	 iOS,	 etc).	
	
	
Aura	 (Automated	 User-‐centered	 Reasoning	 and	
Acquisition	 System)	
Ernst	 van	 Waning	
	
This	 talk	 will	 be	 about	 Aura	 (Automated	 User-‐centered	 Reasoning	 and	
Acquisition	 System),	 a	 step	 towards	 an	 application	 containing	 large	 volumes	 of	
scientific	 knowledge	 and	 capable	 of	 applying	 sophisticated	 problem-‐solving	
methods	 to	 answer	 novel	 questions:	 the	 Digital	 Aristotle.	 	 The	 current	 focus	 of	
AURA	 is	 to	 capture	 a	 significant	 fraction	 of	 a	 Biology	 textbook	 and	 embed	 the	
resulting	 knowledge	 base	 into	 an	 Intelligent	 Electronic	 Textbook	 reader	 that	
could	 be	 used	 by	 teachers	 and	 students.	
The	 talk	 will	 further	 focus	 on	 work	 done	 to	 improve	 Aura's	 performance,	 its	
stability	 and	 its	 documentation.	

ELS 2012 7

Session	 I	

ELS 2012

Generic Image Processing With Climb

Laurent Senta
senta@lrde.epita.fr

Christopher Chedeau
christopher.chedeau@lrde.epita.fr

Didier Verna
didier.verna@lrde.epita.fr

Epita Research and Development Laboratory
14-16 rue Voltaire, 94276 Le Kremlin-Bicêtre

Paris, France

ABSTRACT
We present Climb, an experimental generic image process-
ing library written in Common Lisp. Most image process-
ing libraries are developed in static languages such as C or
C++ (often for performance reasons). The motivation be-
hind Climb is to provide an alternative view of the same
domain, from the perspective of dynamic languages. More
precisely, the main goal of Climb is to explore the dynamic
way(s) of addressing the question of genericity, while ap-
plying the research to a concrete domain. Although still a
prototype, Climb already features several levels of genericity
and ships with a set of built-in algorithms as well as means
to combine them.

Categories and Subject Descriptors
I.4.0 [Image Processing And Computer Vision]: Gen-
eral—image processing software; D.2.11 [Software Engi-
neering]: Software Architectures—Data abstraction, Domain-
specific architectures

General Terms
Design, Languages

Keywords
Generic Image Processing, Common Lisp

1. INTRODUCTION
Climb is a generic image processing library written in Com-
mon Lisp. It comes with a set of built-in algorithms such as
erosion, dilation and other mathematical morphology oper-
ators, thresholding and image segmentation.

The idea behind genericity is to be able to write algorithms
only once, independently from the data types to which they
will be applied. In the Image Processing domain, being fully
generic means being independent from the image formats,
pixels types, storage schemes (arrays, matrices, graphs) etc.

Such level of genericity, however, may induce an important
performance cost.

In order to reconcile genericity and performance, the LRDE1

has developed an Image Processing platform called Olena2.
Olena is written in C++ and uses its templating system
abundantly. Olena is a ten years old project, well-proven
both in terms of usability, performance and genericity [2].

In this context, the goal of Climb is to use this legacy for
proposing another vision of the same domain, only based on
a dynamic language. Common Lisp provides the necessary
flexibility and extensibility to let us consider several alter-
nate implementations of the model provided by Olena from
the dynamic perspective.

First, we provide a survey of the algorithms readily available
in Climb. Next, we present the tools available for compos-
ing basic algorithms into more complex Image Processing
chains. Finally we describe the generic building blocks used
to create new algorithms, hereby extending the library.

2. FEATURES
Climb provides a basic image type with the necessary load-
ing and saving operations, based on the lisp-magick library.
This allows for direct manipulation of many images formats,
such as PNG and JPEG. The basic operations provided by
Climb are loading an image, applying algorithms to it and
saving it back. In this section, we provide a survey of the
algorithms already built in the library.

2.1 Histograms
A histogram is a 2D representation of image information.
The horizontal axis represents tonal values, from 0 to 255
in common grayscale images. For every tonal value, the
vertical axis counts the number of such pixels in the image.
Some Image Processing algorithms may be improved when
the information provided by a histogram is known.

Histogram Equalization. An image (e.g. with a low con-
trast) does not necessarily contain the full spectrum of in-
tensity. In that case, its histogram will only occupy a nar-
row band on the horizontal axis. Concretely, this means
that some level of detail may be hidden to the human eye.

1EPITA Research and development laboratory
2http://olena.lrde.epita.fr

ELS 2012 9

Histogram equalization identifies how the pixel values are
spread and transforms the image in order to use the full
range of gray, making details more apparent.

Plateau Equalization. Plateau equalization is used to re-
veal the darkest details of an image, that would not oth-
erwise be visible. It is a histogram equalization algorithm
applied on a distribution of a clipped histogram. The pixel
values greater than a given threshold are set to this thresh-
old while the other ones are left untouched.

2.2 Threshold
Thresholding is a basic binarization algorithm that converts
a grayscale image to a binary one. This class of algorithms
works by comparing each value from the original image to a
threshold. Values beneath the threshold are set to False in
the resulting image, while the others are set to True.

Climb provides 3 threshold algorithms:

Basic. Apply the algorithm using a user-defined threshold
on the whole image.

Otsu. Automatically find the best threshold value using the
image histogram. The algorithm picks the value that mini-
mizes the spreads between the True and False domains as
described by Nobuyuki Otsu [4].

Sauvola. In images with a lot of variation, global thresh-
olding is not accurate anymore, so adaptive thresholding
must be used. The Sauvola thresholding algorithm [5] picks
the best threshold value for each pixel from the given image
using its neighbors.

2.3 Watershed
Watershed is another class of image segmentation algorithms.
Used on a grayscale image seen as a topographic relief, a wa-
tershed extracts the different basins within the image. Wa-
tershed algorithms produce a segmented image where each
component is labeled with a different tag.

Climb provides a implementation of Meyer’s flooding algo-
rithm [3]. Components are initialized at the “lowest” region
of the image (the darkest ones). Then, each component is
extended until it collides with another one, following the
image’s topography.

2.4 Mathematical Morphology
Mathematical Morphology is heavily used in Image Process-
ing. It defines a set of operators that can be cumulated in
order to extract specific details from images.

Mathematical Morphology algorithms are based on the ap-
plication of a structuring element to every points of an im-
age, gathering information using basic operators (e.g. logical
operators and, or, etc.) [6].

Erosion and Dilation. Applied on a binary image, these
algorithms respectively erodes and dilate the True areas in
the picture. Combining these operators leads to new algo-
rithms:

Opening Apply an erosion then a dilation. This removes
the small details from the image and opens the True

shapes.

Closing Apply a dilation then an erosion. This closes the
True shapes.

Mathematical Morphology can also be applied on grayscale
images, leading to news algorithms:

TopHat Sharpen details

Laplacian operator Extract edges

Hit-Or-Miss Detect specific patterns

3. COMPOSITION TOOLS
Composing algorithms like the ones described in the previ-
ous section is interesting for producing more complex image
processing chains. Therefore, in addition to the built-in al-
gorithms that Climb already provides, a composition infras-
tructure is available.

3.1 Chaining Operators
3.1.1 The $ operator

The most essential form of composition is the sequential one:
algorithms are applied to an image, one after the other.

Programming a chain of algorithms by hand requires a lot
of variables for intermediate storage of temporary images.
This renders the code cumbersome to read an maintain.

To facilitate the writing of such a chain, we therefore pro-
vide a chaining operator which automates the plugging of
an algorithm’s output to the input of the next one. Such
an operator would be written as follows in traditional Lisp
syntax:

(image−save
(a lgo2

(a lgo1
(image−load ”image . png ”)
param1)

param2)
”output . png ”)

Unfortunately, this syntax is not optimal. The algorithms
must be read in reverse order, and arguments end up far
away from the function to which they are passed.

Inspired by Clojure’s Trush operator 3 and the JQuery4 (->)
chaining process, Climb provides the $ macro which allows
to chain operations in a much clearer form.

3http://clojure.github.com/clojure/clojure.
core-api.html#clojure.core/->
4http://api.jquery.com/jQuery/

ELS 2012 10

$ ((image−load ”image . png ”)
(a lgo1 param1)
(a lgo2 param2)
(image−save ”output . png ”))

3.1.2 Flow Control
In order to ease the writing of a processing chain, the $

macro is equipped with several other flow control operators.

• The // operator splits the chain into several indepen-
dent subchains that may be executed in parallel.

• The quote modifier (’) allows to execute a function
outside the actual processing chain. This is useful for
doing side effects (see the example below).

• The $1, $2, etc. variables store the intermediate results
from the previous executions, allowing to use them ex-
plicitly as arguments in the subsequent calls in the
chain.

• The # modifier may be used to disrupt the implicit
chaining and let the programmer use the $1, etc. vari-
ables explicitly.

These operators allow for powerful chaining schemes, as il-
lustrated below:

($ (load ”lenagray . png ”)

(//
(’ (timer−s t a r t)

(otsu)
’ (timer−pr in t ”Otsu ”)
(save ”otsu . png ”)) ; $1

(’ (timer−s t a r t)
(sauvola (box2d 1))

’ (timer−pr in t ”Sauvola 1”)
(save ”sauvola1 . png ”)) ; $2

(’ (timer−s t a r t)
(sauvola (box2d 5))

’ (timer−pr in t ”Sauvola 5”)
(save ”sauvola5 . png ”))) ; $3

(//
(#(d i f f $1 $2)

(save ” d i f f −otsu−sauvola1 . png ”))
(#(d i f f $1 $3)

(save ” d i f f −otsu−sauvola5 . png ”))
(#(d i f f $2 $3)

(save ” d i f f −sauvola1−sauvola5 . png ”))))

3.2 Morphers
As we saw previously, many Image Processing algorithms
result in images of a different type than the original image
(for instance the threshold of a grayscale image is a Boolean
one). What’s more, several algorithms can only be applied
on images of a specific type (for instance, watershed may
only be applied to grayscale images).

Programming a chain of algorithms by hand requires a lot of
explicit conversion from one type to another. This renders
the code cumbersome to read an maintain.

To facilitate the writing of such a chain, we therefore provide
an extension to the morpher concept introduced in Olena
with SCOOP2 [1] generalized to any object with a defined
communication protocol. Morphers are wrappers created
around an object to modify how it is viewed from the outside
world.

Two main categories of morphers are implemented: value
morphers and content morphers.

Value morpher. A value morpher operates a dynamic trans-
lation from one value type to another. For instance, an RGB
image can be used as a grayscale one when seen through a
morpher that returns the pixels intensity instead of their
original color. It is therefore possible to apply a watershed
algorithm on a colored image in a transparent fashion, with-
out actually transforming the original image into a grayscale
one.

Content morpher. A content morpher operates a dynamic
translation from one image structure to another. For in-
stance, a small image can be used as a bigger one when seen
through a morpher that returns a default value (e.g. black),
when accessing coordinates outside the original image do-
main. It is therefore possible to apply an algorithm built
for images with a specific size (e.g. power of two), without
having to extend the original image.

Possible uses for content morphers include restriction (parts
of the structures being ignored), addition (multiple struc-
tures being combined) and reordering (structures order be-
ing modified).

4. EXTENSIBILITY
The pixels of an image are usually represented aligned on
a regular 2D grid. In this case, the term “pixel” can be
interpreted in two ways, the position and the value, which
we need to clearly separate. Besides, digital images are not
necessarily represented on a 2D grid. Values can be placed
on hexagonal grids, 3D grids, graphs etc. In order to be
sufficiently generic, we hereby define an image as a function
from a position (a site) to a value: img(site) = value.

A truly generic algorithm should not depend on the under-
lying structure of the image. Instead it should rely on higher
level concepts such as neighborhoods, iterators, etc. More
precisely, we have identified 3 different levels of genericity,
as explained below.

4.1 Genericity on values
Genericity on values is based on the CLOS dispatch. Us-
ing multimethods, generic operators like comparison and
addition are built for each value type, such as RGB and
Grayscale.

4.2 Genericity on structures

ELS 2012 11

The notion of “site” provides an abstract description for any
kind of position within an image. For instance, a site might
be an n-uplet for an N-d image, a node within a graph, etc.

Climb also provides a way to represent the regions of an
image through the site-set object. This object is used in or-
der to browse a set of coordinates and becomes particularly
handy when dealing with neighborhoods. For instance, the
set of nearest neighbors, for a given site, would be a list of
coordinates around a point for an N-d image, or the con-
nected nodes in a graph.

4.3 Genericity on implementations
Both of the kinds of genericity described previously allow
algorithm implementers to produce a single program that
works with any data type. Some algorithms, however, may
be implemented in different ways when additional informa-
tion on the underlying image structure is available. For in-
stance, iterators may be implemented more efficiently when
we know image contents are stored in an array. We can also
distinguish the cases where a 2D image is stored as a matrix
or a 1D array of pixels etc.

Climb provides a property description and filtering system
that gives a finer control over the algorithm selection. This is
done by assigning properties such as :dimension = :1D, :2D,
etc. to images. When defining functions with the defalgo

macro, these properties are handled by the dispatch system.
The appropriate version of a function is selected at runtime,
depending on the properties implemented by the processed
image.

5. CONCLUSION
Climb is a generic Image Processing library written in Com-
mon Lisp. It is currently architected as two layers targeting
two different kinds of users.

• For an image processing practitioner, Climb provides
a set of built-in algorithms, composition tools such as
the chaining operator and morphers to simplify the
matching of processed data and algorithms IO.

• For an algorithm implementer, Climb provides a very
high-level domain model articulated around three lev-
els of abstraction. Genericity on values (RGB, Grayscale
etc.), genericity on structures (sites, site sets) and gener-
icity on implementations thanks to properties.

The level of abstraction provided by the library makes it
possible to implement algorithms without any prior knowl-
edge on the images to which they will be applied. Conversely
supporting a new image types should not have any impact
on the already implemented algorithms.

From our experience, it appears that Common Lisp is very
well suited to highly abstract designs. The level of generic-
ity attained in Climb is made considerably easier by Lisp’s
reflexivity and CLOS’ extensibility. Thanks to the macro
system, this level of abstraction can still be accessed in a rel-
atively simple way by providing domain-specific extensions
(e.g. the chaining operators).

Although the current implementation is considered to be
reasonably stable, Climb is still a very young project and
should be regarded as a prototype. In particular, nothing
has been done in terms of performance yet, as our main focus
was to design a very generic and expressive API. Future work
will focus on:

Genericity By providing new data types like graphs, and
enhancing the current property system.

Usability By extending the $ macro with support for au-
tomatic insertion of required morphers and offering a
GUI for visual programming of complex Image Pro-
cessing chains.

Performance By improving the state of the current im-
plementation, exploring property-based algorithm op-
timization and using the compile-time facilities offered
by the language.

Climb is primarily meant to be an experimental platform
for exploring various generic paradigms from the dynamic
languages perspective. In the future however, we also hope
to reach a level of usability that will trigger interest amongst
Image Processing practitioners.

6. REFERENCES
[1] Th. Géraud and R. Levillain. Semantics-driven

genericity: A sequel to the static C++ object-oriented
programming paradigm (SCOOP 2). In Proceedings of
the 6th International Workshop on Multiparadigm
Programming with Object-Oriented Languages
(MPOOL), Paphos, Cyprus, July 2008.

[2] R. Levillain, Th. Géraud, and L. Najman. Why and
how to design a generic and efficient image processing
framework: The case of the Milena library. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 1941–1944, Hong Kong,
Sept. 2010.

[3] F. Meyer. Un algorithme optimal pour la ligne de
partage des eaux, pages 847–857. AFCET, 1991.

[4] N. Otsu. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man and
Cybernetics, 9(1):62–66, Jan. 1979.

[5] J. Sauvola and M. Pietikäinen. Adaptive document
image binarization. Pattern Recognition, 33(2):225–236,
2000.

[6] P. Soille. Morphological Image Analysis: Principles and
Applications. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2 edition, 2003.

ELS 2012 12

An iterative method to solve overdetermined systems of
nonlinear equations applied to the restitution of planimetric

measurements.

Giovanni Anzani
Università degli Studi di Firenze - Dipartimento di Architettura: Disegno, Storia, Progetto

Via S. Niccolo', 89/a-95 - 50125 Firenze (FI)
Mob.: +39/339/7056663

giovanni.anzani@unifi.it

ABSTRACT

In the first part of this article, we describe the conditions for the

analytical solution of overdetermined systems of nonlinear

equations in the case of circumferences. The application of the

theory in the development of AutoLISP procedures, described in

the second part of this article, allows to evaluate and solve some

problems in the field of computerized restitution of planimetric

measurements. This application considerably CAD graphics

extensively, allowing you to appreciate the interoperability

between AutoCAD and AutoLISP.

Categories and Subject Descriptors
Programming Languages: AutoLISP

General Terms
Algorithms, Measurement, Experimentation.

INTRODUCTION

This contribution concerns the realization of an algorithm in

AutoLISP, adapted to determine analytically the position of a

point, knowing its distances from a series of points with known

coordinates, and then using AutoCAD to draw the data of the

problem and the identified point. The command for AutoCAD that

we have designed finds its concrete use as part of the architectural

surveys. The following contribution will deal at first with the

analytical approach of the problem1, followed by a description of

procedures and commands implemented by AutoLISP.

ANALYTICAL STATEMENT OF THE

PROBLEM

Given the equations of n circumferences (1.1), that one can derive

given a set of known points (such as centers of these

circumferences) and their distances from an unknown point (such

as radii of these circles), we want to determine with the best

approximation the unknown point (such as their point of

intersection).

1 Many thanks to Prof. Giuseppe Conti for his valuable advices

during the definition and the revision of this paper.

2 2

1 1 1 1

2 2

2 2 2 2

2 2

(,)

(,)
(1.1)

(,)n n n n

f x y x y a x b y c

f x y x y a x b y c

f x y x y a x b y c

 = + + ⋅ + ⋅ +

= + + ⋅ + ⋅ +

 = + + ⋅ + ⋅ +

L

We write the Jacobian matrix (1.2), whose rows are the partial

derivatives of the equations of the circumferences:

1 1

2 2

(,)

' '

1 1 1 1

' '

2 2 2 2

' '

1

2 2

2 2
(1.2) :

2 2

2 2

2 2
:

2 2

f x y

n n

x y

x y

n x n y n

x a y b

x a y b
J where

x a y b

f x a f y b

f x a f y b
and

f x a f y b

⋅ + ⋅ +

⋅ + ⋅ + =

⋅ + ⋅ +

 = ⋅ + = ⋅ +

 = ⋅ + = ⋅ +

 = ⋅ + = ⋅ +

K K

L L

Given an initial point P(0) as a solution from which you wish to

start the search of the solution, and P(1) as a point that you want to

determine in order to optimize the solution of the problem as to the

point P(0), you can consider the vector P(1) - P(0) written in (1.3).

1 0

(1) (0)

1 0

0 1

(0) (1)

0 1

(1.3) :

:

x x
P P where

y y

x x
P and P

y y

−
− =

−

= =

Substitute the coordinates of the point P(0) inside the equations

(1.1) of the circumferences and in the jacobian matrix (1.2), thus

obtaining respectively:

ELS 2012 13

(0)

2 2

1 (0) 0 0 1 0 1 0 1

2 2

2 (0) 0 0 2 0 2 0 2

2 2

(0) 0 0 0 0

0 1 0 1

0 2 0 2

()

0 0

()

()
(1.4)

()

2 2

2 2
(1.5)

2 2

n n n n

f P

n n

f P x y a x b y c

f P x y a x b y c

f P x y a x b y c

x a y b

x a y b
J

x a y b

 = + + ⋅ + ⋅ +

= + + ⋅ + ⋅ +

 = + + ⋅ + ⋅ +

⋅ + ⋅ +

⋅ + ⋅ + =

⋅ + ⋅ +

L

K K

Multiply the rows of matrix (1.5) by the column of the vector

(1.3), obtaining the following vector (1.6):

0 1 1 0 0 1 1 0

0 2 1 0 0 2 1 0

0 1 0 0 1 0

(2)() (2)()

(2)() (2)()
(1.6)

(2)() (2)()n n

x a x x y b y y

x a x x y b y y

x a x x y b y y

⋅ + − + ⋅ + −

⋅ + − + ⋅ + −

⋅ + − + ⋅ + −

M

Add the rows of (1.4) to the rows of (1.6), then set them equal to

0, obtaining the following system of equations (1.7).

()

()

()

2 2

0 0 1 0 1 0 1

0 1 1 0

0 1 1 0

2 2

0 0 2 0 2 0 2

0 2 1 0

0 2 1 0

2 2

0 0 0 0

0 1 0

0 1 0

(2)()

(2)() 0

(2)()
(1.7)

(2)() 0

(2)()

(2)() 0

n n n

n

n

x y a x b y c

x a x x

y b y y

x y a x b y c

x a x x

y b y y

x y a x b y c

x a x x

y b y y

 + + ⋅ + ⋅ + +

+ ⋅ + − +

+ ⋅ + − =

+ + ⋅ + ⋅ + +
 + ⋅ + − +

+ ⋅ + − =

+ + ⋅ + ⋅ + +

+ ⋅ + − +

+ ⋅ + − =

M

Carrying out the calculations, from the equations in (1.7) we get

the equivalent (1.8) following system:

2 2

0 1 1 0 1 1 0 0 1

2 2

0 2 1 0 2 1 0 0 2

2 2

0 1 0 1 0 0

(2) (2)

(2) (2)
(1.8)

(2) (2)
n n n

x a x y b y x y c

x a x y b y x y c

x a x y b y x y c

 ⋅ + ⋅ + ⋅ + ⋅ = + −

⋅ + ⋅ + ⋅ + ⋅ = + −

 ⋅ + ⋅ + ⋅ + ⋅ = + −

M

Now let’s write the system of equations (1.8) in matrix form

highlighting a matrix Anx2 of the coefficients, a vector X2x1 of

unknowns and a vector Bnx1 of the known terms. We will indicate

the matrix equation that we have obtained (1.9a) and (1.9b) in the

following way :

2 2 1 1

2 2
0 1 0 1 0 0 1

2 2
0 2 0 2 1 0 0 2

1

2 2
0 0 0 0

(1.9)

2 2

2 2
(1.9)

2 2

n n

n n n

a A X B

x a y b x y c

x a y b x x y c
b

y

x a y b x y c

× × ×
⋅ =

⋅ + ⋅ + + −

⋅ + ⋅ + + − ⋅ =

⋅ + ⋅ + + −

M M M

Determine (1.10) the transposed matrix AT
nx2 of the matrix Anx2 of

the coefficients expressed in (1.9):

()
0 1 0 2 0

2

0 1 0 2 0

2 2 2
1.10

2 2 2

nT

n

n

x a x a x a
A

y b y b y b
×

⋅ + ⋅ + ⋅ +
=

⋅ + ⋅ + ⋅ +

L

L

Multiply both members of the matrix equation (1.9) by the

transposed matrix AT
nx2 present in (1.10), having as a result a new

matrix equation (1.11) that we indicate in the following way:

() 2 2 2 1 2 1

2 2 2 2

2 1 2 1

1.11

:

T

n n

T

n n

H X K

H A A
where

K A B

× × ×

× × ×

× × ×

⋅ =

 = ⋅

= ⋅

If we properly carry out the calculations expressed in matrix form

in (1.11), we will obtain the matrix H2x2 of the coefficients and the

vector K2x1 of the known terms, the solution of such a system will

provide us with the coordinates of the Point P(1) with a best

approximation as regards the point P(0) from which we started.

Let’s consider (1.12) and (1.13) for convenience:

()
11 12

2 2 21 12

21 22

11

2 1

12

1.12 :

(1.13)

h h
H where h h

h h

k
K

k

×

×

= =

=

With simple steps, although laborious, we obtain the elements of

the two matrices whose final values are shown below (1.14) and

(1.15):

ELS 2012 14

2 2

11 0 0

1 1

12 0 0 0

1

0

1 1

2 2

22 0 0

1 1

4 4

4 2

(1.14)

2

4 4

n n

i i

i i

n

i

i

n n

i i i

i i

n n

i i

i i

h n x x a a

h n x y y a

x b a b

h n y y b b

= =

=

= =

= =

= ⋅ ⋅ + ⋅ ⋅ +

 = ⋅ ⋅ ⋅ + ⋅ ⋅ +

 + ⋅ ⋅ + ⋅

= ⋅ ⋅ + ⋅ ⋅ +

∑ ∑

∑

∑ ∑

∑ ∑

()

()

2 2

11 0 0 0

1

0

1 1

2 2

12 0 0 0

1

0

1 1

2

2

(1.15)

2

2

n

i

i

n n

i i i

i i

n

i

i

n n

i i i

i i

k n x a x y

a c x c

k n y b x y

b c y c

=

= =

=

= =

= ⋅ ⋅ + ⋅ + +

 − ⋅ − ⋅ ⋅

 = ⋅ ⋅ + ⋅ + +

 − ⋅ − ⋅ ⋅

∑

∑ ∑

∑

∑ ∑

By means of an iterative method, we continue searching for a point

P(n) better than the previous point P(n-1) until the distance between

P(n) and P(n-1) converges to less than some predetermined value that

is given as a function of the radii of the starting circumferences.

This value, for the application at issue, could for example be set as

one-millionth of the smaller radius between the radii of the

circumferences provided at the beginning.

As a further test, for each point P(n) obtained during the cycle, we

have to determine, through the standard square deviation, the

distance of the point itself from the provided circumferences, in

order to verify the continuous optimization of the searched point2.

This check is required because, contrary to what one might expect,

the algorithm we have realized does not always converge towards

the final point. In fact, starting from the initial point, at first, it

sometimes seems to move away from the solution of the absolute

minimum, by means of the iteration.

Concerning the choice of the initial point P(0), a clarification is

required: in certain cases the iterative algorithm used to determine

the point P(n) may not converge towards the point of absolute

minimum, but towards a point of relative minimum. For this

reason we will have to repeat this procedure identifying in a

suitable way a set of Points P(0) from which we could derive a

2 For similar problems concerning the method of approximation by

the standard deviation, see R. Corazzi, G. Conti, Il segreto della

Cupola del Brunelleschi a Firenze, Angelo Pontecorboli Editore,

Firenze 2011; where a similar method has been developed by the

author and Prof. Giuseppe Conti, in order to obtain the best

analytical description of various profiles of the dome.

corresponding series of points P(n). Once you have verified for

each of them, through the standard square deviation, the distance

of the point from the provided circumferences, you will choose the

one that seems to have the minimum value.

PROCEDURES AND COMMANDS

REALIZED

The algorithms conversion in AutoLISP, referring to the analytical

problem described above, required the definition of 29 functions

and three commands. The algorithms that we have realized have

been grouped, for convenience, into 5 main areas, whose

description and list of the algorithms contained will be given in the

following treatment.

Setting procedures of the AutoCAD variables. In managing the

interoperability between AutoCAD and AutoLISP, that is to say

when you need to transform calculations in drawings, it is

necessary to manage the configuration of the design environment,

making the setting of some environment variables: of the “clayer”

or better the current “layer” where it is possible to insert the

graphical entities that will be drawn, of the “object snap” active

during the drawing, of the display mode “pdmode” of the selected

points as input by the operator and the display mode “cmdecho” of

the requests of input, displayed on the command line, by the

AutoCAD commands executed automatically by the procedures in

AutoLISP.

(LSET "layer") → "layer"

(LSETP) → "previous layer"

(VSET-OS-0) → 0

(VSET-OS-P) → 47

(VSET-CE-0) → 0

(VSET-CE-P) → 1

(VSET-PM-34) → 34

(VSET-PM-P) → 0

(VSET-3i "8") → (0 0 "8")

(VSET-3f) → ("8" 47 1)

Design procedures and data input. For better interoperability

between AutoCAD and AutoLISP, some procedures have been

defined specifically optimized to draw the following graphic

entities: “pline”, “spline”, “circle”, “point”. The main advantage

of the choice consists in the possibility of devising procedures that,

besides the specific task of the creation of the graphical entity,

could control the incoming and outgoing setting of the

environment variables mentioned in the previous paragraph.

Further advantages consist in the possibility of creating graphical

functions able to receive as input the input lists of the points to be

processed without solution of continuity and in return as output of

the name of the drawn graphical entity.

(DPLINE '((11 12) (21 22) (31 32)) "layer" T)

 → <Entity name: 7ffff606c10>

(DSPLINE '((11 12) (21 22) (31 32)) "layer" T)

 → < Entity name: 7ffff606c20>

ELS 2012 15

(DCIRCLE '(11 12) 4.0 "layer")

 → < Entity name: 7ffff606c40>

(DPOINT '(11 12) "layer")

 → < Entity name: 7ffff606c50>

In this group a procedure for the collection of input data has been

inserted, such as the positions of the known points and the

respective distances from the point to be determined. This

procedure has got as a feedback graphic of the data gradually

inserted the drawing of a circumference having as its center the

known point and as a radius the corresponding distances given. In

this way the operator can provide the data while he is visualizing

at the same time the corresponding design and any numerical

values given.

(get_nP_nr) → Number of known points: 3

→ Specify the 1st point: (15.9089 5.28831)

→ Specify the 1st measure: 11.9402

→ Specify the 2d point: (34.4962 4.87184)

→ Specify the 2d measure: 14.1044

→ Specify the 3d point: (11.7316 29.05)

→ Specify the 3d measure: 19.7646

→ (((15.9089 5.28831) (34.4962 4.87184) (11.7316 29.05))

 (11.9402 14.1044 19.7646))

Procedures on matrices. Using AutoLISP you can execute

operations on matrices defining them as lists of lists; based on this

assumption some procedures have been realized to perform: the

standard/ horizontal/vertical transposition of a matrix, the

extraction/deletion/addition of a row vector or column row from a

matrix, the division by a given value of some row vector elements

the determination of the solution of a matrix equation according to

the method of Gaussian elimination.

(MA-TRA-S '((11 12 13) (21 22 23) (31 32 33)))

 → ((11 21 31) (12 22 32) (13 23 33))

(MA-TRA-O '((11 12 13) (21 22 23) (31 32 33)))

 → ((31 32 33) (21 22 23) (11 12 13))

(MA-TRA-V '((11 12 13) (21 22 23) (31 32 33)))

 → ((13 12 11) (23 22 21) (33 32 31))

(MA-GET-R '((11 12 13) (21 22 23) (31 32 33)) 1)

 → ((21 22 23))

(MA-GET-C '((11 12 13) (21 22 23) (31 32 33)) 1)

 → ((12) (22) (32))

(MA-DEL-R '((11 12 13) (21 22 23) (31 32 33)) 1)

 → ((11 12 13) (31 32 33))

(MA-DEL-C '((11 12 13) (21 22 23) (31 32 33)) 1)

 → ((11 13) (21 23) (31 33))

(MA-APP-C '((11 12) (21 22) (31 32)) '((13) (23) (33)))

 → ((11 12 13) (21 22 23) (31 32 33))

(MA-DIV-R 2.0 '(11 12 13))

 → (5.5 6.0 6.5)

(MA-GAUSS '((1 3)(5 4)) '((1)(2)))

 → ((0.181818) (0.272727))

Specific procedures of calculation. In this group we find four

calculation functions specifically designed for the problem we are

discussing about. They are able to determine the coefficients of the

equations of a circumference as a function of the coordinates of its

centre and the extent of its radius, to calculate the standard

deviation of the distance of a generic point of a series of

circumferences defined respectively by their centres and by their

radii, to calculate the summations shown in (1.14) and (1.15), to

determine the coefficients (1.12) and (1.13) of the matrices of the

matrix equation (1.11) and calculate their solution.

(coeff_cer_Cr '(11.0 12.0) 4.0)

 → (-22.0 -24.0 249.0)

(calc_sqm_dis '((11 12) (21 22) (31 32)) '(1 2 3) '(5 4))

 → 1808.41

(make_summ '((11 12) (21 22) (31 32)) '(1 2 3))

 → (-126 6092 -132 6608 3161 6344 -167002 -173324 3)

(solve '(5 4) '(-126 6092 -132 6608 3161 6344 -167002 -173324

3))

 → (132.033 -89.2333)

Commands. Using the procedures described above, it was possible

to implement a command that, given the incoming data of the

problem, is able to iteratively determine the solution, the position

of the searched point and to transform in a graphical form the

result thus obtained. This command can draw circumferences of

input and some lines connecting the centres of these

circumferences with the point determined as a solution.

In order to verify the reliability of the iteration algorithm, two

more test commands were implemented that graphically display

the progress of the calculation by making full use of the

interoperability between AutoLISP and AutoCAD.

ELS 2012 16

Figure 1

The first test command displays through

a spline (blue in the figure) that the

iterative calculation from a generic

starting point P0 gets, passing by

intermediate points P1, P2, P3, P4, P5,

P6, P7, P16 to the end point determined

as a solution; in the figure, we have

considered as initial data of 3

circumferences, respectively of the centre

C1, C2, C3 and radius r2 r1 r3. In the

example it is possible to observe, that the

path from the point P0 to the point P16 is

not the shortest (the segment P16 P0) and

that each point determined during the

iteration is closer to the end point P16

than the previous one. In the enlargement

of the detail (green in figure), you can

see how the process, already at the

seventh step of the iteration, is

approaching the end point P16 so as not

to allow a distinction between

intermediate points from the P8 and P11.

ELS 2012 17

Figures 2 and 3

In the two figures that follow, in which

to the second test command is applied,

we considered as starting data the same 3

circumferences of Figure 1. Through a

series of concentric splines, numbered

from 1 to 16 (blue and magenta colored

alternately in the two figures), we can

visualize the convergence towards the

end point P16. The determined solutions

have, as starting points, a set of points

placed on the circumference 0 (black in

the figure) having as its centre the end

point P16 and a sufficiently large radius

chosen at will. The usefulness of this

procedure consists in checking the speed

by which, upon the variation of the

selected starting point, the iteration can

determine the final solution; the

graphical output of such a command also

allows to check if solutions of relative

minimum on which the algorithm

converges do exist.

Figure 3

In the overall view (above) we can only

distinguish the first 3 iterations; in a first

enlargement (below) it is possible to

distinguish the first 5 iterations.

ELS 2012 18

Figure 4

In the second enlargement (top) it is

possible to distinguish the iterations 3, 4

and 5 and the area of intersection

between the 3 circumferences assigned in

which the end point P16 falls, and finally

in a very big enlargement (below) it is

possible to distinguish the iteration 7 and

the place where the iteration from 8 to

15, now virtually coincident with the

position of the end point P16, are settled.

ELS 2012 19

REFERENCES

[1] Agostini A. 1942. Topografia e disegno topografico.Vol II

and vol III. Editore Ulrico Hoepli, Milano

[2] Agosto M. 1993. AutoLISP. Corso base per utenti non

programmatori. Tecniche Nuove, Milano.

[3] Bousfield T. 1999. AutoCAD AutoLISP.Guida pratica.

Tecniche Nuove, Milano. (original edition: Bousfield T.

1998. A practical Guide to AutoCAD Autolisp. Addison

Wesley Longman Limited, England.)

[4] Cunietti M. 1959. Corso teorico pratico sulle misure.

Edizioni libreria cortina, Milano

[5] Docci M. and Maestri D. 1984. Il rilevamento

architettonico. Storia metodi e disegno. Editori Laterza,

Bari.

[6] Gini C. and Pompilj G. 1976. Metodologia statistica:

integrazione e comparazione dei dati. in: L. Berzolari (a

cura di), Enciclopedia delle matematiche elementari e

complementi Vol. III Parte 3
a , Hoepli, Milano.

[7] Krawczyk R. J. 2009. The Codewriting Workbook. Creating

computational Architecture in AutoLISP. Princeton

architectural press. New York

[8] Togores Fernandez R. and Otero Gonzales C. 2003.

Programacion en AutoCAD con Visual LISP. Mc Graw Hill,

Madrid.

[9] Valenti G. M. 2001. Un ambiente virtuale per la

progettazione, la simulazione e il collaudo di insiemi di

misure di rilievo strutturati in forma reticolare. in: Migliari

R. (a cura di). Frontiere del rilievo. Dalla matita alle

scansioni 3D. Gangemi Editore, Roma.

[10] Ventsel E. S. 1983, Teoria delle probabilità, Edizioni Mir,

Mosca

ELS 2012 20

Session	 II	

ELS 2012

Java interop with ABCL,
a practical example

1st Author
1st author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

1st author's E-mail address

Alessio Stalla
ManyDesigns s.r.l.

alessiostalla@gmail.com

ABSTRACT
In this paper, we give an overview of the Java interoperability
features in the Armed Bear Common Lisp implementation, and
we present an example of the application of some of those
features to a real-world software project.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Classes and objects, Inheritance, Frameworks.

General Terms
Languages, Experimentation.

Keywords
JVM, ABCL, Lisp, Java, interoperability.

1. INTRODUCTION
The Java Virtual Machine (JVM) [1] is a software platform that
is widely used on servers, mobile devices, and, to a minor extent,
desktops. Originally designed to host the now popular Java
language [2], a mostly-static single-inheritance OO language in
the C-like family, thanks to its dynamic features (which Java
only partially benefits from), highly-optimized Just-In-Time
compiler and garbage collectors, huge standard library and vast
assortment of third-party libraries, frameworks and components,
both commercial and open-source, the JVM nowadays hosts
many static and dynamic languages, such as Scala[3], Groovy[4],
JRuby[5], including several in the Lisp family: at least two
Common Lisp implementations (ABCL[6] and CLForJava[7]),
several Scheme implementations including the popular Kawa [8],
and Clojure [9], a new Lisp dialect which has grown to
respectable popularity.

We will focus in particular on the Armed Bear Common Lisp
implementation (ABCL, [6]). We will give an overview of the
facilities provided by ABCL to integrate Lisp and Java in a single
software project. We will then show a proof-of-concept
integration with a real-world application. We will also draw
comparisons with Groovy, a popular scripting language for the
Java platform.

2. ABCL
Armed Bear Common Lisp is an implementation of the Common
Lisp standard targeting the Java Virtual Machine. ABCL is
written in a combination of Java and Lisp and features both an
interpreter and a compiler to JVM bytecode, limited debugging

capabilities, SLIME integration, and facilities for Java interop
which will be detailed in the following sections.

ABCL was originally developed by Peter Graves starting from
2002, as part of the J editor [10]. In 2008, Erik Huelsmann
became the new maintainer of the project, which was
subsequently moved from SourceForge to common-lisp.net and
separated from the J editor. Over the years Huelsmann, with the
help of other people, brought ABCL to be a stable, mature
Common Lisp implementation with very few deviations from the
standard, with recent release 1.0.1 failing only ~20 tests out of
~21700 in the ANSI compliance test suite by P. F. Dietz [11].
ABCL 1.0.0 was announced at the European Common Lisp
Meeting 2011 in Amsterdam.

3. JAVA INTEROP OVERVIEW

3.1 Calling Java from Lisp
The JVM provides facilities for introspecting classes and objects,
dynamically accessing fields and calling methods in arbitrary
objects. Collectively these facilities are known as the Reflection
API [12].

ABCL's Java FFI (Foreign Function Interface) is built upon the
reflection API. Conceptually this makes it independent from any
compiler support, although some optimizations are only possible
by specially handling certain forms in the compiler (ABCL
implements only some of the possible optimizations, which are
out of the scope of this paper). Additionally, such reliance on the
reflection API makes the Java FFI quite different from other Lisp
FFIs (such as the popular CFFI [13], which allows to interface
Lisp with C/C++ on a variety of platforms): whereas generally
FFIs require the user to declare in advance the foreign data types
and function signatures accessed by Lisp code, ABCL offers the
option to dynamically select methods and fields giving the
minimum amount of information, at the cost of a higher runtime
cost per foreign call or field access. When performance is
important, it is still possible to provide all the necessary type
information to eliminate dynamic dispatch, although, as
previously observed, there is still room for improvement in the
compiler to further optimize certain calls.

Without going into pointless details, we illustrate with an
example a typical use of the Java FFI (taken from the Dynaspring
library):

(defun defaultresourceloader ()
 (if *beandefinitionreader*
 (jcall "getResourceLoader"
 beandefinitionreader)
 (jnew "org...DefaultResourceLoader")))

ELS 2012 22

ABCL's companion contrib project provides a library called JSS,
originally developed by Alan Ruttenberg, which further
simplifies the syntax for calling into Java. JSS is out of the scope
of this paper, but we encourage every interested party to delve
into the topic.

3.2 Calling Lisp from Java
ABCL is itself partly implemented in Java, to the extent that
most fundamental Lisp types are defined by a corresponding Java
class. It is thus possible to directly manipulate Lisp objects in
Java, mimicking the style one would use in Lisp. Naturally, Java
not being Lisp, such style is definitely more verbose than its Lisp
counterpart. Additionally, direct manipulation of certain complex
objects – for example structures and standard-objects – requires
knowledge of their internal representation, and is therefore hard,
low level, and too much dependent on implementation details.

Fortunately, ABCL provides a high-level interface to invoke Lisp
from Java and perform common tasks. This interface follows a
specification known as the Java Scripting Interface or JSR-223
[14] which makes ABCL a first-class citizen among scripting
languages on the Java platform. The JSR-223 API is such that,
for simple enough tasks (loading or compiling a file, calling a
function, accessing a variable, etc.), no compile-time dependency
on ABCL is required. This API also automatically performs
useful conversions (from Java to Lisp and back) whenever
appropriate.

Anyway, for certain Lisp constructs and idioms that do not exist
in Java (such as binding special variables or condition handlers),
some manual work is left to the programmer. For example, the
following Java code executes a function with *printcircle*
bound to T:

LispThread t = LispThread.currentThread();
SpecialBindingsMark m = t.markSpecialBindings();
t.bindSpecial(Symbol.PRINT_CIRCLE, Symbol.T);
try {
 return function.execute(args);
} finally {
 t.resetSpecialBindings(mark);
}

In our experience, in real-world projects it is preferable to use a
mixed style of high-level JSR-223 calls and lower-level direct
access to Lisp objects, depending on the task.

3.3 Beyond FFI: extending Java in Lisp
A feature which is, to our knowledge, unique of the ABCL FFI
(as compared to other FFIs available on Common Lisp
implementations), is the ability to integrate with the host
platform to the point of extending Java classes with Lisp code.
This feature actually comes in two flavours, detailed below.

3.3.1 Implementing interfaces
With ABCL, it is possible to implement one or more Java
interfaces using Lisp functions. In the JVM, an interface is a
special kind of abstract class that defines a contract in the form
of a set of methods that subclasses must implement. Contrarily to
regular classes, multiple inheritance of interfaces is possible.
Interfaces are commonly used to abstract all kinds of behavior,
and especially when dealing with event listeners, visitor objects,
callbacks and the like. The advent of some advanced techniques
(e.g., certain popular forms of Aspect-Oriented Programming as
provided by the Spring Framework [15]), as well as the
integration of the so-called Project Lambda [16] in the

forthcoming Java 8 specification (aiming to provide syntax sugar
for anonymous function-like constructs), have made and will
continue to make interfaces a key feature of the Java language
and a principal point of integration with many libraries and
frameworks. ABCL uses a native feature of the Java Reflection
API, called dynamic proxies [17], to allow the implementation of
interfaces in several ways, all revolving around the use of Lisp
functions as the implementations of Java methods.

3.3.2 Extending classes
Although programming to interfaces is considered a best practice
in Java, it's not always possible to achieve integration using
interfaces alone. Some libraries or frameworks mandate the user
to extend certain third-party classes, for example to inherit
important built-in functionality, or to customize and extend those
libraries themselves, or simply due to poor design. Also, with the
introduction of annotations in Java 5 [18], a system for attaching
metadata to various program elements, it has become common
practice to use classes as holders of various types of
configuration information, for example in web frameworks such
as Stripes[19] or other types of libraries (ORMs like
Hibernate[20], application frameworks like Spring[21], etc.).
ABCL tackles the aforementioned problem by giving the user the
ability to extend Java classes in Lisp, principally by providing
the implementation of methods with Lisp functions, but also, if
required, by adding fields and placing annotation metadata. This
feature, known as runtime-class, has been only recently re-added
to ABCL (it had been lost for quite a long time), and at the time
of writing it is still new and experimental.

The runtime-class feature will be demonstrated, along with other
aspects of the FFI, in the example which is the subject of the
next section.

4. A PRACTICAL EXAMPLE
We will examine a very simple example of the use of ABCL as
the extension language of an existing real-world Java web
application. The application was chosen taking into consideration
the author's knowledge of it and the fact that it already has
provisions for being customized via scripts written in Groovy, a
popular dynamic language for the JVM which has easy Java
integration, down to source compatibility, as a core feature. We
believe that a comparison with Groovy will show Lisp's strong
points as an extension language.

4.1 ManyDesigns Portofino
The target of our example is ManyDesigns Portofino 4, the
flagship product of ManyDesigns s.r.l. It is a model-driven
application framework tailored at building database-driven web
applications running on the JVM, with extensibility as one of the
core goals. At the time of writing, ManyDesigns Portofino 4 is
being developed internally and sold commercially to a few
selected clients, but it will eventually be released as open source.

For the purpose of this paper, it suffices to say that Portofino 4
applications are organized as a tree of pages of various types.
This tree gives form to the URLs exposed by the application and
to its navigation bar, and corresponds to a tree of directories
physically stored on the file system. Each directory contains a
couple of configuration files and, most importantly, a .groovy file
defining a class. That class determines the type of the page
(SCRUD over a database table, Chart page, Text page, etc.) and
is also the main point of extension to customize the page. For
example, a standard crud page will have at an action.groovy file
like:

ELS 2012 23

[imports elided]
class foo extends CrudAction {}

Each action can respond to HTTP requests via handler methods
with the signature

public Resolution method()

if the request contains a GET or POST parameter X and a
method with that signature and named X exists in the action, it
will be called and the resulting Resolution object will be used by
the Stripes web framework, on which Portofino 4 is built, to
determine the next view to show to the user.

Via annotations, access to action methods can be restricted to
only users with certain privileges, for example:

@RequiresPermissions(level = AccessLevel.VIEW)
public Resolution method() { ... }

Annotations can also be used to expose a given method as a user-
visible button on the page. The same method can back up more
than one button in different areas of the page. For example:

@Button(list = “crudedit”, key = “my.button”)
public Resolution method() { ... }

Buttons may be guarded, which causes them to be disabled or
hidden if their preconditions are not met, but this feature will not
be interested by our little example.

4.2 Integrating Lisp in Portofino
Standing the premises outlined in the previous section, it appears
clearly that a Lisp integrated in Portofino 4 needs to be able to
extend Java classes so we can use them as custom actions, and
to annotate them so we can control access rights and buttons.

Even though the file-based nature of the framework suits Groovy
better than Lisp, where a somewhat more image-based style is
generally preferred, we won't touch this aspect. We speculate that
migrating to a more Lisp-friendly style of development and
interaction would not be particularly complex, but to keep the
example simple we have decided to supersede about it.

We will omit for brevity the incantations needed to add ABCL as
a dependency to Portofino using Maven. Once ABCL is added as
a library, we can start patching the application to replace Groovy
with Lisp (a possible improvement over this basic example
would be having Groovy, Lisp, and possibly other languages
coexist in the same application). We will add a method to load a
Lisp file defining a custom action class to the already existing
ScriptingUtil class, which has a few utility methods for loading
Groovy code:

public static final AbclScriptEngine ABCL =
(AbclScriptEngine) new
AbclScriptEngineFactory().getScriptEngine();

public static Class<?> getLispClass(File
storageDirFile, String id) throws IOException {
 File scriptFile =
 getLispScriptFile(storageDirFile, id);
 if(!scriptFile.exists()) {
 return null;
 }
 FileReader fr = new FileReader(scriptFile);
 try {
 Object result = ABCL.eval(fr);
 return (Class) result;
 } catch(ScriptException e) {
 throw new RuntimeException(e);
 } finally {

 IOUtils.closeQuietly(fr);
 }
}

Then, replacing the few calls to getGroovyClass with calls to
getLispClass, we've done most of the necessary work. For various
reasons, Portofino needs to check whether a certain action class
is user-defined or not. Groovy classes all implement an interface,
GroovyObject, so the system can test for it to detect classes
written in Groovy. ABCL doesn't add any marker interface by
itself, so we'll have to define our own (say, an empty LispAction
interface) and remember to use it when we define our action
classes. Also, since ABCL's startup time is noticeable, we can
add a little piece of code – not shown here – to load it at startup
rather than at the first invocation of an action.

We are now ready to replace our Groovy action. We'll take as an
example a modified version of one of the actions that are part of
Portofino's built-in ticket tracker example application: a class
that customizes the projects CRUD page to add computed values
for the project's create and update date, and to add a shortcut
button to immediately show the form for creating a new ticket for
that project. It is important to note that objects manipulated by
CRUD pages are Java maps, for which Groovy has built-in
syntax to access their contents.

import ...

@SupportsPermissions(...)
@RequiresPermissions(level = AccessLevel.VIEW)
class _1 extends CrudAction {

 boolean createValidate(object) {
 object.created_on = new Date();
 return true;
 }

 boolean editValidate(object) {
 object.updated_on = new Date();
 return true;
 }

 @Button(key = "project.issue.create",
 list = "crudread",
 order = 100D)
 Resolution createNewTicket() {
 return new RedirectResolution
 (dispatch.originalPath + "/issues")
 .addParameter("create");
 }
}

Directly translating it to Lisp, we get:

(java:jnewruntimeclass
 "_1"
 :superclass "com...CrudAction"
 :interfaces '("com...LispAction")
 :annotations `("com...RequiresPermissions"
 ("com...SupportsPermissions"
 ("value" :value ,(list ...))))
 :methods
 `(("createValidate" :boolean ("java.lang.Object")
 ,(lambda (this obj)
 (jcall
 "put" obj
 "created_on" (jnew "java.util.Date"))
 +true+))
 ("createNewTicket" "org...Resolution" nil
 ,(lambda (this)
 (jcall "addParameter"
 (jnew "org...RedirectResolution"

ELS 2012 24

 ...)
 "create"))
 :annotations
 `(("com...Button"
 ("list" :value "crudread")
 ("key" :value "project.issue.create")
 ("order" :value 100.0))))))

That's quite more verbose than its Groovy counterpart, but with
the help of some helper functions and a little macrology we can
obtain:

(defaction "_1" (:crud)
 ("createValidate" :boolean ("java.lang.Object")
 (lambda (this obj)
 (setf (prop obj "created_on")
 (jnew "java.util.Date"))
 +true+))
 (:action "createNewTicket"
 (lambda (this)
 (withparameters ("create")
 (redirectto ...)))
 :buttons ((:list "crudread"
 :key "project.issue.create"
 :order 100.0))))

which is even shorter than in Groovy, and hides from the user
many of the implementation details that are apparent from the
Groovy class we saw earlier.

5. CONCLUSIONS
We have summarized the possibilities of interaction with Java in
the ABCL implementation. We have also seen that with little
effort it is possible to use Lisp as an extension language in a Java
application, similarly to other languages on the JVM which have
been expressly designed for that purpose, like Groovy. While the
literal translation of a Java or Groovy class to Lisp is verbose and
not idiomatic, it is possible to hide most of the boilerplate behind
a simple DSL, so that the resulting code is often more compact
and readable than the original.

6. REFERENCES
[1] Lindholm, T. and Yellin, F. The JavaTM Virtual Machine

Specification, second edition.
http://java.sun.com/docs/books/jvms

[2] Gosling, J., Joy, B., Steele, G., and Bracha, G. The Java
Language Specification, Third Edition.
http://java.sun.com/docs/books/jls/

[3] Odersky, M. 2011. The Scala Language Specification.
http://www.scala-lang.org/docu/files

[4] http://groovy.codehaus.org/

[5] http://jruby.org/

[6] http://common-lisp.net/project/armedbear/

[7] http://clforjava.org/

[8] http://www.gnu.org/software/kawa/

[9] http://clojure.org/

[10] http://armedbear-j.sourceforge.net/

[11] http://common-lisp.net/project/ansi-test/

[12] http://docs.oracle.com/javase/tutorial/reflect/

[13] http://common-lisp.net/project/cffi/

[14] http://www.jcp.org/en/jsr/detail?id=223

[15] http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/aop.html

[16] http://openjdk.java.net/projects/lambda/

[17] http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Pr
oxy.html

[18] http://docs.oracle.com/javase/1.5.0/docs/guide/language/ann
otations.html

[19] http://www.stripesframework.org/display/stripes/Home

[20] http://www.hibernate.org/

[21] http://www.springsource.org/

ELS 2012 25

Embedded probabilistic programming in Clojure

Nils Bertschinger
Max-Planck Institute for Mathematics in the Sciences

Leipzig, Germany
bertschi@mis.mpg.de

ABSTRACT
Probabilistic programming is a powerful tool to specify prob-
abilistic models directly in terms of a computer program.
Here, I present a library that allows to embed probabilistic
computations into Clojure. Automatic tracking of depen-
dencies between probabilistic choice points enables an effi-
cient way to sample from the distribution corresponding to
a probabilistic program.

1. INTRODUCTION
Nowadays, many problems of artificial intelligence are for-

mulated as probabilistic inference. Also the machine learn-
ing community makes heavy use of probabilistic models [2].
Thanks to the steady increase of computing power and algo-
rithmic advances it is now feasible to apply such models to
real world data from various domains. Many different types
of inference algorithms are available, but most of them fall
into just a few well-studied and understood classes, such as
Gibbs sampling, Variational Bayes etc. Even if such stan-
dard algorithms are used, still a lot of hand-crafting is re-
quired to turn a probabilistic model into code.

Probabilistic programming tries to remedy this problem,
by providing specialized programming languages for express-
ing probabilistic models. The inference engine is hidden
from the user and can handle a large class of models in
a generic way. WinBUGS [5] is a popular example of a
language for specifying Bayesian networks which are then
solved via Gibbs sampling. Instead of designing a custom
domain specific language (DSL) for probabilistic computa-
tions, it is also possible to extent existing languages with
probabilistic semantics. This has been done mainly for logic
and functional programming languages [3, 7]. Especially, in
the case of functional programming languages, rather light-
weight embeddings have been developed [4, 12]. Further-
more, the structure of the embedding is well understood in
terms of the probability monad [10].

Here, I present a shallow embedding of probabilistic pro-
gramming into Clojure, a modern Lisp dialect running on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the JVM. The implementation is based on the bher com-
piler [12], but does not require a transformational compila-
tion step. Instead, it utilizes the dynamic features of the host
language for a seamless and efficient embedding. As the bher
compiler, my library uses the general Metropolis-Hastings
algorithm (Sec. 2.1) to draw samples from a probabilistic
program. In contrast to previous implementations, depen-
dencies between the probabilistic choice points encountered
during a run of the program are tracked (Sec. 3). This al-
lows to speed up sampling by exploiting conditional inde-
pendence relations. Sec. 4 illustrates the resulting efficiency
on an example application. Finally, Sec. 5 concludes with
some general comments on the development of this library.

2. PROBABILISTIC PROGRAMMING
A functional program consists of a sequence of functions

which are applied to some input values in order to compute a
desired output. Each function in the program can be under-
stood as a mathematical function, i.e. it produces the same
output when given the same input values. A function with
this property, that the output can only depend on its inputs,
is called “pure”. The semantics of a functional program is
thus given by a mapping from inputs to outputs. Probabilis-
tic programs extend the notion of a function to probabilistic
functions which map inputs to a distribution over their out-
puts. A probabilistic program thus specifies a (conditional)
probability distribution instead of a deterministic function.

Probabilistic functions are not pure1, in the sense that
they could return different values – drawn from a fixed dis-
tribution – for the same input. Thus, a run of a probabilistic
program gives rise to a computation tree where each node
represents a basic random choice, such as flipping a coin.
The children correspond to the possible outcomes of the
choice and the edges of the tree are weighted with the prob-
ability of the corresponding choice (see Fig. 1 for a simple
example). Each path through the computation tree corre-
sponds to a possible realization of the probabilistic program
and will be called a trace in the following. The probability of
such a trace is simply the product of all edge weights along
the path.

Similar trees also arise from non-deterministic operations
which have often been embedded into functional languages
[1]. The main difference is that probabilistic choices are
weighted and the probabilities of different choices add up
in the final result. Therefore, the common practice to im-
plement non-determinism, i.e. following just one possible

1In particular, the semantics of a probabilistic program
changes when memoization is introduced.

ELS 2012 26

trace and back-tracking if no solution could be found, is not
suitable to evaluate a probabilistic program. Instead, either
all possible traces have to be considered or an approximate
scheme to sample from the probability distribution corre-
sponding to the program is necessary.

2.1 Metropolis-Hastings sampling
Metropolis-Hastings is a general method to draw sam-

ples from a probability distribution. Since it only needs
to evaluate ratios of probabilities, it is particularly useful
if the probabilities can only be calculated up to normaliza-
tion. Metropolis-Hastings is a Markov-Chain Monte-Carlo
(MCMC) method which, instead of directly sampling from
the desired distribution p(x), constructs a Markov chain
p(x′|x) with a unique invariant distribution p(x) (see [2] for
details). Assume that the current sample is x and p(x) can
be evaluated up to normalization. Then, a proposal distri-
bution q(x′|x) is used to generate a new candidate sample.
x′ is then accepted as a new sample with probability

min

{
p(x′)q(x|x′)

p(x)q(x′|x)
, 1

}
.

Otherwise the old sample x is retained. It is well known
that this defines a Markov chain with invariant distribution
p(x). The efficiency of this algorithm depends crucially on
the proposal distribution. Ideally the proposed values should
be from a distribution close to the desired one, but at the
same time it should be easy to sample from.

In the case of a probabilistic program, each sample corre-
sponds to a trace through the computation tree. A global
store of all probabilistic choices is used to keep track of
the current trace. Thus, the probabilistic program is pu-
rified and deterministically evaluates to the particular trace
through the computation tree that is recorded in the global
store. From this, a new proposed trace is constructed using
the steps illustrated in Fig. 2:

• Select a random choice c (with value v) from the old
trace.

• Propose a new value v′ for this random choice using a
local proposal distribution qc(v

′|v).

Using the global store of all random choices, a new trace
is obtained by re-running the probabilistic program with a
new store reflecting the proposed value. Pseudo-code for
this algorithm can be found in [12]. Unfortunately, they do
not fully specify how the so-called forward and backward
probabilities q(x′|x) and q(x|x′) are obtained. Here, care
needs to be taken that choice points, which only occur in
the new (old) trace but not in the other trace, are accounted
for in the forward (backward) probability.

An important point is how choice points are identified
between the different traces. If they would be considered
as unrelated, each trace would draw completely new choice
points and the method boils down to rejection sampling.
The change becomes more local the more choice points can
be identified between the two traces. In [12] it is argued that
choice points should be identified according to their struc-
tural position in the program. Currently, this is not yet
implemented and instead the user has to explicitly tag each
choice point. With dynamically bound variables it should be
possible to pass along information about the structural po-
sition of each choice point. Implementing a naming scheme
based on this idea is left for future work.

2.2 Memoization and conditioning
Memoization of choice points, as introduced in [3], can

be implemented by simply changing the tag of a memoized
choice point to reflect its type and arguments which should
be memoized. This way, the same random choice is fetched
from the global store if the memoized choice point is called
again with the same arguments. The form (memo (<ba-
sic choice point><parameters>) <optional arguments>) is
provided to memoize a basic choice point on its parameters
and possibly further identifying arguments.

Conditioning can be implemented in different ways. The
most general form allows to condition on any predicate and
can be achieved by invalidating the trace, i.e. set its prob-
ability to zero, if the predicate evaluates to false. Unfortu-
nately, this is a rather inefficient way to implement condi-
tioning since an invalid trace is always rejected and thus a
form of rejection sampling is obtained. In the common case
of conditioning a basic random choice on a single, specified
value, a better implementation is possible. In this case, the
choice point is fixed at the conditioning value and determin-
istically reweights the trace by the probability of this value.

3. NETWORKS OF CHOICE POINTS
Whenever a new proposal is evaluated, the whole pro-

gram is run again in order to compute the updated trace.
In contrast, a hand-crafted sampling algorithm, e.g. for a
graphical model, only recomputes those choice points which
are neighbors of the node where a change is proposed. Es-
pecially, in the common case of sparsely connected models
with many conditional independence relations, this leads to
huge performance gains. Quite often, each sampling step
can be computed in constant time, independent of the total
number of choice points.

Similar observations have lead some researchers away from
probabilistic functional programming. Instead, they have
developed object-oriented frameworks [9, 6] which represent
each choice point as an object. The program is then used to
connect such objects and imperatively defines a model con-
sisting of interconnected choice points. This model can then
be solved either by exact methods based on belief propaga-
tion or approximate methods such as Markov-Chain Monte
Carlo. This approach has the further advantage that sub-
classing allows the user to provide custom choice points and
control the proposal distributions that are to be used. Un-
fortunately, the direct relation between the program and the
model is lost and it usually not possible to specify models
with a changing topology (e.g. Fig. 1). Thus, the object-
oriented implementation is more of a library for Bayesian
networks (or Markov random fields) than a language exten-
sion for embedded probabilistic programming2.

Here, I propose an implementation which keeps track of
the dependencies between probabilistic choices. Then only
the actual dependents of a choice points need to be recom-
puted if a new value is proposed. This approach is inspired
by reactive programming which allows to set variables via
spreadsheet-like formulas. If a variable changes, all depen-

2A better embedding can be achieved if language constructs
are overloaded for choice point objects. This works rather
nicely for standard operators on numbers, list, etc. but looks
somewhat clumsy for special forms, e.g. if. Furthermore,
a small additional overhead is introduced for every opera-
tion whereas, ideally, the deterministic parts of the program
should be able to run at full speed.

ELS 2012 27

A: B:

(let [c1 (flip 0.5)
c2 (flip (if c1 0.8 0.4))
c3 (if (= c1 c2)

(flip 0.3)
true)]

(and c1 c3))

c1

c2

c3

false

fa
ls
e

0
.7

false

tru
e0
.3

fa
ls
e

0.
6

c3

false

true
0.4

fa
lse

0.
5

c2

c3

true

fa
ls
e

0.
2

c3

false

fa
ls
e

0
.7

true

tru
e0
.3

true
0.8

true
0.5

Figure 1: A simple probabilistic program and its computation tree. A: The probabilistic program in Clo-
juresque pseudo-code: flip is a basic probabilistic function which returns true with the specified probability
and false otherwise. B: The computation tree corresponding to the program on the left. Note that the
number of random choices depends on the outcome of previous choices.

old new

c1

c2

c3

false

fa
ls
e

0
.7

false

tru
e0
.3

fa
ls
e

0.
6

c3

false

true
0.4

fa
lse

0.
5

c2

c3

true

fa
ls
e

0.
2

c3

false

fa
ls
e

0
.7

true

tru
e0
.3

true
0.8

true
0.5

c1

c2

c3

false

fa
ls
e

0
.7

false

tru
e0
.3

fa
ls
e

0.
6

c3

false

true
0.4

fa
lse

0.
5

c2

c3

true

fa
ls
e

0.
2

c3

false

fa
ls
e

0
.7

true

tru
e0
.3

true
0.8

true
0.5

Figure 2: Example of proposing a new trace, by changing the value of the first random choice c1. The value
of choice c2 can be reused, but has to be reweighted with the new probability. The random choice at c3 is
created anew when moving from the old to the new trace.

dent formulas are then updated automatically. This ap-
proach has for example been implemented in Common Lisp
(Cells [11]) and Python (Trellis) in order to simplify the
specification of user interfaces. In both implementations,
dependencies between variables are tracked automatically
and dynamically changed if different conditional branches
are followed.

In order to do this, choice points are specified explicitly
and a dependency with another choice point is established
whenever their value is accessed, with (gv <choice point>).
Using this approach the example from Fig. 1 can be written
as follows:

(let [c1 (flip-cp :c1 0.5)
c2 (flip-cp :c2

(if (gv c1) 0.8 0.4))
c3 (det-cp :c3

(if (= (gv c1) (gv c2))
(gv (flip-cp :c3-a 0.3))
true))]

(det-cp :result
(and (gv c1) (gv c3))))

Thus, the programmer can control which parts of the pro-
gram are recomputed in case of a proposal. For this to work,
the value of a choice point is not extracted in the binding
form, but explicitly accessed with gv. In order to ensure
that all parts of the program which use values of probabilis-
tic choices can be recomputed, some additional deterministic
choice points have to be introduced which re-evaluate their
body whenever any choice point they depend on is changed.
Overall, the program can be written in a style that is quite
close to a full DSL for probabilistic programming. The pro-
grammer just has to take care that choice points are always
accessed with gv and only inside other choice points3.

3Clojure is dynamically typed and therefore the compiler

Overall, the resulting programming style is somewhat in-
termediate between a functional probabilistic programming
language and the object-oriented style mentioned above. In
the latter approach, objects are used to represent choice
points and dependencies are explicitly constructed between
them via methods that take parent choice points as argu-
ments. Thus, the program is not a specification of the prob-
abilistic model itself, but is used to construct it as a static
network of choice points. Here, choice points are also rep-
resented as a special data structure, but as in a functional
probabilistic programming the program itself is the proba-
bilistic model. The explicit choice points are merely intro-
duced in order to speed up recomputations necessary during
Metropolis-Hastings sampling. In addition, having an ex-
plicit representation of choice points enables extensibility,
as in the object oriented approach. The macro def-prob-
cp allows to add custom choice points which support addi-
tional probability distributions or use specialized proposal
distributions.

4. EXAMPLE
To illustrate the power of probabilistic programming Fig. 3

shows how a Gaussian mixture model with a Dirichlet prior
for the mixture components can be implemented. The pro-
gram closely follows the structure of the statistical model:

1. Draw the component weights from a Dirichlet prior.

2. Assign each data point to one of the components.

3. Draw a mean for the corresponding component model
from a Gaussian prior.

cannot enforce that these rules are obeyed. Nevertheless,
the restrictions on probabilistic programs are bearable and
unproblematic in practical programs.

ELS 2012 28

A: B:

(defn mixture-memo [comp-labels data]

(let [comp-weights (dirichlet-cp :weights (for [_ comp-labels] 10.0))]

(doseq [[idx point] (indexed data)]

(let [comp (discrete-cp [:comp idx] (zipmap comp-labels (gv comp-weights)))

comp-mu (memo [:mu idx] (gaussian-cp :mu 0.0 10.0) (gv comp))]

(cond-data (gaussian-cp [:obs idx] (gv comp-mu) 1.0) point)))

(det-cp :mixture

[(into {} (for [comp comp-labels]

[comp (gv (memo [:mu comp] (gaussian-cp :mu 0.0 10.0) comp))]))

(gv comp-weights)]))) -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

D
en

si
ty

Figure 3: A: Probabilistic Clojure program implementing a Gaussian mixture model. B: Sample from the
posterior overlaid on a histogram of the data set.

4. Condition the Gaussian component model on the ob-
served data point.

Note, how memoization is used to share parameters of the
component models between different data points assigned
to the same mixture component. Furthermore, the example
illustrates that conditioning is a side-effects and acts like an
assignment.

The following form call to a library function

(metropolis-hastings-sampling
(fn [] (mixture-memo [:a :b :c] data)))

and returns a sequence of samples from the posterior distri-
bution of the model with three mixture components, labeled
:a, :b and :c, when conditioned on a vector of observed data
points.

Panel B of Fig. 3 shows a single sample from the poste-
rior overlaid on a histogram of the data points. Here, a data
set consisting of 750 points drawn from a mixture of three
Gaussians has been used. Since each Metropolis-Hastings
step only needs to recompute the choice points which are
effected by the proposal, the program scales to considerably
larger data sets. Preliminary tests show that it is slightly
faster than the Python library PyMC [8] which also imple-
ments MCMC sampling.

5. CONCLUSIONS
Probabilistic programming is a powerful tool to specify

probabilistic models. Many different types of models, e.g.
mixture models, regression models etc., can be implemented
with ease and conciseness. Thus, even though the perfor-
mance falls short of hand-crafted algorithms, it is rather
useful for rapid prototyping of probabilistic models. The
presented Clojure library in addition demonstrates that Lisp
is well suited as a host language for embedded probabilis-
tic programming. The code base running the example from
Sec. 4 is rather compact with just below 1000 LoC. This is
possible due to a unique combination of features, namely
dynamic variables, macros and immutable hash-maps. Es-
pecially the immutable data structures allow for an easy and
efficient implementation of Metropolis-Hastings sampling:
Reverting to the old trace is always possible without cre-
ating a copy of the global store first. Thus, they serve as
efficient difference data structures which had to be hand-
crafted in [7] for this purpose.

Furthermore, the dynamic nature of Clojure was of great
help in developing the library. During development I im-
plemented different prototypes, which helped to clarify un-
foreseen corner cases making the tracking of dependencies

somewhat tricky. Overall, Lisp is still a great language for
rapid prototyping and the presented library now allows to
explore different types of probabilistic models in Lisp itself.

6. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 2
edition, 1996.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[3] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: A
language for generative models. In Uncertainty in
Artificial Intelligence, pages 220–229, 2008.

[4] O. Kiselyov and C. Shan. Embedded probabilistic
programming. In W. Taha, editor, IFIP working
conference on domain-specific languages, LNCS 5658,
pages 360–384. Springer, 2009.

[5] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter.
Winbugs – a bayesian modelling framework: concepts,
structure, and extensibility. Statistics and Computing,
10:325–337, 2000.

[6] A. McCallum, K. Schultz, and S. Singh. Factorie:
Probabilistic programming via imperatively defined
factor graphs. In Advances on Neural Information
Processing Systems (NIPS), 2009.

[7] B. Milch and S. Russell. General-purpose mcmc
inference over relational structures. In 22nd
Conference on Uncertainty in Artificial Intelligence,
pages 349–358, 2006.

[8] A. Patil, D. Huard, and C. J. Fonnesbeck. Pymc:
Bayesian stochastic modelling in python. Journal of
Statistical Software, 35(4):1–81, 2010.

[9] A. Pfeffer. Figaro: An object-oriented probabilistic
programming language. Technical report, Charles
River Analytics, 2009.

[10] N. Ramsey and A. Pfeffer. Stochastic lambda calculus
and monads of probability distributions. In
Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL ’02, pages 154–165, New York, NY, USA, 2002.
ACM.

[11] K. Tilton. The cells manifesto.
http://smuglispweeny.blogspot.com/2008/02/cells-
manifesto.html,
2008.

[12] D. Wingate, A. Stuhlmueller, and N. D. Goodman.
Lightweight implementations of probabilistic
programming languages via transformational
compilation. Proceedings of the 14th international
conference on Artificial Intelligence and Statistics,
2011.

ELS 2012 29

A	 little	 history	 of	 metaprogramming	 and	 reflection	
Pascal	 Costanza	
pc@p-‐cos.net	 |	 Intel|	 Belgium	

"The interpreter for a computer language is just another program." - Hal Abelson

Whenever a program P written in a programming language L is executed on a
computer, it is actually executed by another program M running on the same
computer whose explicit purpose is to execute such programs written in L. Although
it is possible to write programs that are executed directly by the computer itself, this is
actually rare. Most of the time there is some, or even many, intermediate levels of
programs whose sole purpose is to execute other programs written in languages that
are easier to understand by programmers. Such intermediate levels are called
interpreters or compilers, or sometimes just language processors.

A very powerful idea is to enable programmers to tell such a language processor how
to process a given program in a specific way. Most programming languages actually
provide such influence on the underlying language processor, for example by passing
options to the processor, by adding declarations or annotations to a program, or by
calling special functionality that can be provided only in an API provided by the
language processor itself.

The programming language Lisp is unique in that it gives the illusion that the
language processor is actually implemented in Lisp itself. This gives programmers the
power to adapt the language processor by writing programs in the same programming
language - Lisp - and with the same ease as any other regular programs. This ability to
program the language processor from within itself is called reflection.

I will give an overview of the history of Lisp and reflection, together with some
important concepts that have emerged during the decades and that are relevent in
modern Lisp dialects today: Macros, objects and metaobject protocols.

30

Session	 III	

ELS 2012

Scheme in Industrial Automation

[Extended Abstract]

Marco Benelli
mbenelli@yahoo.com

ABSTRACT
This paper provides a description of a success story in us-
ing Scheme in production environment, in the field of in-
dustrial automation. It describe the migration of an appli-
cation based on legacy technologies like Java applets and
CGIs written in C, to a modern web application, through
a set of smooth steps that have incrementally improved the
product and the workflow. The components that have re-
alized this improvement are a set of declarative languages
for configuration and customizations and a web framework.
The Scheme implementation Gambit-C, has showed itself
very well suited for both these tasks, thanks to the scheme’s
nature and gambit’s own extensions.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.2.12 [Software Engineering]: In-
teroperability; H.3.5 [Information Storage and Retrieval]:
On-line Information Services

Keywords
scheme, gambit, functional programming, domain specific
languages, web

1. INTRODUCTION
The limited resources typically found in SCADA systems
seem to be an obstacle to the development of modern web-
based Human Machine Interfaces. Since it’s well known that
”Hardware is Cheap, Programmers are Expensive”, most
manufacturers choose to upgrade the hardware and rely on
the usual tools for web development: java, .net, php, python,
ruby and so on. Nevertheless, the cost is not the only draw-
back of an hardware upgrade: space and power consump-
tion are also important factors. Furthermore, in mass pro-
duction, even a little update in the hardware can be quite
expensive.

This paper describe how a legacy system has been improved

to a better web interface, and how Scheme has made the
transaction as smooth as possible.

2. REQUIREMENTS
The starting point was a system that already has a web in-
terface. The more interactive parts of interface (data plot-
ting and plant synopsys), however, were realized through
Java applets. The rest of application was powered by CGIs
(written in C) that handled data retrival and session man-
agement.

The system was developed for an ARM-powered board with
about 200 Mhz of cpu frequency and 128 MB of RAM,
and used for supervisoring wastewater plants, but it was
intended to be the base of more generic applications and to
be ported on other architectures1. An another important
requirement was the easy of customization by users with-
out programming experience. Furthermore, some customers
asked to have the supervisor on proprietary devices, that
doesn’t give any option for installing custom software.

3. TOOLS
The first step has been the development of a declarative lan-
guage to let users (domain experts) to generate interfaces
from specification. This strategy was already implemented
with java and XML, but it had some defects, and, using ap-
plets, it brokes the web paradigms, and require the presence
of JRE on client machines. So it has been decided to get rid
of applets, and adopt a more modern AJAX interface. Since
the task was basically a source to source transformation,
Lisp resulted the most natural choice. Then the cgi layer
was replaced by a more flexible application, so a dynamic
language with good performance was required. Consider-
ing future developments, portability was also a desiderable
features, expecially because we want to be able to support
other platforms in the futures: this constraints forced us to
choose a language that was compilable to C.

There is a good choice of Common Lisp and Scheme com-
piler that satisfy these requirements. Scheme has been cho-
sen because of its functional features [1], valuable in XML
traversing[2]; Gambit2 has been chosen because of its exten-
sions like green threads, ffi, extended ports. A lot of scheme
libraries are used: SRFIs, SSAX, irregex; most of which are

1The resulting system is actually used in production on
ARM, x86 and SH-2 processors
2http://www.iro.umontreal.ca/˜gambit/

ELS 2012 32

already been ported and optimized for Gambit. No module
system like Snow 3 or Black Hole 4 have been used: Gam-
bit’s namespaces and separate compilation was good enough
for our needs. The macro system used is the Gambit’s built-
in define-macro (similar to Common Lisp’s defmacro), the
syntax-case expander has been initially used, but the over-
head in size of object files was excessive.

4. DOMAIS SPECIFIC LANGUAGES
The pages more used were the synopsis applets: they showed
an image of the plant, with a clickable icon or text field
for each physical device (pumps, switches, sensors) and a
visual feedback of their state (disabed, on, off, alarm). All
the configuration were read from an XML file generated by
a propietary editor, while runtime data were retrived from
database.

To get rid of Java applets, a Domain Specific Language
has been written. This language takes as input the XML
generated by the editor, and produce a set of HTML, CSS
and Javascripts files that realize the same applet’s interface.
The language makes heavy use of SSAX-SXML. In this way,
it has been possible to have a new interface without any
changes neither in existing resources, neither in workflow.

Building the XML configuration for the synopsis required
the user to manually insert device informations (type, mea-
sure units, range and so on). This workflow was slow and
bug-prone. To improve it, a new language has been de-
veloped, that takes as input an HTML map (created with
common graphicals editor like Illustrator, Gimp...) with the
positions of items, and a CVS file built from a spreadsheet,
containing all the devices’s configurations.

This workflow has been proved to be very effective and flex-
ible enough to handle all the requirements emerged in new
projects (new devices, different visual feedbacks) with little
or no modification to the transformer.

A similar language has been developed for creating appli-
cations composed of only static HTML pages and AJAX
communication. This tecnique has made possible the devel-
opment of web interface on proprietary systems required by
customers, with a minimal effort.

5. WEB SERVER AND APPLICATIONS
Given the constraints of host machines, the web interface
was originally written as C CGIs. This strategy has been
proved to be quite inflexible: basically the main CGI was
an interface to database that return query results to the
client as simple text. There is another CGI that handles
authentication and sessions. The lack of a resident process
forced the CGIs to continuously storing and reading data to
database; furthermore, all this management has been writ-
ten from scratch, due to the difficulties in porting usual tools
on some of the target machines. Some experiment have been
made to use Python but they have shown poor performance.
And on some machine (ie SH-2), porting Python is not a
trivial task.

3http://snow.iro.umontreal.ca/
4https://github.com/pereckerdal/blackhole

The solution to this tradeoff between flexibility and perfor-
mance has been found in the Klio web server, a component of
the open source Klio tools 5, a set of tools written in Gambit
Scheme. The idea of replacing the web server is born after a
long experience in using a simple Scheme web server for test
and debug. The web server was a slighty modified version
of the one present in Gambit distibution.

The Klio web server comes from completing the implementa-
tion by adding missing features to make it HTTP/1.1 com-
pliant: persistent connection, caching, chunked data and so
on. While it support continuation-based interaction[4], they
are not been (yet) used due to the heavy use of AJAX com-
munication between client and server. On the other hand,
first-class continuations have been helpful in interaction on
some acquisition systems, that use exclusively unix signal for
interprocess communications. The time required for these
developments has been surprisingly short, and the result has
been more solid and performant than expected.

Thanks to Gambit’s compilation model, the whole applica-
tion can be compiled in a single executable and runned on
platforms that don’t support dynamic loading of libraries.
On the other hand, the possibility of mixing compiled and
interpreted code has been proved very useful for rapid proto-
typing and testing. The interaction between a multithreaded
Scheme code with a C library (sqlite), has also worked quite
well, using the sqlite bindings provided by Klio tools, based
on a functional interface[3]. The old C cgi continued to
works, thanks to Gambit process ports, so the new inter-
face has been tested and benchmarked against the old one,
showing better performances and reliability.

6. CONCLUSIONS AND FUTURE WORKS
This experience has confirmed the qualities of Lisp in creat-
ing source to source compilers and server applications.

In particular, Gambit Scheme has proved itself being in a
sweet-spot between simplicity, performance, reliability: it
has been ported without difficulties on quite uncommon pro-
cessors, beating legacy C code in performance, and never
showing a problem in several month of continuous running,
despite the minimal quantity of test and debug required.

7. REFERENCES
[1] W. Clinger. Proper tail recursion and space efficieny.

Proceedings of the 1998 ACM Conference on
Programming Languages Design and Implementation,
June 1998.

[2] O. Kiselyov. A better xml parsing through functional
programming. Fourth International Symposium on
Practical Aspects of Declative Languages (PADL ’02),
January 2002.

[3] O. Kiselyov. Towards the best collection api (extended
abstract). Lightweight Languages 2033 (LL3) workshop,
November 2003.

[4] C. Queinnec. The influence of browsers on evaluators
or, continuation to program web servers. ICFP 2000 -
International Conference on Functional Programming,
September 2000.

5http://mbenelli.github.com/klio

ELS 2012 33

Algorithm Engineering with Clojure

Gunnar Völkel
Institute of Theoretical

Computer Science
University of Ulm

gunnar.voelkel@uni-
ulm.de

Johann M. Kraus
Research Group

Bioinformatics & Systems
Biology

Institute of Neural Information
Processing

University of Ulm
johann.kraus@uni-

ulm.de

Hans A. Kestler
Research Group

Bioinformatics & Systems
Biology

Institute of Neural Information
Processing

University of Ulm
hans.kestler@uni-ulm.de

ABSTRACT
In this paper we present our tools to support Algorithm En-
gineering with Clojure. These tools support the two steps of
Algorithm Engineering: implementation/development and
experimental evaluation of algorithms. Based on function
definition interception with means of the Clojure language
we describe tracing and timing methods which can be set
up for a specified set of functions without altering source
code. Using a domain specific language (DSL) for experi-
ment description and a related execution method, we can
facilitate the experiment evaluation step. Furthermore, the
experimental configuration as DSL enables us to exchange
parts of the algorithm easily later.

Categories and Subject Descriptors
D.3.2 [Applicative (functional) languages]: Clojure
; D.2.5 [Testing and Debugging]: Tracing
; D.2.5 [Testing and Debugging]: Debugging aids
; D.2.8 [Metrics/Measurement]: Performance measures

General Terms
Algorithms,Experimentation,Languages

Keywords
Clojure, Algorithm Engineering,tracing, timing, domain spe-
cific language, macros

1. INTRODUCTION
Clojure [3] is a relatively new addition to the Lisp fam-
ily. Clojure runs on the Java Virtual Machine (JVM). Clo-
jure has a strong functional orientation and was designed as
general-purpose language. One major goal of Clojure is to
facilitate developing multi-threaded (concurrent) software.
Therefore, it features built-in immutable data structures,
called “persistent data structures”. “The Joy of Clojure” [1]

can be consulted for a more detailed discussion of Clojure’s
features.

We chose Clojure because of its concurrency promises, as in
our field of interest, namely combinatorial optimization al-
gorithms, parallelization of algorithms is often applied. Also
being able to use first-class functions facilitates the imple-
mentation of meta-heuristics applied to the different opti-
mization problems that we envision. Finally, we liked the
option to be able to use existing Java libraries when needed.

Algorithm Engineering is a method for algorithmic research.
In Sanders [8] the main process of Algorithm Engineering is
described“as a cycle consisting of algorithm design, analysis,
implementation and experimental evaluation”.

design

analysis

implementation

experiments

Figure 1: Algorithm Engineering (simplified)

In this paper we present tools that facilitate the implemen-
tation and experimental evaluation step of Algorithm En-
gineering with Clojure. For the implementation we provide
a general method to add code to existing function imple-
mentations for the tracing or timing of functions. This is
implemented in Clojure only. No external tools like pro-
filers are needed. The method can be used for additional
enhancements as well. For the experimental evaluation step
we provide a configuration library and an execution method.
The configuration library allows to specify experiments via
a domain specific language (DSL). We implemented an exe-
cution method to run these experiment configurations. The
execution method has a built-in progress report, remaining
runtime estimation and automatic persistence of result data.

Our main goal is to support Algorithm Engineering in Clo-
jure. By providing debug facilities, we can support the de-

ELS 2012 34

velopment of algorithms. For easing the evaluation of algo-
rithms we need means to define and to perform experiments
as well as to analyze their results.

Algorithm Development. Having a strong functional ori-
entation, Clojure organizes its code in functions (standalone
ones and implementations of protocols). Hence, we are in-
terested in analyzing the calls to these functions: What pa-
rameters were passed to a function? What did the function
return? With which parameters were the forms of the func-
tion invoked? What did these invocations return? Did they
call other functions that we analyze? Monitoring function
invocations this way supports finding programming errors
more quickly. In addition to that, capturing the runtime of
function invocations enables us to detect performance bot-
tlenecks. Finally, we need a general way to inspect Clojure
data for displaying the parameters and results of function
invocations.

Algorithm Evaluation. An Experiment Definition Language
(EDL) specifies the structure of an experimental setup by
defining the variable parts of an experiment like constant
parameters, strategy functions or filenames of input data
files that shall be used in the experiments. The EDL acts
as a Meta-DSL whose documents generate the Experiment
Setup Language (ESL) that can be used to define a concrete
experimental setup. With the ESL we can specify a setup
that defines a series of experiments with different parame-
ters.

We also wanted to be able to execute such an experimen-
tal setup. Generating experiments from our setup scenarios
should be automatically possible with two different methods:
a Cartesian product like method and a sampling method.
Furthermore, the execution should be performed in an ex-
ecution environment that already provides data persistence
for experiment results, a progress report along with a re-
maining runtime estimation. We also wanted to be able to
utilize a given number of cores on a multi-core processor
system to run the experiments in parallel.

This paper is organized as follows. In Section 2 we review
existing tools for Clojure assisting the implementation and
experiment evaluation step. The development tools are de-
scribed in Section 3. Section 4 contains the description of
the experiment evaluation tools.

2. EXISTING TOOLS
According to Clojure’s official IRC channel a common debug
technique is best described by the following listing.

(println ”data =” data)

That means many Clojure developers print out data at the
points where they suspect an error. A less frequent sug-
gestion is the (break) macro from Swank Clojure1 or the (

debug-repl)2 macro from which it is derived. Both start an

1Swank Clojure is a server that allows SLIME (Superior Lisp
Interaction Mode for Emacs) to connect to Clojure projects.
2from George Jahad https://github.com/GeorgeJahad/debug-
repl

interactive REPL in the context where the macro was spec-
ified. That means one can access all the local bindings to
inspect their values and evaluated function calls with them.

When using Eclipse with the Clojure development plug-in
Counterclockwise3 breakpoints are available and also a step-
ping through the code inspecting the values of local bindings
is possible. For profiling the runtime of functions also no
Clojure specific tools are available.

To our best knowledge currently no Clojure tools exist to
perform experimental algorithm evaluation based on a do-
main specific language configuration.

3. DEVELOPMENT TOOLS
Our development tools are based on the ability to inter-
cept Clojure function definitions during compilation. Built
on that we wanted to add code during the compilation to
the function implementation for tracing function calls or
measuring function runtimes. In the following we will de-
scribe our function interception method and its application
for tracing and timing.

3.1 Intercepting Function Definitions
Most named functions in Clojure are defined via the defn

macro. Intercepting a function definition is done by replac-
ing Clojure’s defn macro with the defn-intercept macro.
For the technical description of function interception the fol-
lowing assumption is made: defn-intercept is used to de-
fine the function we want to intercept. We will present more
convenient configuration options for interception later.

Assuming we have a fixed function intercept-fn, we can
define defn-intercept like in the following listing.

(defmacro de fn− in te rcept [fsymb , & f d e c l]
(let [{ : k ey s [meta−map , body− l i s t]}

(process−defn−decl f d e c l) ,
modi f ied−bodies

(map i n t e r c e p t− f n body− l i s t)]
` (∼defn ∼fsymb ∼meta−map

∼@modified−bodies))

The function process-defn-decl gathers the given meta
data and the specified list of implementation bodies like defn
would do. Then we apply our intercept function to all im-
plementation bodies. Finally, we return a form that defines
the function with the altered implementations via defn.

Now that we know how to intercept our function defini-
tions, it seems inconvenient to be forced to replace defn with
defn-intercept for every function we want to intercept.
Furthermore, we do not want to be forced to create a ver-
sion of defn-intercept for every interception use case (hav-
ing its own interception function). Hence, debug.intercept
namespace implements a registry that maps function sym-
bols to a list of interception functions which shall be applied
to the related function. These interception functions are ap-
plied as a composition where the first one is applied first. We
implemented a macro that generates an interception setup
macro for a given interception function f that can be used
after the ns statement of a Clojure file. This setup macro

3http://code.google.com/p/counterclockwise/

ELS 2012 35

is invoked with the symbols of the functions that shall be
intercepted with the function f. Assume we define an inter-
ception setup macro trace-setup in namespace trace with

(ns t r a c e)
(defn t race− in tercept− fn

[fns , fsymb , params−body] . . .)
(create−setup

trace−setup , t race− in tercept− fn)

then we can use it in a namespace to intercept a function
like the following listing demonstrates.

(ns example (: u s e t r a c e))
(trace−setup square)
(defn square [x] (∗ x x))

This works since trace-setup replaces clojure.core/defn

with debug.intercept/defn-intercept for the namespace
it is invoked in. Our macro debug.intercept/defn-intercept

is then called for every defn in that namespace and in-
tercepts registered functions but defines unregistered ones
normally.4 The replacement is done similar to the following
listing.

(ns−unmap ∗ns∗ ' defn)
(refer ' debug . i n t e r c e p t

: o n l y [de fn− in te rcept]
:rename { de fn− in te rcept defn })

With this method of specifying interceptions we do not need
to change the function definitions, but we still need to alter
a source file. We can improve this by enabling the usage of
an external configuration file. Such a configuration file looks
like the following listing provided there are functions square
and sqrt within the namespace example.

(enab le− i n te rcept true)
(t r a c e example/ square example/ s q r t)

The configuration file consists of Clojure forms. The first
form can be used to enable function interception which is
disabled by default.

The following example scenario shows how to set up func-
tion interception via an external configuration using the
widespread Clojure development tool Leiningen [2]. Leinin-
gen is a command line tool whose first parameter deter-
mines the task to execute, e.g. lein repl launches a Clojure
REPL within the context of the current project if there is
a configuration file called project.clj in the current work-
ing directory. In this configuration file Leiningen allows to
specify code that is run before anything else is done within
the project, e.g. before the above REPL task evaluates Clo-
jure forms. We can use that configuration to set up our
interception with the project configuration like follows.

(defproject Examples 0 .1
: p r o j e c t− i n i t
(do (use ' debug . i n t e r c e p t)

(se tup−g loba l− i n te rcept ion
”c o n f i g . c l j ” ' [debug . t r a c e / t r a c e])))

In this case our configuration file is config.clj and we support
a trace configuration form within that file. The function

4Using the registry is the difference to the previous example
for defn-intercept.

setup-global-interception loads the given configuration
commands (in this case trace from namespace debug.trace

) so that they can be used in the configuration file. The con-
figuration file is run and finally the root binding to Clojure’s
defn is changed to our defn-intercept.

(alter−var−root #' c l o j u r e . core /defn
(constantly (var−get #' de fn− in te rcept)))

Every time we start a REPL with Leiningen using this setup
the functions specified in the configuration file will be inter-
cepted as soon as they are loaded, e.g. when (use 'example)
is executed, the function square will be compiled with trace
support. Although this scenario is written for Leiningen,
something similar can be set up for every other development
environment by using setup-global-interception during
REPL initialization.

We can go even further and call setup-global-interception
in the main method of a jar file of a Clojure project. Pro-

vided that only the Clojure file containing this main method
is compiled and all other Clojure files are included as sources
the interception configuration can be changed before a run
of the jar file in order to choose different functions to trace.

3.2 Tracing Functions
We can now use function interception to implement trac-
ing functionality for functions. Given a set F of configured
functions that shall be traced, the main task of tracing is
to create a tree of all function invocations of the functions
in F . A node in this tree represents a function invocation
of function f ∈ F and the children of this node are direct
function calls of any function g ∈ F invoked by f or indirect
function calls starting in f where any number of functions
h1, h2, . . . /∈ F may be invoked until g is executed. Each
node in the tree has at least information about the invoked
function, the parameters used in this particular invocation
and the return value of this invocation (or the exception that
was thrown). From now on we will call this tree trace tree.

For using the function interception we need to write a func-
tion with the following signature.

(defn t race− in tercept− fn
[fns , fsymb , params−body] . . .)

This means we get the namespace, name, signature and
implementation forms of the function f ∈ F that is in-
tercepted. Within trace-intercept-fn we can examine
and change the implementation forms. The return value
of trace-intercept-fn will be the implementation of f .

When talking about intercepting a function f ∈ F , we de-
note the implementation forms of f as I(f) and the return
value of the interception function, the implementation that
will be used for f instead of I(f), as I ′(f).

To enable the building of the trace tree via code addition by
the interception function, we have to use Clojure’s ability
to rebind values of variables via binding and its mutable
reference type atom. Our trace-intercept-fn constructs
I ′(f) = ∆result ◦∆node(I(f)). Function ∆node adds code for
three tasks: (1) create an invocation node with information
about the given parameters, (2) add the node to the current
parent node (if any), and (3) rebind the current parent node

ELS 2012 36

to this node and execute I(f).

In case of the first invocation, the node is added to a root
node collection. Function ∆result gets the altered code from
∆node and adds code for capturing the result (or the thrown
exception) in the invocation node. binding is used to rebind
the parent node for the execution of I(f). Adding children
to the parent node requires a mutable children collection
wherefore we use a vector within an atom. The root node
collection is implemented like that as well. The added code
contains an if form that activates tracing only when spec-
ified. We can perform a trace with the with-trace macro,
e.g. (with-trace (square 3)), which initializes the root
node collection atom with an empty vector, activates trac-
ing, executes the given forms and displays the call tree af-
terwards. If there are multiple independent calls given in
the with-trace form, e.g. (with-trace (+ (square 3)(

square 4))), we will have a collection of call trees.

Now, we are able to create a tree of function calls. With
function interception we can do much better since we can
alter the implementation of the intercepted function f . In
fact we traverse the implementation forms I(f) and wrap
every form into code that creates a node that stores with
which parameters the form was invoked and what it re-
turned. When doing this we distinguish between forms that
are macros and the ones that are functions. For macros we
add a special node that contains only one child – the node
for the expansion of the macro. In the case of core macros
like let, for or other known macros the expansion node can
be skipped. This is implemented via a multimethod that has
a default implementation for unknown macros and one im-
plementation for each known macro. With the nodes for the
implementation forms of a function when tracing, we can
also see what caused the function result.

3.3 Timing Functions
Next we want to use function interception for determining
the runtimes of configured functions. That means we want
to measure the runtimes of these functions and calculate
their minimum, average and maximum runtime. Therefore
we use a similar implementation approach like the one for
tracing. The timing tree differs from the tracing tree in
that a node is a summary of multiple function calls, i.e.
when a function f would have multiple child nodes of g in
the tracing tree then it has only one child node of g that
contains the timing data. A function g that is called from
different other functions f1, f2, . . . has multiple nodes in the
timing tree (Figure 2): one node for g as child of each of the
f1, f2, . . . nodes. Hence, the tree contains information about
the context where the time of a function g is spent. A total
summary for each function can be determined from the tree.
A node in the timing tree contains the following information:
invocation count, minimum, average and maximum runtime.

The added code for timing a function f determines the cur-
rent timestamp before and after the execution of I(f) and
then updates the node for f in the current parent node with
the measured duration of I(f). Similar to tracing, the timing
functionality is only activated for invocations that are sur-
rounded by a with-timing macro but then for all specified
functions in the whole call tree resulting from that invoca-
tion.

The main advantage of this timing method is that we can
limit the functions to investigate in advance so that we still
get fast running times of the program. Compared to Clo-
jure’s built-in time macro which only measures the total
runtime of the given form, our timing approach can mea-
sure every specified function individually.

3.4 Displaying Data
The previous sections explained how to gather tracing and
timing data. Now, this section explains briefly how to view
that data. We implemented a generic inspection function
debug.inspect/inspect that is able to display all standard
Clojure data types. Additional data types can be added
by implementing a multimethod or implementing a certain
protocol or Java interface. The inspect function will open
a Swing user interface which consists of a JXTreeTable from
the SwingX project [7] which renders the given data. We
display a tree in the first column so that composite data can
be displayed briefly but when needed the tree node can be
expanded to view the details. The second column is used to
display the type of the data corresponding to the node or
its value.

Figure 3: Screenshot of the inspection GUI. This ex-
ample shows a map containing a vector and another
map which contains a set. The indentation visual-
izes the containment relation. The map contains a
vector with key :a that contains two integers.

We defined a protocol Inspectable which has the method
attribute-map. This method is supposed to return a hash
map that maps attribute names (or keywords) to their val-
ues. Data that satisfies this protocol can be automatically
viewed via inspect. For Clojure’s deftype we have defined
an interception that automatically adds an implementation
of Inspectable to a configured deftype.

4. EXPERIMENT EXECUTION
Algorithms can have many parameters like number param-
eters, but also functions that implement different strategies
used in the algorithm, e.g. different heuristic functions for
a greedy algorithm. We want to set up experiments to eval-
uate our algorithm in a descriptive form. So, for our exper-
iments we developed a domain specific language (DSL) in
Clojure that allows such a descriptive experiment configu-
ration.

Corresponding to that DSL we implemented a runtime envi-
ronment that takes a configuration instance and executes all

ELS 2012 37

Figure 2: Screenshot of the timing GUI displaying a function g with different arity implementations that call
each other. The implementation of function g with 3 parameters is invoked 20,000 times from the one with
one parameter. All calls sum up to a total runtime of about 18 milliseconds. The same implementation is
also called from the implementation with 2 parameters.

experiments defined in it. The runtime environment includes
automatic persistence for the result data of the experiments
and a progress report that also estimates the remaining run-
time.

Finally, there is a function that takes a description on how
to build Incanter5 [4] datasets from the experiment result
data and creates these datasets incrementally6 to be able
to handle a large number of experiments and their result
data. Generating an Incanter dataset facilitates visualiza-
tion of the results since Incanter provides easy access to
many types of charts from the JFreeChart [6] library and
basic manipulation operations for its datasets.

4.1 Configuration
The experiment configuration is generic to make it applica-
ble to any algorithm written in Clojure. In order to be able
to configure algorithms the configuration workflow has two
steps (Figure 4). First we have to define the experiment def-
inition for our specific algorithm with the Experiment Def-
inition Language (EDL) we implemented. Each algorithm
we want to evaluate needs only one experiment definition
file. This experiment definition will generate an algorithm
specific Experiment Setup Language (ESL). In the second
step we need to describe a concrete experimental setup via
the Experiment Setup Language. The experimental setup
can then be used to execute a series of experiments.

4.1.1 Experiment Definition Language
The Experiment Definition Language consists of two defini-
tion statements: a configuration definition and a parameter
definition. The following listing shows a configuration defi-
nition with two parameters.

(CONFIG HEURISTIC : h e u r i s t i c
(PARAM ALPHA :a lpha : v a l u e : f l o a t)
(PARAM EVAL−FN :eva l− fn : f u n c t i o n [x]))

The semantics of the configuration are (CONFIG <name> <

id> <param-list>) where <name> will be the macro name
of the configuration in the generated ESL, <id> is the con-
figuration type id and <param-list> is a list of parameter
definitions. The semantics of the parameter definition are

5Incanter is a Clojure library that implements an R-like sta-
tistical environment.
6The persisted result data is read incrementally.

Experiment
Definition
Language

Experiment
Definition

Experiment
Setup

Language

Experiment
Setup

used

for

gene
rate

s

used

for

Figure 4: Configuration workflow. An Experiment
Definition is written in terms of the Experiment Definition
Language. The Experiment Setup Language is generated
from the Experiment Definition. An Experiment Setup is
defined with the Experiment Setup Language.

(PARAM <name> <id> <type> <type-spec>) where <name>

will be the macro name of the parameter in the generated
ESL, <id> is an internal id and <type> specifies which type
of values the parameter can have. The following types are
defined: :value, :function and :config. The type specifi-
cation <type-spec> is optional and has a different semantic
and different values depending on which type the parameter
has.

For the type :value the type specification can have the val-
ues :string, :float, :integer, :boolean and :keyword.
Then the parameter declaration in ESL expects string val-
ues, floating point number values, integer values, Boolean
values or Clojure keywords, respectively. The type :function
defines that the parameter declaration in ESL expects func-
tion symbols and the type specification can contain a signa-
ture these functions must satisfy. The signature can only
be checked if the functions were defined via the library’s
defn-meta macro. The check is limited to the arity – the
parameter names are only for documentation purpose. The
type :config defines a parameter that is another configu-
ration and the type specification can contain a configura-
tion type id which allows only configuration instances with
this configuration type id for the parameter. The associ-
ated checks for the type specification <type-spec> will be
checked by the ESL when defining an experimental setup.

The ability to have parameters that are configurations them-
selves allows individual structuring of the configuration as
suited. Though, for the execution of the experimental setup

ELS 2012 38

we need a known configuration. Therefore the following con-
figuration is defined:

(CONFIG EXPERIMENT−SETUP :exper iment−setup
(PARAM REPETITION−COUNT : r epe t i t i on− count

: v a l u e : i n t e g e r)
(PARAM INSTANCES : i n s t a n c e s

: c o n f i g : i n s t a n c e−d e s c r i p t i o n)
(PARAM PARAMETERS :parameter s

: c o n f i g :experiment−parameters)
(PARAM OUTPUT :output

: c o n f i g : o u t p u t− f i l e s)
(PARAM? GENERATION−MODE :generation−mode

: v a l u e :keyword : c a r t e s i a n)
(PARAM? SAMPLE−COUNT :sample−count

: v a l u e : i n t e g e r))

The EXPERIMENT-SETUP configuration contains a parameter
PARAMETERS. The values of this parameter are the algorithm
specific configuration instances which contain the parame-
ters for the algorithm. This means that an algorithm specific
configuration has to be defined similar to the following:

(CONFIG ALGORITHM
[:a l go r i thm :experiment−parameters]
<parameter−de f in i t ions >)

In this case :algorithm is the configuration type id and
:experiment-parameters is a configuration category id. As
you may notice the used configuration category id is the
same keyword as the type specification in the PARAMETERS

parameter from EXPERIMENT-SETUP. For configuration in-
stances that are passed to a parameter in ESL either the
configuration type id or the configuration category id must
match. <parameter-definitions> contains all parameters
that are passed to the algorithm.

4.1.2 Experiment Setup Language
Having defined our experiment we can use the generated
Experiment Setup Language. For every configuration defi-
nition in EDL (e.g. ALGORITHM) two ESL words are gener-
ated: the configuration definition word (ALGORITHM) and the
configuration inheritance word (ALGORITHM<--). The con-
figuration definition word (ALGORITHM) is used to define an
instance of the corresponding configuration. The configu-
ration inheritance word (ALGORITHM<--) is used to derive
a new configuration instance from another one by taking
all the specified parameter values from the other one and
overwriting only those in the ALGORITHM<-- form, like (

ALGORITHM<-- "derived""base"<parameters>). For every
parameter definition in EDL (e.g. ALPHA) four different ESL
words are generated. The first two words are used to spec-
ify values for a parameter either as (ALPHA 1.0, 2.0, 4.0)

or as Clojure collection, e.g. (ALPHA* [1.0, 2.0, 4.0])

or even (ALPHA* (range 0.5 1.0 0.1)). The other two
words ALPHA-??? and ALPHA-???* specify that sampling is
applied to the values of this parameter. They are used like
the ones without -???. The experiment execution will ap-
ply parameter sampling to the parameters marked with -???

only if the optional parameter GENERATION-MODE is given in
the EXPERIMENT-SETUP configuration instance. The value
of this parameter is either :cartesian (no sampling) or
:latin-hypercube-sampling.

Now that we know the words of our generated Experiment

Setup Language we use them to define concrete experimental
setups that can be executed. Assume we have our previous
HEURISTIC configuration and defined our main configuration
as follows:

(CONFIG ALGORITHM
[:a l go r i thm :experiment−parameters]
(PARAM USE−HEURISTIC : u s e−h e u r i s t i c

: c o n f i g : h e u r i s t i c))

The following listing shows an example of an experimental
setup.

(HEURISTIC ”Std ”
(ALPHA 1.0 3 . 0)
(EVAL−FN c l o j u r e . core / identity))

(HEURISTIC ”Greedy ”
(ALPHA∗ (range 1 .0 2 .0 0 . 1))
(EVAL−FN example/ greedy))

(ALGORITHM ”Std+Greedy ”
(USE−HEURISTIC ”Std ” , ”Greedy ”))

(EXPERIMENT−SETUP
(REPETITION−COUNT 1)
(PARAMETERS ”Std+Greedy ”)
(INSTANCES <i n s t a n c e− l i s t >)
(OUTPUT <output− f i l e−de f i n i t i on >))

The previous example defines two different HEURISTIC con-
figuration instances that are used in the same ALGORITHM

configuration. So the algorithm will be run with both
instances. From a semantic point of view it would make
more sense to define two ALGORITHM instances one for each
HEURISTIC instance. However, both approaches are possi-
ble. The EXPERIMENT instance specifies a repetition count
of one for every experiment on every instance, a list of in-
stances and a definition of where to store the result data of
the experiments.

Since parameters of type :config only need a configura-
tion type or category id of the configuration instance that is
used, we can easily organize our configurations in different
files provided we make sure that all are loaded. We have
a function implemented which loads all configuration files
from a file system directory, recursively if needed. The con-
figurations will be linked together according to parameter
type and configuration instance id before the execution is
started.

4.2 Execution
First we have a look at the structure of the experiments de-
fined by a given experimental setup. The experiments that
will be executed are derived from the experimental setup.
Remember that an experimental setup has a list of param-
eter values for each parameter (sometimes with only one
element). An experiment needs exactly one value for each
parameter. There are two methods of deriving the exper-
iments. The first is to determine something like a Carte-
sian product on the configuration tree which is the exper-
imental setup. If the configuration instance that is speci-
fied in PARAMETERS has no tree structure, then a cartesian
product will be used. In case of a tree structure one con-
figuation instance is selected for each configuration parame-

ELS 2012 39

ter7. Metaphorically speaking, one child node (configuration
instance) is selected for each inner node (configuration in-
stance with configuration parameter) in the tree. Finally, for
all the resulting trees a cartesian product of their parame-
ters is calculated. In our previous example that would create
a series of two experiments with the "Std" heuristic and a
series of ten experiments with the "Greedy" heuristic. The
second method is to use parameter sampling. Currently, we
have implemented Latin Hypercube sampling [5] but other
sampling methods can be added. When sampling is used
the parameter values of the parameters specified with the
suffix -??? or -???* will be sampled. The sampling method
first calculates all configurations determined by the param-
eters that are not sampled via the Cartesian method. For
each of the resulting configurations sampling is then applied
for the selected parameters. A sample count has to be given
in the EXPERIMENT configuration.

Now that we have described how the experiments are gener-
ated, we need to explain the whole execution process. The
Cartesian method or the Latin Hypercube sampling creates
experiments from the experimental setup. For each of these
experiments we run the algorithm on all the given instances
as many times as specified in the repetition count value of
the EXPERIMENT configuration. The execution function that
implements the whole experiment execution has a similar
definition as the following.

(defn execute−experiment [experiment−name ,
instance−exec− fn] . . .)

The experiment-name specifies which experimental setup is
used and the instance-exec-fn function must have the fol-
lowing signature.

(defn execute−algo [ins tance , parameters])

The parameter instance contains an instance description
that is used to load or create the desired problem instance.
The parameters contain the experiment parameters whose
creation we described before. The function execute-algo

is supposed to set up and run the algorithm which we are
evaluating. The result value of this function has to be the
result data of the algorithm which is automatically stored
by our experiment library. The file locations to store the
result data are specified via the OUTPUT parameter of the
EXPERIMENT configuration.

The function execute-experiment has an option to specify
the number of experiments that shall be executed in parallel.
Hence, we use a Clojure agent for progress reports after each
finished experiment run on an instance. The progress report
includes a built-in estimation of the remaining time that will
be need to finish all experiments.

4.3 Result analysis
Since we can use Incanter datasets for data manipulation
(grouping, selection, min/avg/max determination, . . .) and
creating charts easily, we provide a simple way to create
those datasets from the stored result data. We define a
dataset with a vector containing an id for the dataset and the
functions that create its columns. Each of these functions re-
ceives the result data and can create one or more columns by

7Parameter with type :config

returning a hash map where the keys are the column names
and the values are the column values. These dataset defi-
nitions can be passed to our create-experiment-datasets

function which then incrementally loads the data from the
result files and creates the rows of the datasets – one row
in each dataset per result data object. The incremental ap-
proach allows us to work on large result files provided our
result datasets fit into memory. The dataset creation can
also be performed in parallel which is interesting especially
if the result data consists of compressed result data objects.

5. CONCLUSION
We presented tools that support Algorithm Engineering with
Clojure. In particular, we support the algorithm develop-
ment and the experimental algorithm evaluation step.

For the algorithm development step we have implemented
tools based on function definition interception. Function
definition interception is possible due to Clojure’s macros
that allow inspection and changing of code at compile time.
Function definition interception can be done using three dif-
ferent scopes: per function by using an interception macro
instead of defn, per namespace by using a setup macro
with a set of function names to intercept at the beginning
of the namespace, and globally using a configuration file
for the whole project by executing a setup function in a
central initialization, e.g. :project-init as in Leiningen’s
defproject. For a set of specified functions the tracing al-
lows to inspect the call tree consisting of these functions.
Furthermore, that call tree contains also trace nodes for the
expressions implementing the specified functions. The tim-
ing functionality we presented allows to measure the run-
time of the specified functions and builds a tree of timing
nodes that represents the call hierarchy, but also summa-
rizes calls to the same function that have the same parent
node. The timing nodes contain information about invoca-
tion count and min/avg/max runtimes. To view the col-
lected data a generic Swing control was implemented that
renders the data in a tree table.

For the experimental algorithm evaluation we implemented
a Experiment Definition Language (EDL) which is used to
describe an experiment for a given algorithm and then gen-
erates an Experiment Setup Language (ESL) for that algo-
rithm. The ESL is then used to defined particular experi-
mental setups (i.e. series of experiments) that can be run
with an execution function we implemented. That execution
function has a built-in progress report with remaining time
estimation and stores experiment result data automatically
into files given in the experimental setup. We implemented a
function that creates Incanter datasets from the result data
when given a definition of these datasets. A dataset is de-
fined in terms of a collection of functions that create the
column data. Incanter datasets can then be used to create
charts or to analyze the results with the Incanter library.

In our practical algorithm development our tracing and tim-
ing tools were very useful. In fact, this practical algorithm
engineering aspect started the whole project. There is also
the idea to use function definition interception for wrap-
ping a (debug-repl) around specified functions for analysis
which is not implemented, yet. The experiment configu-
ration via DSL was very useful for our past experimental

ELS 2012 40

evaluations. Especially, if heuristic functions exist that can
have different implementations, the configuration via DSL
allows us to configure a new heuristic function in the ESL.

6. REFERENCES
[1] M. Fogus and C. Houser. The Joy of Clojure. Manning

Publications Co, 2011.

[2] P. Hagelberg. Leiningen.
https://github.com/technomancy/leiningen, 2012.

[3] R. Hickey. Clojure. http://clojure.org, 2012.

[4] D. E. Liebke. Incanter. http://incanter.org, 2012.

[5] M. D. McKay, R. J. Beckman, and W. J. Conover. A
comparison of three methods for selecting values of
input variables in the analysis of output from a
computer code. Technometrics, 42:55–61, February
2000.

[6] Object Refinery Ltd. JFreeChart.
http://www.jfree.org/jfreechart, 2012.

[7] Oracle. SwingX. http://swinglabs.org, 2012.

[8] P. Sanders. Algorithm Engineering – An Attempt at a
Definition. In Efficient Algorithms, volume 5760 of
Lecture Notes in Computer Science, pages 321–340.
Springer, 2009.

ELS 2012 41

Session	 IV	

ELS 2012

Object enumeration

Irène A. Durand
idurand@labri.fr

LaBRI, CNRS, Université de Bordeaux, Talence, France

ABSTRACT
We address the concrete problem of enumerating sets of discrete
objects. Enumerating sets of objects is essential when the sets are
infinite or too large to be computed in extenso. We give an abstract
data type for the concept of anenumeratorof objects. We give a
Lisp implementation of many useful general enumerators and some
more particular ones in the framework of terms and term automata.

Categories and Subject Descriptors
D.1.1 [Software]: Programming Techniques, Applicative (Func-
tional) Programming; F.1.1 [Theory of Computation]: Models of
Computation, Automata

Keywords
Enumeration, Term, Term automata, Lisp, graphs

1. INTRODUCTION
Search problems with large answers raise algorithmic questions in
many domains of computer science. Typical examples for such
tasks are database queries extraction problems for large data col-
lections like the web, and answers to constraint satisfaction prob-
lems [14].

The general question is how to deal with search problems with large
answer sets. The first approach which has found much interest in
the last five years is answer enumeration [9]. The objective here is
to allow a user to quickly inspect some answers in order to avoid
the computation of all answers. So the problem of enumerating
objects is well-motivated.

Another case where enumeration is essential is when we are dealing
with infiniteor too large sets of objects which can not be computed
in extenso.

An enumeratorobject can be used to produce,one by one, the
valuessn of a sequence(sn)N.

In this paper, we do not address the whole search problem but we

enum Suit {
Diamonds = 5,
Hearts,
Clubs = 4,
Spades

};

Figure 1: Enumerator in C++

propose basic tools for enumeration which could be used in the
search framework.

We can make a parallel with enumerative combinatorics [11] which
provides functions for counting objects. Combiningcounting func-
tionsfor basic objects with adequate operators, one can obtain new
counting functions for more complicated object.

Here we want to provideenumeratorsfor enumerating objects and
adequate operators for combining enumerators for basic objects in
order to obtain enumerators for more complicated ones.

Our enumerators must not be confused with what is called enumer-
ator inC++ or C# which is just a finite sequence of named integers
as shown in Figure 1.

Some programming languages (Java, Lisp) provide libraries for
enumerating simple objects such as lists, arrays, strings, hash ta-
bles but no operation to combine these simple enumerators in or-
der to build enumerators for more complex user defined objects.
The Sage [12] software is a free open-source mathematics software
system licensed under the General Public License. It combines
the power of many existing open-source packages into a common
Python-based interface. It implements enumeration for complex
objects likegraphs, posets,etc.

However, Sage does not handle terms and term automata which are
the objects we are currently interested in. Also, we would like a
Lisp implementation rather than a Python one.

TheSERIES Lisp package by Richard C. Waters[10] also deals
with finite or infinite sequences. However, these series are not enu-
merators in the sense that a series or a finite consecutive part of it is
treated as a whole. There is no explicit cursor that moves along the
elements of a series and which is accessible to the user. However,
such cursors must exist in the implementation otherwise an opera-
tion like computing the cartesian product of two series would not
be possible.

ELS 2012 43

Many features provided by our enumeration package are essentially
the same as the ones provided by theSERIES package. The essen-
tial difference is that an enumerator points to a current element of
its underlying sequence. A series is a functional object while an
enumerator is a state machine (a non functional object). In other
words, there may be several enumerators, pointing to different el-
ements of the same (possibly virtual) sequence while there is just
one series for a given sequence.

Our package also gives an object-oriented version of these concepts
while theSERIES package does not useCLOS (Common Lisp Ob-
ject System). This gives object-oriented extensibility that we do not
have with theSERIES package. We use this extensibility when we
define enumerators for enumerating terms (see Section 6.2) or enu-
merators for enumerating the accessible states of an automaton on
a given term as presented in Section 6.3.

The infinite lists ofHaskell[1] offer the same kind of possibili-
ties as theSERIES package.

TheENUMERATION [8] package in extensions of Common Lisp
is closer to what we would like to have as it provides a notion of
position in the sequence. However, only basic enumerators can be
created and there are no operations to derive new enumerators from
existing ones.

XProc [15] is an XML pipeline language, for describing opera-
tions to be performed on XML documents. It is a language for
building pipelines. A pipeline processes XML documents. A pro-
cess is composed of various operations. These operations are per-
formed sequentially. Enumerators and pipelines are related in the
sense that both output a sequence of data: the enumerated objects
in the enumerator case and an XML stream in the case of an XProc
pipeline. A pipeline accepts as input one or more XML streams
and outputs an XML stream. The pipeline performs some opera-
tions on the input streams to create the output stream. Pipelines can
be combined to create new ones like enumerators can be combined
to create new ones. However, as for series, the pipeline operations
are linear in the sense that an input stream cannot be restarted and
considered several times.

The purpose of this article is to define an abstract data type for the
concept of an enumerator of the objects of a set, to provide a Lisp
implementation for many useful general enumerators and to show
some applications in the framework of terms and term automata.

2. THE ENUMERATOR ABSTRACT DATA
TYPE

From a mathematical point of view, anenumeratoris a state ma-
chine whose states are the elements of a sequence

(En)n∈N

of elementse0, e1, . . . of a given type. An enumerator can be finite

(En)n∈[0,N], N ∈ N

or infinite

(En)n∈N.

The main operation applicable to an enumeratorE is

call-enumerator(E)

which returns two values:(e, true) if there exists a next element
e in the sequence,(false, false) otherwise. This operation is de-
structive as it changes the internal state of the enumerator.

On othe words, the first call returns(e0, true), the second call
(e1, true) and so on. If the sequence of lengthn, the n-th call
returns(en−1, true) and all the subsequent ones(false, false).

An enumeratorE can be reinitialized with a call to

init-enumerator(E)

in order to start the enumeration from the beginning again. For con-
venience,init-enumerator will return the enumerator. This
operation isdestructive as it changes the internal state of the enu-
merator back to the initial state.

The operation

copy-enumerator(E)

returns a reinitialized copy of a given enumeratorE.

(defclass abstract-enumerator () ())

(defgeneric init-enumerator (enumerator)
(:documentation
"reinitializes and returns ENUMERATOR"))

(defgeneric copy-enumerator (enumerator)
(:documentation
"returns a reinitialized
copy of ENUMERATOR"))

(defgeneric next-element-p (enumerator)
(:documentation
"returns NIL if there is no next
element, a non NIL value otherwise"))

(defgeneric next-element (enumerator)
(:documentation
"returns the next element,
moves to the following one"))

(defgeneric call-enumerator (enumerator)
(:documentation
"if there is a next element e,
returns e and T
and moves to the next element;
otherwise returns NIL and NIL"))

Figure 2: API for the enumerator abstract data type

The call-enumerator operation is implemented for all enu-
merators using the two lower level operationsnext-element-p
(enumerator) andnext-element (enumerator). This
is shown in Figure 3.

The init-enumerator operation is implemented for all enu-
merators as shown in Figure] 4. But it is meant to be completed
by secondary methods (:aftermethods most often) according to
the internal definition of a concrete enumerator. See for instance,

make-*-enumerator*(. . .)

ELS 2012 44

(defmethod call-enumerator
((e abstract-enumerator))

(if (next-element-p e)
(values (next-element e) t)
(values nil nil)))

Figure 3: Implementation of call-enumerator

(defmethod init-enumerator
((e abstract-enumerator))
e)

Figure 4: Implementation of init-enumerator

operations to create specific enumerators relying or not on other
enumerators.

The Application Program Interface is given in Figure 2.

3. SIMPLE ENUMERATORS
3.1 Enumerator of the elements of a list
The elements of the sequence are the elements of the list. The order
is the order of the elements of the list. An example of use of such
enumerator is given in Figure 5.

The classlist-enumerator shown in Figure 6 represents this
kind of enumerator. The slotinitial-list keeps a pointer
to the beginning of the initial list while the slotcurrent-list
points to the rest of the list of elements to be enumerated.

The operations of theAPI are easily implemented as shown in Fig-
ure 7.

To create such a list enumerator we provide the

make-list-enumerator(l &optional circ)

function. With the optional parametercirc set toT, we get an
infinite enumerator which circularly enumerates the objects ofl as
shown in Figure 8.

An example of use of a circular list enumerator is given in Figure 9.

3.2 Enumeration of a sequence defined by a
linear induction

Often a sequence(sn)n∈N is defined recursively with an initial
valuev and a functionf which computes the next element from
the previous one:

{

s0 = v

sn+1 = f(sn) if n > 0

EXAMPLE 3.1. For instance, with the initial valuev = 1 and
{

f : N → N

x 7→ 2 + x

we obtain the sequence of odd natural integers.

1, 3, 5, . . .

ENUM> (setf

e
(make-list-enumerator
’(1 2 3)))

#<LIST-ENUMERATOR {1004711A71}>
ENUM> (call-enumerator *e*)
1
T
ENUM> (call-enumerator *e*)
2
T
ENUM> (init-enumerator *e*)
#<LIST-ENUMERATOR {1005AF15F1}>
ENUM> (call-enumerator *e*)
1
T
ENUM> (call-enumerator *e*)
2
T
ENUM> (call-enumerator *e*)
3
T
ENUM> (call-enumerator *e*)
NIL
NIL
ENUM> (call-enumerator *e*)
NIL
NIL

Figure 5: Example of a list enumerator

(defclass list-enumerator
(abstract-enumerator)

((initial-list :type list
:initarg :initial-list
:reader initial-list)

(current-list :type list
:initarg :current-list
:accessor current-list))

(:documentation
"enumerators of the
elements of a list"))

Figure 6: Class for list enumerators

(defmethod init-enumerator :after
((e list-enumerator))

(setf (current-list e) (initial-list e)))

(defmethod copy-enumerator
((le list-enumerator))

(make-list-enumerator
(initial-list le)))

(defmethod next-element-p
((le list-enumerator))

(current-list le))

(defmethod next-element
((le list-enumerator))

(pop (current-list le)))

Figure 7: Operations for list-enumerator

ELS 2012 45

(defun ncirc (l) (nconc l l))
(defun circ (l) (ncirc (copy-list l)))

(defun make-list-enumerator
(l &optional (circ nil))

(when circ
(setf l (circ l)))

(make-instance
’list-enumerator
:initial-list l :current-list l))

Figure 8: Circular list enumerator

ENUM> (setf

e
(make-list-enumerator ’(1 2) t))

#<LIST-ENUMERATOR {1004742B71}>
ENUM> (call-enumerator *e*)
1
T
ENUM> (call-enumerator *e*)
2
T
ENUM> (call-enumerator *e*)
1
T

Figure 9: Example of a circular list enumerator

This kind of enumerator is implemented by the class

inductive-enumerator

shown in Figure 10. The slotinit-value holds the initial value
v while the slotcurrent-value holds the next element to be
enumerated. Initially, the current value is the initial value. The
function f is stored in the slotfun brought over by inheritance
with thefun-mixin class.

The rest of the implementation is straightforward and given in Fig-
ure 11.

A variant of an inductive enumerator which has an additional func-
tion g to be applied after the functionf which performs the in-
ductive step, can be easily defined.g is often a modulo kind of
function. Part of the implementation is given in Figure 12.after
methods are used forinit-enumerator andnext-element
in order to apply the modulo function.

(defclass fun-mixin ()
((fun :initarg :fun :reader fun)))

(defclass inductive-enumerator
(abstract-enumerator fun-mixin)

((init-value
:initarg :init-value
:accessor init-value)

(current-value
:initarg :current-value
:accessor current-value)))

Figure 10: Inductive enumerators

(defmethod init-enumerator
((e inductive-enumerator))

(setf (current-value e)
(init-value e))

e)

(defmethod next-element-p
((e inductive-enumerator))

t)

(defmethod next-element
((e inductive-enumerator))

(setf
(current-value e)
(funcall
(fun e)
(current-value e))))

(defun make-inductive-enumerator
(init-value fun
&optional current-value)

(unless current-value
(setf current-value init-value))

(make-instance
’inductive-enumerator
:fun fun
:init-value init-value
:current-value current-value))

Figure 11: Code for inductive enumerator

(defclass mod-inductive-enumerator
(inductive-enumerator)

((mod-fun :initarg :mod-fun
:reader mod-fun)))

(defmethod init-enumerator :after
((e mod-inductive-enumerator))

(setf (current-value e)
(funcall
(mod-fun e)
(current-value e))))

(defmethod next-element :after
((e mod-inductive-enumerator))

(setf (current-value e)
(funcall
(mod-fun e)
(current-value e))))

(defun make-mod-inductive-enumerator
(initial-value fun mod-fun
&optional current-value)

(unless current-value
(setf current-value initial-value))

(make-instance
’mod-inductive-enumerator
:fun fun
:mod-fun mod-fun
:initial-value initial-value
:current-value current-value))

Figure 12: Modulo inductive enumerator

ELS 2012 46

ENUM> (setf

e
(make-mod-inductive-enumerator
0 #’1+ (lambda (x) (mod x 2))))

#<MOD-INDUCTIVE-ENUMERATOR {1002A7E1A1}>
ENUM> (call-enumerator *e*)
0
ENUM> (call-enumerator *e*)
1
ENUM> (call-enumerator *e*)
0
ENUM> (call-enumerator *e*)
1

Figure 13: Example of a modulo inductive enumerator

EXAMPLE 3.2. With such an enumerator one can easily gener-
ate an infinite sequence of the form

0, 1, . . . n− 1, 0, 1, . . .

as shown in Figure 13 withn = 2.

4. ENUMERATOR RELYING ON OTHERS
We denote byE the set of enumerators. Enumerators may be com-
bined to obtain new enumerators. For instance, if we have two finite
enumeratorsE1 andE2, enumerating respectivelye10, e

1
1 . . . and

e20, e
2
1 . . ., we may want an enumerator for the concatenation of the

two sequences or for pairs of elements of the two sequences (par-
allel product, cartesian product), etc. In this section, we will define
operators applying to enumerators and yielding new enumerators.

DEFINITION 1. Anoperatoris an application
{

E
n → E

E1, . . . En 7→ E

An operator will be implemented as Lisp function taking as input
at least one enumerator and returning a new enumerator.

DEFINITION 2. We say that an enumeratorE′ relieson an enu-
meratorE if the enumeration of the objects ofE′ requires the enu-
meration of some objects ofE. Conversely, we say thatE underlies
E′.

An enumerator may rely on zero, one, two or more enumerators.

Figure 14 shows the operations on enumerators yielding relying
enumerators.

4.1 Abstract classes for relying enumerators
The abstract class

relying-enumerator

contains the enumerators which rely on at least one enumerator.
The

underlying-enumerators(E)

(defclass relying-enumerator
(abstract-enumerator) ()

(:documentation
"enumerators relying on
at least one enumerator"))

(defgeneric underlying-enumerators
(relying-enumerator)

(:documentation
"enumerators on which
RELYING-ENUMERATOR relies"))

(defmethod init-enumerator :after
((e relying-enumerator))

(mapc #’init-enumerator
(underlying-enumerators e)))

Figure 15: Relying enumerators

(defclass unary-relying-enumerator
(relying-enumerator)

((enum
:type abstract-enumerator
:initarg :enum
:reader enum))

(:documentation
"enumerator relying on
one enumerator"))

(defclass nary-relying-enumerator
(relying-enumerator)

((enums :type list :initarg :enums
:reader underlying-enumerators))

(:documentation
"enumerator relying more than two
enumerators"))

Figure 16: Relying on one, two or more enumerators

operation returns the list of enumerators underlyingE. Initializing
such an enumerator requires at least initializing each of the under-
lying enumerators. This is described in Figure 15.

We shall treat the special cases where an enumerator has exactly
one underlying enumerator with the class

unary-relying-enumerator

and the general case when there is at least one underlying enumer-
ator with the class

nary-relying-enumerator.

These classes are depicted in Figure 16.

4.2 Concrete classes for relying enumerators
4.2.1 Mapping operators

Suppose that we have an enumeratorE which enumerates

e0, e1, . . .

and a functionf such that everyei is in the domain off . We would
like an enumeratorE′ = funcall(f,E) which enumerates

f(e0), f(e1), . . .

ELS 2012 47

parallel

product

filter filter

product

mapping mapping

append

parallel

sequence

append

sequence

(E1, . . . , En)E1, . . . , En

E1, . . . , En

E

E

f

p

E

f
map

(map, f, E)

E1, . . . , En

(E)

(f,E1, . . . , En)

(p,E)

(E1, . . . , En)

Figure 14: Basic relying enumerators

f being a parameter,f(ei) can be computed using

(funcall f ei)

Similarly, suppose that we have an enumeratorE which enumer-
ates the objects

l
0
, l

1
, . . .

such that eachli is a list(ei1, e
i
2, . . . , e

i
ki
) andf is a function taking

a variable number of arguments. We would like an enumerator
E′ = apply(f,E) which enumerates

f(e01, e
0
2, . . . , e

0
k0
),

f(e11, e
1
2, . . . , e

1
k1
), . . .

f being a parameter and

l
i = (ei1, e

i
2, . . . , e

i
ki
)

a list,

f(ei1, e
i
2, . . . , e

i
ki
)

can be computed using(apply f li).

These two kind of enumerators may be obtained through a single
mappingoperator parameterized by amap function:

mapping(map, f, E)

Themapfunction will often be either

funcall or apply.

The class

mapping-enumerator

(defclass mapping-enumerator
(unary-relying-enumerator fun-mixin)

((map-fun :initarg :map-fun
:reader map-fun)))

(defun make-mapping-enumerator
(fun map-fun e)

(make-instance
’mapping-enumerator
:fun fun :map-fun map-fun
:enum (copy-enumerator e)))

(defmethod next-element-p
((e mapping-enumerator))

(next-element-p (enum e)))

(defmethod next-element
((e mapping-enumerator))

(funcall
(map-fun e)
(fun e)
(next-element (enum e))))

Figure 17: Code for mapping enumerator

ELS 2012 48

(defun make-funcall-enumerator (fun e)
(make-mapping-enumerator
fun #’funcall e))

(defun make-apply-enumerator (fun e)
(make-mapping-enumerator
fun #’apply e))

Figure 18: funcall and apply enumerators

(make-funcall-enumerator
(lambda (x) (* x x))
(make-inductive-enumerator 0 #’1+))

Figure 19: Squares of natural integers

corresponds to enumerators obtained with themapping operator
and is presented in Figure 17. Thef function is stored in thefun
slot offun-mixin.

The two kinds of enumerators described at the beginning of this
subsection are a special case of a mapping enumerator, one using
funcall as themap-function and the other usingapply.
The corresponding code is in Figure 18.

EXAMPLE 4.1. If we want an enumerator of the squares of the
natural integers,

0, 1, 4, 9, 16, . . .

we may write the expression of Figure 19.

The Lispreduce function could also be used as amap-fun.

4.2.2 Sequence enumerator
Given a sequence ofn enumeratorsE1, E2, . . . , En, eachEi enu-
merating

e
i
0, e

i
1, . . . , e

i
ki
,

we would like an enumerator

E = sequence(E1, E2, . . . , En)

which enumerates first all elements ofE1, then all elements ofE2

and so on,i.e.

e10, e
1
1, . . . , e

1
k1
,

e20, e
2
1, . . . , e

2
k2
,

. . .

en0 , e
n
1 , . . . , e

n
kn

,

Thesequence(E1, E2, . . . , En) is finite if and only if everyEi

is finite.

EXAMPLE 4.2. For instance, withn = 2, E1 enumerating

a, b, c

andE2 enumerating

1, 2, . . .

then

sequence(E1, E2)

(defclass sequence-enumerator
(nary-relying-enumerator)

((remaining-enumerators
:type list
:initarg :remaining-enumerators
:accessor remaining-enumerators))

(:documentation
"enumerates sequentially the objects
of each enumerator in
(underlying-enumerators e)"))

(defmethod move-to-non-empty-sequence
((e sequence-enumerator))

(loop
while (remaining-enumerators e)
until
(next-element-p
(first (remaining-enumerators e)))

do (pop (remaining-enumerators e))))

(defmethod init-enumerator :after
((e sequence-enumerator))

(setf (remaining-enumerators e)
(underlying-enumerators e))

(move-to-non-empty-sequence e)))

(defun make-sequence-enumerator (enums)
(assert (not (null enums)))
(setf enums

(mapcar #’copy-enumerator enums))
(make-instance
’sequence-enumerator
:underlying-enumerators enums
:remaining-enumerators enums))

Figure 20: Sequence enumerators

enumerates

a, b, c, 1, 2, . . .

Thesequence-enumerator class implements this kind of se-
quential enumerator. As such enumerators rely on several enumer-
ators, the class is derived from the class

nary-relying-enumerator.

The slot

remaining-enumerators

isNIL or points to the non empty sublist of underlying enumerators
not yet enumerated. The first one is the one being currently enumer-
ated. See Figure 20. Themove-to-non-empty-sequence
operation moves forward the pointer on the remaining underlying
enumerators until it reaches the end or until the first enumerator has
a next element. This operation is called at initialization and after
each call tonext-element.

Thenext-element operation consists of applying

next-element

to the first of the remaining underlying enumerators. When there
is no more remaining enumerator, the sequence enumerator has no

ELS 2012 49

(defmethod next-element-p
((e sequence-enumerator))

(let ((re (remaining-enumerators e)))
(and re (next-element-p

(first re)))))

(defmethod next-element
((e sequence-enumerator))

(prog1
(next-element
(first
(remaining-enumerators e)))

(move-to-non-empty-sequence e)))

Figure 21: Code for sequence enumerator

(defclass parallel-enumerator
(nary-relying-enumerator) ())

(defmethod next-element-p
((e parallel-enumerator))

(every #’next-element-p
(underlying-enumerators e)))

(defmethod next-element
((e parallel-enumerator))

(loop
for enumerator
in (underlying-enumerators e)

collect (next-element
enumerator)))

Figure 22: Parallel enumerator

next element. The rest of code for sequence enumerators is given
in Figure 21.

4.2.3 Parallel enumerator
Given a sequence ofn enumeratorsE1, E2, . . . , En each enumer-
atingei0, e

i
1, . . . , e

i
ki

, we would like an enumerator

E = parallel(E1, . . . , En)

which enumerates the tuples

(e10, e
2
0, . . . , e

n
0)

(e11, e
2
1, . . . , e

n
1)

. . .

(e1k, e
2
k, . . . , e

n
k)

wherek = min(k1, . . . , kn). The enumerator

parallel(E1, . . . , En)

is infinite only if all Ei are infinite.

The parallel enumerator is also easy to implement. The code is
given in Figure 22.

5. PRODUCT OF ENUMERATORS
5.1 Introduction to the problem
Suppose that we haven enumeratorsE1, E2, . . . , En each enu-
meratorEi enumerating

e
i
0, e

i
1, . . .

We would like an enumeratorE = X(E1, . . . , En) enumerating
the tuples of the cartesian product of the list of values enumerated
by each of theEi i.e.

(e10, e
2
0, . . . , e

n−1
0 , en0)

(e10, e
2
0, . . . , e

n−1
0 , en1)

. . .

(e10, e
2
0, . . . , e

n−1
0 , enkn

)

(e10, e
2
0, . . . , e

n−1
1 , en0)

(e10, e
2
0, . . . , e

n−1
1 , en1)

. . .

(e10, e
2
0, . . . , e

n−1
1 , enkn

)

. . .

(e10, e
2
0, . . . , e

n−1
kn−1

, en1)

. . .

(e10, e
2
0, . . . , e

n−1
kn−1

, enkn
)

. . .

(e1k1
, e2k2

, . . . , en−1
kn−1

, enkn
)

X(E1, . . . , En) is finite if and only if allEis are finite. IfEi is
infinite then just one element of each of the preceding enumerators
E1, . . . , Ei−1 will be enumerated.

To have all the values of all the enumerators potentially enumer-
ated,

E2, . . . , En

should all be finite. IfE1 is finite the resulting enumerator will be
finite, infinite otherwise1.

EXAMPLE 5.1. For instance, withn = 2, E1 enumerating

1, 2, . . .

andE2 enumerating

a, b, c

thenX(E1, E) enumerates

(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), . . .

It is no more difficult and it is more general to create an enumer-
atorE = product(f,E1, . . . , En) enumerating the values off

1In the case where, all the enumerators are infinite, we could enu-
merate the tuples in a diagonal way but we have not treated this
case so far because we did not need it right away.

ELS 2012 50

(defclass enum-res ()
((object :accessor enum-object)
(found :accessor enum-found))
(:documentation
"to store the result of
call-enumerator"))

(defmethod set-enum-res
((res enum-res)
(e abstract-enumerator))
(multiple-value-bind (object found)

(call-enumerator e)
(setf (enum-found res) found)
(if found

(setf (enum-object res) object)
(slot-makunbound res ’object))))

(defun make-enum-res ()
(make-instance ’enum-res))

Figure 23: Storing the values returned bycall-enumerator

applied to the tuples of the cartesian producti.e.

f(e10, e
2
0, . . . , e

n−1
0 , en0)

f(e10, e
2
0, . . . , e

n−1
0 , en1)

. . .

f(e10, e
2
0, . . . , e

n−1
0 , enkn

)

f(e10, e
2
0, . . . , e

n−1
1 , en0)

f(e10, e
2
0, . . . , e

n−1
1 , en1)

. . .

f(e10, e
2
0, . . . , e

n−1
1 , enkn

)

. . .

f(e10, e
2
0, . . . , e

n−1
kn−1

, en1)

. . .

f(e10, e
2
0, . . . , e

n−1
kn−1

, enkn
)

. . .

f(e1k1
, e2k2

, . . . , en−1
kn−1

, enkn
)

ThenX(E1, . . . , En) is a particular case of

product(f,E1, . . . , En)

takingf = list.

While enumerating the values ofEi, we must remember the values
of E1, . . . , Ei−1. For this purpose, we create a kind of enumerator
with a one element memorymemo-enumerator which remem-
bers the result of the latest call (see Section 5.2).

The classenum-res shown in Figure 23 is a class of object to
hold the return values of an enumerator. The operation

set-enum-res (enum-res enumerator)

sets such object with the result of the call to the enumerator.

5.2 One-memory enumerator
We define the class ofmemo-enumerator enumerators which
will be used when we need the same value of an enumerator several
times; this is the case for the product for example. It is a unary

(defclass memo-enumerator
(unary-relying-enumerator)

((enum-res :accessor enum-res
:initform (make-enum-res)))

(:documentation
"enumerator with one memory"))

(defmethod make-memo-enumerator
((e abstract-enumerator))

(init-enumerator
(make-instance
’memo-enumerator
:enum (copy-enumerator e))))

(defmethod set-memo-res
((e memo-enumerator))

(set-enum-res
(enum-res e) (enum e)))

(defmethod init-enumerator :after
((e memo-enumerator))

(set-memo-res e))

(defmethod enum-found
((e memo-enumerator))

(enum-found (enum-res e)))

(defmethod enum-object
((e memo-enumerator))

(enum-object (enum-res e)))

Figure 24: Code formemo-enumerator

relying enumerator having anenum-res slot to hold the previous
result.

5.3 Product enumerator
A product enumeratorproduct(f,E1, . . . , En) is defined as an
nary-relying-enumerator and afun-mixin.

The code is a little bit more complicated than it was for the previous
kinds of enumerators because some enumerators must be reinitial-
ized. The list of underlying enumerators is mapped to a vector and
each underlying enumerator is encapsulated into a

memo-enumerator

so that its value can be asked for several times. This is shown in
Figure 25.

This kind of operator cannot be implemented in theXProc frame-
work but can be implemented in a functional style in theSERIES
package.

Enumerating pairs or tuples is easily implemented using the general
enumerator-product as shown by Figure 26.

5.4 A append enumerator
Sometimes, we may have an enumerator enumerating listsl0, l1, . . .

with eachli = (li0, l
i
1, . . . , l

i
ki
) but we would like an enumerator

enumerating the elements of the concatenation of the lists avoiding
the computation the lists in extenso and their concatenationi.e., so

ELS 2012 51

(defclass enumerator-product
(nary-relying-enumerator fun-mixin)

())

(defmethod make-enumerator-product
(fun (enums (eql nil)))

(make-empty-enumerator))

(defmethod make-enumerator-product
(fun (enums list))

(let ((v (map
’vector
#’make-memo-enumerator
enums)))

(if (every #’enum-found v)
(make-instance
’enumerator-product
:underlying-enumerators v
:fun fun)

(make-empty-enumerator))))

(defmethod enum-i
((e enumerator-product) (i integer))

(aref (underlying-enumerators e) i))

(defmethod next-element-p
((e enumerator-product))

(enum-found (enum-i e 0)))

(defmethod next-element
((e enumerator-product))

(let ((enums (underlying-enumerators e)))
(prog1

(apply
(fun e)
(map ’list

(lambda (ei)
(enum-object ei)) enums))

(let ((index (1- (length enums))))
(set-memo-res (enum-i e index))
(loop ;; until we can start again

until (enum-found
(enum-i e index))

until (zerop index)
do (init-enumerator

(enum-i e index))
do (set-memo-res

(enum-i e (decf index))))))))

Figure 25: Code for product enumerator

(defun make-enumerator-nil
(&optional (n 1))

(make-list-enumerator
(make-list n)))

(defun make-enumerator-cons
(enum1 enum2)

(make-enumerator-product
#’cons
(list enum1 enum2)))

(defun make-enumerator-list
(&rest enums)

(if enums
(make-enumerator-product
#’list enums)

(make-enumerator-nil)))

Figure 26: Enumerator for pairs and lists

an enumerator enumerating

l00, l
0
1, . . . , l

0
k0
, l10, l

1
1, . . . , l

1
k1
, . . .

li0, l
i
1, . . . , l

i
ki
, . . .

The append-enumerator inherits from a unary relying enu-
merator and has a slotnext-elements containing the non empty
sublist of the current underlying enumerator still to be enumerated.
When all the elements ofnext-elements have been output,
calls must be made to the remaining underlying enumerators un-
til one returns a non empty list of elements or until there is no more
underlying enumerator to call.

5.5 Summary of the general enumerators
All the classes corresponding the the enumerators described in this
section are shown in Figure 28.

5.6 Filtering enumerator
Given an enumeratorE and a predicatep, it is easy to implement
an enumerator

filter(p,E)

which enumerates the subsequence of elements ofE which satisfy
p like aremove-if-not on aLisp sequence. Such type of
enumerator is a unary relying enumerator.

The code is relatively easy. The underlying enumerator is encapsu-
lated into amemo-enumerator enumerator and called until an
element satisfyingp is found or until it has no more element. The
code is given in Figure 29.

EXAMPLE 5.2. LetE be an enumerator of the natural integers;
The enumeratorfilterprimep with primep a predicate testing
primality enumerates the set of primes2, 3, 5 . . . ,.

6. APPLICATIONS
The previously defined general enumerators have been used in Au-
towrite2 [5] for different purposes. Autowrite is a program entirely

2http://dept-info.labri.fr/~idurand/autowrite/

ELS 2012 52

unary−relying−enumerator

relying−enumeratorlist−enumerator

filter−enumerator

inductive−enumerator

mod−inductive−enumerator

sequence−enumerator

enumerator−product

fun−mixin flatten−enumerator

abstract−enumerator

abstract

mixin

concrete

Type of classes

nary−relying−enumerator

parallel−enumerator

mapping−enumerator

Figure 28: Class hierarchy for enumerators

(defclass append-enumerator
(unary-relying-enumerator)

((next-elements
:initform nil
:accessor next-elements))

(:documentation
"the unary underlying operator
must enumerate lists"))

(defmethod make-append-enumerator
((e abstract-enumerator))

(init-enumerator
(make-instance
’append-enumerator
:enum (copy-enumerator e))))

(defmethod skip-to-next-non-null
((e append-enumerator))

(loop
until (next-elements e)
while (next-element-p (enum e))
do (setf (next-elements e)

(next-element (enum e)))))

(defmethod init-enumerator :after
((e append-enumerator))

(skip-to-next-non-null e))

(defmethod next-element-p
((e append-enumerator))

(next-elements e))

(defmethod next-element
((e append-enumerator))

(prog1
(pop (next-elements e))

(skip-to-next-non-null e)))

Figure 27: Code for append-enumerator

defclass filter-enumerator
(unary-relying-enumerator fun-mixin)

())

(defmethod skip-to-next
((e filter-enumerator))

(loop
while (enum-found (enum e))
until (funcall

(fun e)
(enum-object (enum e)))

do (set-memo-res (enum e))))

(defmethod init-enumerator :after
((e filter-enumerator))

(skip-to-next e))

(defmethod next-element-p
((e filter-enumerator))

(enum-found (enum e)))

(defmethod next-element
((e filter-enumerator))

(prog1
(enum-object (enum e))

(set-memo-res (enum e))
(skip-to-next e)))

(defmethod make-filter-enumerator
((e abstract-enumerator) filter-fun)

(init-enumerator
(make-instance
’filter-enumerator
:enum (make-memo-enumerator e)
:fun filter-fun)))

Figure 29: Filtering enumerator

ELS 2012 53

written in Common Lisp which deals with terms, term rewriting
systems and term automata. Its specificity isfly-automatawhose
transition function is represented by a function. In this setting, the
automata may be infinite: they may have an infinite countable sig-
nature and/or an infinite number of states.

6.1 Term automata
We recall some basic definitions concerning terms and term auto-
mata. Much more information can be found in the online book [2].
We consider a finite signatureF (set of symbols with a fixed arity)
andT (F) the set of (ground) terms built uponF .

EXAMPLE 6.1. LetF be a signature containing the symbols

{a, b, adda_b, rela_b, relb_a,⊕}

with

arity(a) = arity(b) = 0 arity(⊕) = 2

arity(adda_b) = arity(rela_b) = arity(relb_a) = 1

We shall see in Section 6.5 that this signature is suitable to write
terms representing graphs of clique-width at most2.

EXAMPLE 6.2. t1, t2, t3 andt4 are terms built with the signa-
tureF of Example 6.1.

t1 = ⊕(a, b)

t2 = adda_b(⊕(a,⊕(a, b)))

t3 = adda_b(⊕(adda_b(⊕(a, b)), adda_b(⊕(a, b))))

t4 = adda_b(⊕(a, rela_b(adda_b(⊕(a, b)))))

We shall see in Table 1, Section 6.4, their associated graphs.

DEFINITION 3. A (finite bottom-up)term automatonis a qua-
drupleA = (F , Q,Qf ,∆) consisting of a finite signatureF , a
finite setQ of states, disjoint fromF , a subsetQf ⊆ Q of final
states, and a set of transitions rules∆. Every transition is of the
form

g(q1, . . . , qn) → q

with g ∈ F , arity(g) = n andq1, . . . , , qn, q ∈ Q.

Term automata recognizeregular term languages [13]. The class of
regular term languages is closed by the boolean operations union,
intersection, complementation on languages which have their coun-
terpart on automata. For all details on terms, term languages and
term automata, the reader should refer to [2].

6.2 Enumerating terms
A term in Autowrite is roughly represented by its root label and the
list of its arguments which are terms. A constant term has an empty
list of arguments.

Given a functionh which given a root label returns a list of root
labels, we can easily construct a (term) enumerator of terms with all
possibilities of labels. The code is shown Figure 31. The structure
of the term enumerator follows the recursive structure of the term
as shown by Figure 32.

(defclass term (abstract-term)
((root :initarg :root :accessor root)
(arg :initform nil

:initarg :arg :accessor arg)

Figure 30: Term class

(defmethod make-term-enumerator
((term term) h)

(make-funcall-enumerator
(lambda (tuple)

(build-term
(first tuple) (cdr tuple)))

(make-enumerator-cons
(make-list-enumerator
(funcall h (root term)))

(apply
#’make-enumerator-list
(mapcar
(lambda (arg)
(make-term-enumerator arg h))

(arg term))))))

Figure 31: Term enumerator

EXAMPLE 6.3. Given the termt = g(g(a,a), a), the function
h such thath(a) = {a, b} andh(g) = {+, ∗}, the call to

make-term-enumerator(t, h)

yields an enumerator enumerating the terms

+(+(a, a), a), +(+(a, a), b), +(+(a, b), a), +(+(a, b), b),

+(+(b, a), a), +(+(b, a), b), +(+(b, b), a), +(+(b, b), b),

+(∗(a, a), a), +(∗(a, a), b), +(∗(a, b), a), +(∗(a, b), b),

+(∗(b, a), a), +(∗(b, a), b), +(∗(b, b), a), +(∗(b, b), b),

∗(+(a, a), a), ∗(+(a, a), b), ∗(+(a, b), a), ∗(+(a, b), b),

∗(+(b, a), a), ∗(+(b, a), b), ∗(+(b, b), a), ∗(+(b, b), b),

∗(∗(a, a), a), ∗(∗(a, a), b), ∗(∗(a, b), a), ∗(∗(a, b), b),

∗(∗(b, a), a), ∗(∗(b, a), b), ∗(∗(b, b), a), ∗(∗(b, b), b)

Although finite, the enumerated set is exponentially large with re-
gards to the input term and this is why it is interesting (if not nec-
essary) to enumerate rather than to compute the set in extenso.

6.3 Enumerating accessible states
Previously, in Autowrite, given an non deterministic term automa-
ton and a term, the only possibility of computing the accessible
states (the target) from this term, was to compute all of them at
the same time. Using enumerators, it is now possible to enumerate
these accessible states one by one. Like a term enumerator, a tar-
get enumerator follows the recursive structure of the term. When
the term is a constant term (a for instance), it suffices to create a
list enumerator with all the states returned by the non deterministic
transition functiona → {q1, . . . , , qk}. This is shown in Figure 33.

For the non constant case

t = g(t1, . . . , tn),

it is more complicated as shown in Figure 34. We compute the
enumerators

E1, . . . , En

ELS 2012 54

make−funcall−enumerator
fun enum

make−enumerator−cons
enum1 enum2

build−term

make−list−enumerator make−enumerator−list
l enums

term
make−term−enumerator make−term−enumerator

term
h(g)

make-term-enumerator(t,h)

t1 tn

t = g(t1, . . . , tn)h

. . .

Figure 32: Structure of a term enumerator

(defmethod target-enumerator-ra
((root abstract-symbol) (arg (eql nil))
(transitions abstract-transitions))

(make-list-enumerator
(apply-transition-function
root nil transitions)))

Figure 33: Target-enumerator for a constant

for the term argumentst1, . . . , tn, with mapcar, then the enumer-
ator for

product(list, E1, . . . , En)

the cartesian product ofE1, . . . , En. On each tuple of states

(qi1, . . . , q
i
n)

enumerated byX(E1, . . . , En) (and the root symbolg), we must
apply the transition function of the automaton

(apply-transition-function
root states transitions)

which returns a list of states{pi1, . . . , p
i
ki
}. This is done with a

funcall enumerator which enumerates the lists

{p11, . . . , p
1
k1
}

{p21, . . . , p
2
k2
}

. . .

The

make-enumerator-append

is needed to obtain the states one at a time.

p
1
1, . . . , p

1
k1
, p

2
1, . . . , p

2
k2
, . . .

(defmethod target-enumerator-ra
((root abstract-symbol) (arg list)
(transitions abstract-transitions))

(let*
((targets
(apply
#’make-enumerator-list
(mapcar
(lambda (arg)

(target-enumerator-ra
(root arg)
(arg arg)
transitions))

arg)))
(target
(make-append-enumerator

(make-funcall-enumerator
(lambda (states)
(apply-transition-function
root states transitions))

targets))))
target))

Figure 34: Target-enumerator

Notethat this technique does not remove the possible duplicates in
this list.

EXAMPLE 6.4. An example of execution of a target enumerator
is given in Figure 35 to compare with the computation of all the
states of the target at one time withcompute-target.

6.4 Applications to graphs

ELS 2012 55

AUTOGRAPH> *t*
add_a_b(oplus(a,oplus(a,b)))
AUTOGRAPH> *f*
fly-asm(2-COLORING-2)
AUTOGRAPH> (setf

e
(target-enumerator *t* *f*))

#<GENERAL::APPEND-ENUMERATOR {1004995D91}>
AUTOGRAPH> (call-enumerator *e*)
!<a:1 b:0>
T
AUTOGRAPH> (call-enumerator *e*)
!<a:0 b:1>
T
AUTOGRAPH> (call-enumerator *e*)
NIL
NIL
AUTOGRAPH> (compute-target *t* *f*)
{!<a:1 b:0> !<a:0 b:1>}

Figure 35: Enumeration versus computation
.

t1 t2 t3 t4

b

a a

b

a

ba

ab b b

a

Table 1: Graphs corresponding to the terms of Example 6.2

In [3, 4], we have shown how graphs of bounded clique-width can
be represented by terms and how some graph properties can be ver-
ified by term automata on terms representing graphs. We recall
here this representation of graphs by terms to make the paper be
self-contained.

6.5 Term representation of graphs of bounded
clique-width

DEFINITION 4. Let L be a finite set of vertex labels and con-
sider graphsG such that each vertexv ∈ VG has a labellabel(v) ∈
L. The operations on graphs are⊕, the union of disjoint graphs,
the unary edge additionadda_b that adds the missing edges be-
tween every vertex labeleda to every vertex labeledb, the unary
relabelingrela_b that renamesa to b (with a 6= b in both cases). A
constant terma denotes a graph with a single vertex labeled bya

and no edge.

LetFL be the set of these operations and constants.

Every termt ∈ T (FL) defines a graphG(t) whose vertices are the
leaves of the termt. Note that, because of the relabeling operations,
the labels of the vertices in the graphG(t) may differ from the ones
specified in the leaves of the term. A graph hasclique-width at
mostk if it is defined by somet ∈ T (FL) with |L| ≤ k.

EXAMPLE 6.5. For L = {a, b}, the corresponding signature
has already be presented in Example 6.1. The graphs correspond-
ing to the terms defined in Example 6.2 are depicted in Table 1.

AUTOGRAPH> *t2*
add_a_b(oplus(a,oplus(a,b)))
AUTOGRAPH> (setf

e
(make-color-term-enumerator

t2 2))
#<ENUM::MAPPING-ENUMERATOR {10046F7671}>
AUTOGRAPH> (call-enumerator *e*)
add_a_b(oplus(a~0,oplus(a~0,b~0)))
T
AUTOGRAPH> (call-enumerator *e*)
add_a_b(oplus(a~0,oplus(a~0,b~1)))
T
AUTOGRAPH> (call-enumerator *e*)
add_a_b(oplus(a~0,oplus(a~1,b~0)))
T

Figure 36: Color term enumerator

In this setting, we have implemented automata to verify graph prop-
erties, like

• connectivity,

• acyclicity,

• k-colorability,

• acyclic-colorability,

• etc.

This collection of automata is maintained in the Autograph [7] sys-
tem which depends on Autowrite. Most of the time, these automata
are huge and represented as fly-automata [6]. In this framework,
we have used enumerators for two purposes.

The first one as described in Section 6.3, is when we have a non
deterministic automaton and we want to enumerate the accessible
states. As soon as a final state is enumerated, we know that the term
(the graph) is recognized by the automaton (satisfies the property
corresponding to the automaton) and we may stop the enumeration.

The second one is, given a graph property, to enumerate graphs
(terms) until we find one which satisfies the property (i.e. which is
recognized by the corresponding automaton). For instance, given
a term representing a graph, we want to enumerate terms repre-
senting vertex-colored versions of the same graph. Colors are rep-
resented by integers. A constant terma (which corresponds to a
single vertex) is writtena~i when colored with colori. Using
make-term-enumerator, it is easy to write a

make-color-term-enumerator(term,k)

function which returns an enumerator of the colored versions of
the term using at mostk colors. An example of use is shown by
Figure 36.

So far this has mainly be used to enumerate colored versions of a
given graph until a graph coloring (no two adjacent vertices have
the same color) is discovered. We hope to help solving some con-
jectures from graph theory.

ELS 2012 56

7. CONCLUSION
We presented the enumerator concept, proposed an implementation
of all purpose enumerators and shown how they can be used in the
context of terms and term automata. The work presented in this
paper is brand new. No performance tests have been performed
so far. The code should be improved for more efficiency. More
applications could be foreseen in particular in the search domain3

as mentioned in the introduction.

Acknowledgments

The author would like to thank the referees for their constructive
remarks which helped improving the quality of the paper and the
code.

8. REFERENCES
[1] Al. The Haskell Programming Language.

http://www.haskell.org.
[2] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,

D. Lugiez, S. Tison, and M. Tommasi.Tree Automata
Techniques and Applications. 2002. Draft, available from
http://tata.gforge.inria.fr.

[3] B. Courcelle and I. Durand. Verifying monadic second order
graph properties with tree automata. InProceedings of the
3rd European Lisp Symposium, pages 7–21, May 2010.

[4] B. Courcelle and I. Durand. Automata for the verification of
monadic second-order graph properties. to appear in Journal
of Applied Logics, 2011.

[5] I. Durand. Autowrite: A tool for term rewrite systems and
tree automata. InProceedings of the Workshop on Rewriting
Strategies, pages 5–14, Aachen, June 2004.

[6] I. Durand. Implementing huge term automata. In
Proceedings of the 4th European Lisp Symposium, pages
17–27, Hamburg, Germany, March 2011.

[7] I. Durand. Autograph. Common Lisp package, since 2010.
[8] Enumeration Package for Common Lisp, 2012.

http://common-lisp.net/project/cl-enumeration/.
[9] A. E. Group. Enum : Algorithms and complexity for answer

enumeration (ANR project). 2007-2011.
[10] I. Guy L. Steele, Thinking Machines.Common Lisp the

Language, 2nd edition. Digital Press, 1990.
[11] R. P. Stanley.Enumerative combinatorics. Cambridge

University Press; 2nd edition, 2000.
[12] W. Stein et al.Sage Mathematics Software (Version x.y.z).

The Sage Development Team.
http://www.sagemath.org.

[13] J. Thatcher and J. Wright. Generalized finite automata theory
with an application to a decision problem of second-order
logic. Mathematical Systems Theory, 2:57–81, 1968.

[14] E. Tsang.Foundations of Constraint Satisfaction. Academic
Press, London and San Diego, 1993.

[15] XProc: An XML Pipeline Language.
http://www.w3.org/TR/xproc/.

3A proposal for an ANR project has been submitted on January
5th, 2012 which includes propositions to work in this direction.

ELS 2012 57

Doplus
the high-level, Lispy, extensible iteration construct

Alessio Stalla
ManyDesigns s.r.l.

alessiostalla@gmail.com

ABSTRACT
In this paper, we briefly present a novel iteration macro for
Common Lisp.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—control structures.

General Terms
Languages, Experimentation.

Keywords
Lisp, macro, iteration.

1. INTRODUCTION
There are three general-purpose, widely used iteration con-
structs in Common Lisp. Of these, two are part of the Com-
mon Lisp standard itself (DO/DO* and LOOP) and one is
a third-party library (Iterate).

The author was unsatisfied with all the three of them. DO,
a glorified C for, is too low level. LOOP, with its PASCAL-
like embedded DSL, does not mix well with the rest of the
language (:collect can’t be used in the body of a let form,
for example), it’s not SLIME-friendly, and it’s not extensible
in a portable, easy way. Iterate is mostly fine, except for a
not-so-tiny detail: it is implemented using a code walker
that has freedom to move pieces of user code around. This
breaks macrolet and creates some potentially unexpected
effects when a form lexically following another is moved back
before the preceding one.

So, in pure Lisp hacker spirit, the author rolled his own and
began marketing it all around the world as the best thing
since sliced bread. This very paper is a prime example of
the aforementioned phenomenon.

2. DOPLUS
DO+ (doplus) is an iteration macro for Common Lisp. It is
conceptually a high-level DO in that it retains from DO the
separation of iteration control forms from the body of the
loop itself. In other words, a doplus form has the following
shape:

(do+ (clause*) form*)

We will not go into unnecessary details here because the
basic features of doplus are the same as LOOP and Iter-
ate. Clauses comprise the usual paraphernalia: numeric it-
eration, walking over sequences, accumulators, generators,
etc., as well as user-defined ones. Inside the body, a few
macros can be used to control iteration: collect, terminate
and skip, which basically do the obvious thing suggested by
their names. This is a more or less random example:

(do+ ((for x (in ’(4 5 6 7)))

(for y (from 3 :to 10))

(for z (being (+ x y)))

(stop-when (> z 11)))

(if (oddp x)

(collect (list x z))

(collect (list y z))))

Besides that, doplus has some unique features. Some of
them are detailed below.

2.1 Atomic updates
In doplus, contrarily to other loop macros, variables are up-
dated atomically, i.e. each clause that is executed at the
beginning or at the end of an iteration sees consistent values
for the variables, independently of the order of the clauses
in the head. An example can make it clearer. Consider the
following two iterate forms:

(iter

(for k :in ’(a b c d e))

(for x :in-vector #(1 2 3 4))

(finally (return (list x k))))

=> (4 E)

(iter

(for x :in-vector #(1 2 3 4))

(for k :in ’(a b c d e))

(finally (return (list x k))))

=> (4 D)

ELS 2012 58

They only change in the order of the two for clauses, yet
their return values differ. LOOP behaves the same. This
doesn’t happen with doplus; the following two forms return
the same value:

(do+ ((for x (across #(1 2 3 4) :index index))

(for k (in ’(a b c d e)))

(returning (list x k :index index))))

=> (4 D :INDEX 3)

(do+ ((for k (in ’(a b c d e)))

(for x (across #(1 2 3 4) :index index))

(returning (list x k :index index))))

=> (4 D :INDEX 3)

That happens because as soon as the index goes out of the
vector’s bounds, the loop is terminated and any updates re-
main confined in the atomic section, without being visible to
the other forms, such as those computing the return values.

2.2 Iteration over arbitrary sequences
The built-in clause IN can iterate over arbitrary sequences -
lists, vectors, as well as user-defined ones in implementations
that support extensible sequences [1]. On those implemen-
tations, the native sequence iterator facility is used; on the
others, a port of SBCL’s iterator implementation is used
instead.

There are also specialized clauses for lists and vectors that,
besides being slightly more efficient, provide additional fea-
tures that do not make sense for arbitrary sequence types,
such as the ability to bind a loop variable to the successive
CDRs of a list, or to the index of a vector, which is being
iterated over.

2.3 Nested loops
Nested doplus forms can interact in certain ways with outer
doplus forms. In Iterate, it is possible for an inner loop to
execute a piece of code as if it was part of an outer loop[2].
Doplus does not employ a code walker and thus limits these
kinds of interactions to some selected cases. In particular,
it is possible to refer by name to an outer accumulator or
generator, and, if an outer loop is given a name, skip and
terminate macros can refer to that name and behave accord-
ingly. For example:

(do+ ((for x (in (list 1 2 3)))

(accumulating-to result)

(stop-when (> (length result) 10))

(returning result))

(do+ ((for y (in (list ’a ’b))))

(collect (list x y) :into result)))

=> ((1 A) (1 B) (2 A) (2 B) (3 A) (3 B)

(4 A) (4 B) (5 A) (5 B) (6 A) (6 B))

(do+ (outer-loop ;;<-- name of the loop

(for x (in (list 1 2 3))))

(print x)

(do+ ((for k (to 3)))

(when (> (+ x k) 5)

(terminate outer-loop))))

3. EXTENSIONS AND IMPLEMENTATION
NOTES

Extending doplus amounts to writing regular Lisp macros
that in most cases expand to a list of clauses as the user
would write them in the head of a doplus form. For example,
the code below is adapted from the definition a clause built
in doplus:

(defclause in-vector

(vector &key (index (gensym "INDEX")))

"Loops across a vector."

(let ((tmp-var (gensym "VECTOR")))

‘((with (,tmp-var ,vector) (,index 0))

(declaring

(type (integer

0

,(1- array-total-size-limit))

,index))

(for ,index

(from 0 :to (1- (length ,tmp-var))

:by +1))

(for ,*iteration-variable*

(being (aref ,tmp-var ,index))))))

Here we can observe the only two peculiarities one can en-
counter when writing doplus extensions. First, *iteration-
variable*, which is bound by the FOR macro to the vari-
able (or lambda list) provided by the user as the first argu-
ment to FOR. Access to *iteration-variable* is necessary
when writing extensions to FOR. Second, the defclause macro,
which is equivalent to defmacro, except that it also records
the macro name as a known clause for documentation pur-
poses.

Regarding the implementation, there is a notable aspect,
in our opinion, in the use of macros to implement iteration
clauses. These macros have the peculiarity that they do not
return Lisp code - rather, they return doplus ”code”, that
is, instances of structures that instruct the doplus macro on
how to generate code1. Effectively, the head of a doplus
clause is written in a Lisp-based DSL that adopts the CL
macro system for its own purposes.

3.1 Obtaining doplus
The doplus project is hosted at http://code.google.com/p/tapulli/.
Doplus is also available through Quicklisp.

4. REFERENCES
[1] C. Rhodes. 2007. User-extensible sequences in Common

Lisp. ILC 2007 Proceedings,
http://doc.gold.ac.uk/˜mas01cr/papers/ilc2007/sequences-
20070301.pdf

[2] J. Amsterdam, 1989 and L. Oliveira, 2006. The Iterate
Manual. http://common-
lisp.net/project/iterate/doc/Named-Blocks.html

1Although technically structures are valid Lisp forms, since
they evaluate to themselves, we emphasize the fact that do-
plus clause structures are used as the building blocks of a
mini-language understood by the doplus macro.

ELS 2012 59

Lightening	 Talks	
	
Using	 Clojure	 in	 Linguistic	 Computing	
Zoltan	 Varju	

zoltan.varju@gmail.com	 |	 Weblib	 LLC	 |	 Hungary	
Richard	 Littauer	

richard.littauer@gmail.com	 |	 Saarland	 University,	 Computational	
Linguistics	 Department	 |	 Germany	

Peteris	 Ernis	 	
peteris.ernis@gmail.com	 |	 Selwyn	 College,	 University	 of	
Cambridge	 	 |	 United	 Kingdom	 	

Due to recent developments in the humanities and the social sciences more and more
scholars are turning towards computing. Although there are accessible and well
designed toolkits to get into computing, taking the step from surface knowledge of
programming to tackling non-trivial issues is difficult and time intensive. Even those
researchers with some computing background may face problems when they want to
deepen their knowledge and start serious projects, especially when participating with
a team of programmers is not an option. We think using Clojure for linguistic
computing answers these concerns. Here, we examine the existing resources and
explain why Clojure can help in both educating and researching. We also present two
mini case studies as examples of Clojure’s interoperability and use.

QueryFS,	 a	 virtual	 filesystem	 based	 on	 queries,	 and	
related	 tools	
Mikhail	 Raskin	

raskin@mccme.ru	 |	 Independent	 University	 of	 Moscow	 |	 Russian	
Federation	

Modern hardware and software allow users to store and transmit huge data
collections. Applications can rely on filesystem (or database) interface for most tasks.
Unfortunately, indexing and searching these data collections has to be done using
specialized tools with limited interoperability with existing software. This paper
describes a tool providing a unified POSIX filesystem interface (using FUSE) to the
results of search queries. The search queries themselves may be expressed using high-
level languages, including SQL and specialized Common Lisp API.

ELS 2012 60

Using Clojure in Linguistic Computing

Zoltán Varjú
Weblib LLC

Kaposhegy u. 13
7400 Kaposvar, Hungary

zoltan.varju@weblib.com

Richard Littauer
Saarland University

Computational Linguistics
Department

66041 Saarbrücken, Germany
richard.littauer@gmail.com

Peteris Erins
University of Cambridge

Selwyn College
Cambridge, United Kingdom

peteris.erins@gmail.com

ABSTRACT
Due to recent developments in the humanities and the so-
cial sciences more and more scholars are turning towards
computing. Although there are accessible and well designed
toolkits to get into computing, taking the step from surface
knowledge of programming to tackling non-trivial issues is
difficult and time intensive. Even those researchers with
some computing background may face problems when they
want to deepen their knowledge and start serious projects,
especially when participating with a team of programmers is
not an option. We think using Clojure for linguistic comput-
ing answers these concerns. Here, we examine the existing
resources and explain why Clojure can help in both educat-
ing and researching. We also present two mini case studies
as examples of Clojure’s interoperability and use.

Categories and Subject Descriptors
A.m [General Literature]: Miscellaneous; I.7.m [Computing
Methodologies]: Document and Text Processing—Miscel-
laneous

General Terms
Theory

Keywords
Clojure, linguistic computing

1. INTRODUCTION
Computational methods are standard tools in the natural
sciences, and there is an increasing demand for easy to use
tools in the emerging fields of digital humanities, linguistic
computing, computational social sciences and data journal-
ism. In these fields, the practice of scientific investigation
relies on computational methods. Analyzing data and run-
ning simulations are inherent parts of current scientific work
that require programming skills.

Although there is a plethora of high quality open source

projects, the average researcher must become a polyglot and
use various programming languages to achieve their goals.
This results, far too often, in a long and steep learning curve,
slowly progressing research projects, and bad programming
practices. There is no royal road to computer science. Those
who want to step into emerging new fields do not have to
become computer scientists, but they have to acquire the
basics in order to participate in interdisciplinary projects
and conduct their own research.

The Clojure language is ideal for the above mentioned sce-
nario for several reasons. The theoretical basis of functional
programming can be related to the humanities curriculum.
The clear and accessible Clojure development environment
encourages good software engineering practice. Clojure, as
a JVM language, and with its unique mechanism for paral-
lelism, is a natural choice in the age of the data deluge.

2. EXISTING RESOURCES
The most popular natural language processing (NLP) tool
is the Python Natural Language Toolkit (http://www.nltk.
org/) (NLTK). It contains a wide range of algorithms, both
statistical and rule based. It was designed for multidisci-
plinary instruction[3] and it is used at institutions all over
the world. Today, NLTK is not only an academic toolkit; it
is commonly used in the industry too. The freely available
NLTK book[4] and popular titles from big publishers[18]
paired with its wide range of algorithms make NLTK an
outstanding NLP tool.

The Stanford CoreNLP(http://nlp.stanford.edu/software/
corenlp.shtml) and the Apache OpenNLP(http://incubator.
apache.org/opennlp/index.html) projects are the two most
reliable and advanced Java-based NLP tools. Although their
quality is unquestionable, using them require advanced knowl-
edge of the Java language and object oriented programming
methodology. The lack of good tutorials and comprehensive
documentation mean a barrier to non-programmers.

SNLTK(http://www.snltk.org/) is the most comprehen-
sive Lisp-based NLP library. It is designed for educational
purposes, building on the rich ecosystem around Racket and
Scheme. SNLTK inspired us as its authors emphasize the
rich Lisp literature on the foundations computational Lin-
guistics[8].

Prolog once was a prominent language among computational
linguists. Logic programming is ideal for expressing foun-

ELS 2012 61

dational concepts like automata theory and one can easily
implement basic grammar formalisms in Prolog. A rich lit-
erature[6, 5] developed around the language over the years
but the decline of symbolic AI made Prolog less popular,
leaving it unaccessible for a wider audience.

In the last decade, Haskell has emerged as a new tool for
those who are interested in applying computational methods
to logic and semantics. Titles like [10] and [20] laid down
foundations. Natural Language Processing for the Working
Programmer[9] is a work-in progress open book and a proof
of concept of the usage of Haskell for statistical NLP.

The R statistical programming language is very popular
among corpus linguists, psycholinguists and social scientists.
Packages like tm[12] and zipfR[11] are not only valuable ed-
ucational and research tools, but can be used in applied re-
search too. Despite its merits, it is criticized because of its
steep learning curve and inherent problems with parallelism
and scalability[15].

3. MOTIVATIONS FOR CHOOSING CLO-
JURE

We believe that Clojure is a good choice as a second pro-
gramming language for scholars and students in the human-
ities and social sciences. At present, we would like to test
our assumptions through mini case studies.

Norvig in his seminal Paradigms of Artificial Intelligence
Programming[17] lists eight features that make Lisp differ-
ent and the natural choice for artificial intelligence program-
ming: built-in support for lists, automatic storage manage-
ment, dynamic typing, first-class functions, uniform syntax,
interactive environment, extensibility, and history.

Clojure not only supports list, but other common data struc-
tures. Every popular IDE has Clojure support and emacs
with Slime(http://common-lisp.net/project/slime/) or
VimClojure(http://www.vim.org/scripts/script.php?script_
id=2501) provide users with a high quality development en-
vironment. Java interoperability means more extensibility
with the abundance of Java libraries. We have to add to the
list the open source community built around the language,
which made tools like the ClojureScript(https://github.
com/clojure/clojurescript) and the ClojureScriptOne(http:
//clojurescriptone.com/) web development environment
and the pallet tool for cloud computing(http://palletops.
com/) which reduces the learning curve as one get things
done in a language.

As an extensible language, Clojure is multiparadigmatic.
Type checking is optional, and core.logic implements miniKan-
ren, a Prolog-like logic programming library.

3.1 Pedagogical considerations
Although the curriculum is changing, some elementary logic
is usually part of the humanities education, at least in phi-
losophy and linguistics programs. Social scientists have to
acquire statistics and get used to a basic level of mathemat-
ical rigour during their studies. Given this background and
some exposure to the fundamental concepts of programming
they are in a very good position to learn 21st century com-

puting skills that can be useful in academic research and
even in the job market.

However the above mentioned type of people have to face se-
rious problems when they want to deepen their knowledge.
Although we have well-written accessible books on compu-
tational linguistics they are either outdated or one should
learn at least two programming languages in parallel to get
things done.

3.2 Scientific considerations
Computing is going through a big change[13]. The available
data grows exponentially; ”today’s big data is tomorrow’s
mid-size” as the saying goes[19]. New technologies, and even
new professions like data scientist have emerged in the last
few years.

As the Google n-gram viewer(http://books.google.com/
ngrams) project shows we can have access to unimaginable
amount of data[16]. To work effectively and be able to col-
laborate with colleagues from other fields, humanities re-
searchers need a tool that is smoothly scalable.

While Linguistics is not traditionally a data-intensive sci-
ence, with the increasing size of linguistic databases, it is
nevertheless entering the era of the fourth paradigm[14],
where managing and accessing data is as integral a part
of the scientific process as collecting it using computational
methods. These unprecedented possibilities urge linguists to
build a cyber-infrastructure[2] and rethink their theories[1]
in the light of data.

Using a tool, like Clojure, that addresses these issues could
foster scholarly work of a new type, and especially interdis-
ciplinary work.

4. MINI CASE STUDIES
We started a project blog where we are showing off possible
uses of Clojure and we are trying to get feedback from Clo-
jure enthusiast and members of the humanities computing
community. We found two types of interested individuals;
the first is using computational methods as a tool during
their analysis, the second is interested in using the compu-
tational tools to express their ideas.

4.1 Java interoperability
The first group sees programming as a tool that helps anal-
ysis. This does not mean that they compromise quality for
usability. This group can benefit from the interoperability
of Clojure with high quality Java libraries like OpenNLP. A
corpus linguist interested in the distribution of various parts
of speech elements can use a POS tagger to automatically
tag collections of raw electronic texts. As a common soft-
ware engineering practice, one can use a tool as a kind of
black box without any expert knowledge about its internal
mechanism.

OpenNLP can be integrated into a Clojure project via Leinin-
gen. One can easily define the necessary tools to POS tag
sentences with a few line of code.

ELS 2012 62

(ns hello-nlp.core

(use opennlp.nlp)

(use opennlp.treebank)

(use opennlp.tools.filters)

(use (incanter core charts)))

(def get-sentences

(make-sentence-detector "models/en-sent.bin"))

(def tokenize

(make-tokenizer "models/en-token.bin"))

(def pos-tag

(make-pos-tagger "models/en-pos-maxent.bin"))

There is no need for expert knowledge to get started with
counting parts of speech. Thinking about linguistic data
structures in terms of lists (or sets and hash-maps) is a nat-
ural choice, as using functions on these structures is close to
linguistic formalism. Counting parts of speech in a text can
be expressed in an easy to read manner.

(defn tag-sent [sent]

(pos-tag (tokenize sent)))

(def pos-austen

(map pos-tag (map tokenize (get-sentences austen))))

(pos-filter determiners #"^DT")

(pos-filter prepositions #"^IN")

(def preps

(reduce + (map count (map prepositions pos-austen))))

(def dets

(reduce + (map count (map determiners pos-austen))))

(def nps

(reduce + (map count (map nouns pos-austen))))

(def vps

(reduce + (map count (map verbs pos-austen))))

(def stats

[nps vps dets preps])

(view (bar-chart ["np" "vp" "dts" "preps"] stats))

The output graph can be seen in Fig. 1.

Collecting and presenting word frequency distributions is a
tedious task. Linguists often use pipelines of various tools,
one for collecting and cleaning up texts and another for ana-
lyzing and report findings. This works requires using wrap-
pers of third party tools like part of speech taggers. The
aforementioned process is called ”software carpentry”, which
describes the pragmatic approach of those who see software
as a means, not an end. But as we have described in Section
3.2, the scale of scientific data is changing and traditional
tools for processing it are becoming insufficient. While the
product of ”carpentry” can be used as prototypes, we can
gain in productivity by using interoperable tools.

In the future, the ability to work together with computer sci-
entists will be more important. Product cycles are getting
shorter and shorter, the border of prototyping and produc-
tion is disappearing and parallelism is becoming common.

Figure 1: Word tag frequencies

With Clojure, one can use Java or Clojure libraries devel-
oped by the project team or foundnd in a public open source
repository. Upon completing the work, the end result should
ready for integration.

4.2 Logic programming
Logic programming is a programming paradigm that uses
mathematical logic for writing programs. Logic programs
are classically written as sets of inference rules and a query
over the rule database. The execution of a logic program is
an attempt to constructively prove the query using a built-in
proof-search method.

Many concepts in computational linguistics, such as au-
tomata and grammars, can be described declaratively. Logic
programming languages can be used to turn their definitions
into computations. Linguists can write recognizers, parsers
and generators without implementing a search algorithm.

Prolog has been the dominant logic programming language
in linguistics and beyond. Its use has diminished over the
years; however, the premise of logic programming still stands.
The recent language Kanren is an embedded logic program-
ming environment in Scheme. A version of the library called
miniKanren[7] has been ported to Clojure in the form of the
core.logic library.

Below we implement an automata in core.logic that accepts
lists consisting of multiple copies of the letter a, as seen in
Fig. 2.

okstart fail

a

b

a

b

Figure 2: Example automata

ELS 2012 63

(defrel start q)

(fact start ’ok)

(defrel transition from via to)

(facts transition [[’ok ’a ’ok]

[’ok ’b ’fail]

[’fail ’a ’fail]

[’fail ’b ’fail]])

(defrel accepting q)

(fact accepting ’ok)

(defn recognize

([input]

(fresh [q0]

(start q0)

(recognize q0 input)))

([q input]

(matche [input]

([’()]

(accepting q))

([[i . nput]]

(fresh [qto]

(transition q i qto)

(recognize qto nput))))))

We can use the automata to recognize strings in the lan-
guage, or even to generate them.

(run* [q] (recognize ’(a a a)))

;; => (_.0) where ” 0” implies success (run* [q] (rec-

ognize ’(a b a)))

;; => ()

(run 3 [q] (recognize q))

;; => (() (a) (a a))

Embedding in a functional language permits the use of logic
programming just when appropriate. That is an advantage
over Prolog, which does not feature functional constructs.

5. FUTURE WORK
Our primary goal is to provide more mini-case studies and
get more feedback from a wider audience. Ultimately, we
would like to combine the case studies into a toolkit that
can be used for linguistics education and research.

6. REFERENCES
[1] Bender, E. M., and Good, J. A grand challenge for

linguistics: Scaling up and integrating models. White
paper contributed to NSF’s SBE 2020: Future
Research in the Social, Behavioral and Economic
Sciences initiative 1, 1 (June 2010), 1–1.

[2] Bender, E. M., and Langendoen, D. T.
Computational linguistics in support of linguistic
theory. Linguistic Issues in Language Technology 3, 2
(February 2010), 0–0.

[3] Bird, S., Klein, E., Loper, E., , and Baldridge,
J. Multidisciplinary instruction with the natural
language toolkit. In Proceedings of the Third
Workshop on Issues in Teaching Computational

Linguistics (June 2008), Third Workshop on Issues in
Teaching Computational Linguistics, pp. 62–70.

[4] Bird, S., Klein, E., and Loper, E. Natural
Language Processing with Python. O’Reilly Media,
Sebastopol, CA, 2009.

[5] Blackburn, P., and Bos, J. Representation and
Inference for Natural Language: A First Course in
Computational Semantics. Center for the Study of
Language and Information, Palo Alto, CA, 2005.

[6] Blackburn, P., Bos, J., and Striegnitz, K. Learn
Prolog Now. College Publications, London, UK, 2006.

[7] Byrd, W. E. Relational Programming in miniKanren:
Techniques, Applications, and Implementations. PhD
thesis, Indiana University, August 2009.

[8] Cavar, D., Gulan, T., Kero, D., Pehar, F., and
Valerjev, P. The scheme natural language toolkit
(snltk). In Proceedings of the 4th European Lisp
Symposium (April 2011), European Lisp Symposium,
pp. 58–61.

[9] de Kok, D., and Brouwer, H. Natural Language
Processing for the Working Programmer.
http://nlpwp.org/, Groningen, NL, 2011.

[10] Doets, K., and van Eijck, J. The Haskell Road to
Logic, Maths and Programming. College Publications,
London, UK, 2004.

[11] Evert, S., and Broni, M. zipfr: Word frequency
distributions in R. In Proceedings of the 45th Annual
Meeting of the Association for Computational
Linguistics (2007).

[12] Feinerer, I., Hornik, K., and Meyer, D. Text
mining infrastructure in R. Journal of Statistical
Software 25, 1 (March 2008), 1–54.

[13] Halvey, A., Norvig, P., and Pereira, F. The
unreasonable effectiveness of data. IEEE Intelligent
Systems 24, 2 (March/April 2009), 8–12.

[14] Hey, T., Tansley, S., and Tolle, K., Eds. The
Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Corporation, US, 2009.

[15] Ihaka, R., and Lang, D. T. Back to the future:
Lisp as a base for a statistical computing system.
Compstat 2008 24, 1-1 (August 2008), 1–1.

[16] Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres,
A., Gray, M. K., Pickett, J. P., Clancy, D.
H. D., Norvig, P., Orwant, J., Pinker, S.,
Nowak, M. A., Aiden, E. L., and Team, G. B.
Quantitative analysis of culture using millions of
digitized books. Science 331, 176 (January 2011),
176–182.

[17] Norvig, P. Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Morgan
Kaufmann, Waltham, MA, 1991.

[18] Russell, M. A. Mining the Social Web: Analyzing
Data from Facebook, Twitter, LinkedIn, and Other
Social Media Sites. O’Reilly Media, Sebastopol, CA,
2011.

[19] Slocum, M. Big Data Now. O’Reilly Media,
Sebastopol, CA, 2011.

[20] van Eijck, J., and Unger, C. Computational
Semantics with Functional Programming. Cambridge
University Press, Cambridge, UK, 2010.

ELS 2012 64

QueryFS, a virtual filesystem based on queries, and
related tools.

Abstract.

Michael A. Raskin
∗

Independent University of Moscow
115162 Moscow

Bolshoy Vlasyevskiy 11
Russia

raskin@mccme.ru

ABSTRACT
Modern hardware and software allow users to store and
transmit huge data collections. Applications can rely on
filesystem (or database) interface for most tasks. Unfortu-
nately, indexing and searching these data collections has to
be done using specialized tools with limited interoperability
with existing software. This paper describes a tool provid-
ing a unified POSIX filesystem interface (using FUSE) to
the results of search queries. The search queries themselves
may be expressed using high-level languages, including SQL
and specialized Common Lisp API.

Keywords
FUSE, filesystems, search, virtual directories, domain-specific
languages

1. INTRODUCTION
Modern filesystems allow users to store large volumes of
data. When the data has some special structure, an SQL
database may better suited for the task. In both cases there
are many software packages implementing the same inter-
face. Applications use the same interface to access multi-
ple storage implementations; and many applications devel-
oped before a technology improvement becomes available
still benefit from it. For example, SBCL has no need to
know about RAID0 to get improved write speed. Neither it
needs to know about SSH to read source from server using
SSHFS-FUSE.

There are also many tools to find data in the storage. Some
of them traverse all the storage to find the needed piece of
information, some create and maintain indices, some expect
user to explicitly add the data into indexed area.

∗This work was partially supported by RFBR grant
10-01-93109-NTsNIL a

Unfortunately, making these tools interact with unsuspect-
ing applications is often hard and the query language may
have limited expressive power.

This paper describes how QueryFS project tries to solve the
problems of using query results in applications unaware of
any special API, saving queries for future use and expressing
complicated conditions with queries.

2. EXISTING PROJECTS
To refine the goals and to give general information about
previous work in this area this section contains a list of some
projects or products working on similar problems.

The problem of finding a file in the storage is probably as old
as the very notion of file. Even modern systems have util-
ities which can be traced to the very time when the word
“file” got a meaning related to computers. POSIX requires
utility called “find” to be present. If we only consider in-
teraction with programs following the original Unix design
principles, “find” satisfies all the conditions outlined in the
previous section; its command line can be easily saved to a
text file, it generates output convenient to feed to programs
with command-line interface, and it allows arbitrary logical
combinations of basic conditions in queries. Unfortunately,
modern GUI programs will not let user easily feed “find”
output to a file selection dialog.

Another old example is feeding of search results to the UI
element intended for directory view in many file managers.
In current versions of Gnome Nautilus, Windows Explorer
or MacOS X Finder user can save such a search query and
interact with it as if it was a folder. The main problem is
that applications unaware of this feature cannot use such
directories. Even WinFS project by Microsoft was going to
require applications to use special API to access such search
folders.

Inability of some applications to access virtual directories
and use plain text file lists can be mitigated by using FUSE.
It allows mounting special filesystems and processing of the
filesystem operation in the userspace.

For example, beaglefs, uses indices created by Beagle desk-
top search system. User can mount a directory filled with

ELS 2012 65

symbolic links to all files matching a Beagle query by a sin-
gle invocation of “beaglefs” command, which makes use of
search results in other applications trivial. Saving queries is
as easy as creating a shell script. Unfortunately, the expres-
sive power of Beagle queries is relatively limited.

Some of the filesystems emphasize user-entered metadata.
For example, tagfs and movemetafs support marking each
file with tags (arbitrary strings) instead of building file hi-
erarchies. User can then go into a virtual directory which
contains only the files having all the tags from some list.
The full path of the directory can easily be saved as a sym-
bolic link. Unfortunately, even file size cannot be taken into
account in such queries.

The libferris project (together with ferris-fuse) provides means
to access many different types of metadata found inside com-
mon file types. libferris on its own requires use of special
API or utilities to access the data, but allows complicated
queries in query languages like XPath and SQL. The FUSE
filesystem, ferris-fuse only allows browsing the data. An-
other project, BaseX, uses XQuery language and has GUI
and command-line tools for browsing indexed data. Cur-
rently, BaseX lacks FUSE support.

The RelFS project has its focus on representing SQL queries
as directories. A RelFS filesystem can store files and sym-
bolic links like an ordinary filesystem. It also allows going
into a directory with name starting with “#” symbol, which
is interpreted as an SQL query. Running “find” on such
a directory returns approximately the same result as run-
ning the SQL query put into directory name. RelFS uses
SQL query language, allows queries to return complicated
directory trees, and allows saving queries as symbolic links.
Unfortunately, RelFS queries process only files and symbolic
links stored on the RelFS filesystem itself, and storing large
files on RelFS causes performance problems.

Two projects with the most radical goals, dbfs and Hyp-
pocampus, store all the files inside the DB and have no hi-
erarchical structure. All available ways to access files create
special SQL queries.

3. WISHLIST FOR QUERYFS
QueryFS project started as an attempt to reimplement RelFS
and remove some of its weaknesses.

It is obvious that a FUSE filesystem will never beat a well-
optimised kernel filesystem in storing large files, so QueryFS
is not supposed to carry files of any significant size. When-
ever such files should appear in earch results, symbolic links
will be used.

This decision rules out maintaining up-to-date indices by
monitoring access to the filesystem itself. Fortunately, there
are a lot of other projects dedicated to indexing of data
(e.g. aforementioned Beagle and BaseX). Some of them even
use some kind of filesystem event notifications supported by
recent operating system kernels to update information in
real-time. That means that ease of adding an interface to
such a “foreign” index is much more important than non-
trivial indexing implemented inside QueryFS.

As the queries should be easy to use from other applications
unaware of QueryFS, they should be represented as direc-
tories. Actually, all the content of a QueryFS instance is
generated this way. Some of the queries may provide access
to internals of the filesystem, e.g. allow loading new queries
by writing to a special file.

One of the design goals is allowing user to save queries.
QueryFS takes an extreme position by making it hard to
use a query without saving it. Neither the core nor exam-
ple plugins and queries support this. By default, QueryFS
expects path to a directory having subdirectories “results”
(future mountpoint), “queries” (user queries) and “plugins”
(non-core code, expected to define ways of parsing queries in
different format). Loading queries from files also eliminates
syntactical problems related to fitting complex expressions
into a command or even filesystem paths (RelFS and tagfs
actually do put queries into filesystem paths).

4. PROVIDED INTERFACE
QueryFS tries to make adding support for a new query type
as easy as possible. To make query parsers easily replace-
able, QueryFS is split into core code (FUSE interaction,
path management, basic plugin and query management),
plugins (query parsers and helper functions for queries) and
queries (generators of filesystem contents).

In general, lifecycle of QueryFS instance looks like the fol-
lowing.

When QueryFS is launched, it loads plugins. Plugins can
register query parsers. Afterwards queries are loaded. Query
parser corresponding to a query file currently depends only
on the file extension. The parser receives the query and re-
turns source code which describes the resulting layout. Lay-
out is described in declarative terms, all path processing is
done in the core code. This code is labeled with the query
file name (without extension) and saved. After all queries
are parsed, all the generated layout code is compiled and ex-
ecuted as needed to answer filesystem requests. Execution
results can be cached for a short amount of time (mainly
to handle cases like “ls -l” command), but these caches are
invalidated when a file or a directory is created or removed.

5. IMPLEMENTATION
QueryFS is written Common Lisp, because parsing queries
have to be translated into the main implementation language
and it is way simpler with Lisp language family. Some parts
ofQueryFS and CL-FUSE currently require Steel Bank Com-
mon Lisp to run.

The lowest two levels written in Lisp are a wrapper around
FUSE library implemented using CFFI and a more Lisp-like
API for implementing FUSE filesystem without constant use
of CFFI.

Next abstraction level allows defining filesystem layout in a
declarative syntax without reimplementing path processing
each time. It is made easier by the fact that Lisp programs
are represented by trees in the most explicit way. There
are two ways to write such a description. User can spec-
ify a literal tree structure with attributes in nodes; Lisp
macrosystem allowed to create a simpler syntax for creating

ELS 2012 66

“standard” nodes. For example, (mk-file "README" "This

is QueryFS") and ‘(:TYPE :FILE :NAME "README" :CON-

TENTS ,(LAMBDA () "This is QueryFS") :WRITER NIL :RE-

MOVER NIL) mean the same: a file named “README” with
text “This is QueryFS” should be created in the directory
described by containing expression, it should not be write-
able or removable. Operations currently used in QueryFS
plugins are: “mk-file”, “mk-dir”, “mk-symlink” for describe
filesystem contents, “mk-creator” for describing entry addi-
tion and “mk-pair-generator” for easier generation of filesys-
tem structure based on information retrieved from external
sources or computed at run time. The first three operations
just accept expressions that will be evaluated to retrieve
their names and contents. For files there can be extra expres-
sions to handle file modification or removal. “mk-creator”
accepts expression that need to be evaluated to create a file
or directory entry in containing directory.

The last operation, “mk-pair-generator”, requires an expres-
sion returning list of contents and an expression with a free
parameter which can give details about each entry. The first
expression returns a list of lists, where first entry of each list
is entry name and the rest should be used when evaluating
entry details.

There is also a more general operation,“mk-generator”, which
allows use of independent content lister and name parser.
This allows special features like allowing to access HTTP
URLs by accessing“http/www.example.org/path/to/file”. Cur-
rently, no QueryFS plugin is able to generate code using this
feature.

Next level is QueryFS itself. As described in the previous
section, all the functionality of its core is related to handling
of queries and plugins.

Loading plugins is done in a very straightforward way. There
are some checks allowing to specify either full path or just
the file name (if it is in the plugin directory); but basically
it is one “load” call wrapped in error handling. Some of the
query parsing code in the core is present only to be used by
plugins. More specifically, there are two macros, “def-query-
parser” and “def-linear-query-parser” to generate code that
can be used in any plugin.

The first macro, “def-query-parser”, acts in a way similar to
Lisp function definition syntax. It simply defines a function
with the specified body and registers it as query parser for
specified type of queries. The second one assumes that query
can be parsed by reading first “word” in Lisp sense and look-
ing for it in a list of actions. It generates an invocation of the
first macro and additional code to do the matching. This
approach allows reusing the parser components in plugins.

Plugins are loaded as is and can select their own namespace
to use. They are supposed to use the same namespace as
the core QueryFS code.

To describe query grammar for a parser, one can use “Parser
Expression Grammars”. Esrap-PEG, a wrapper around ex-
isting Esrap packrat parser supporting stadard “PEG” syn-
tax, was developed for the needs of QueryFS.

Loading queries is only a bit more complicated. Each query
is processed by one of a few query parsers; it also gets loaded
into its own namespace.

Currently, the most polished plugin is SQL2. It provides a
syntax based on bash and SQL to represent results of SQL
queries as directories.

transient master_password "" setter "::password"

master_password

for p in "select username || ’@’ || service, password from passwords where

username is not null and ${master_password} <> ’’" encrypt-by $master_password

$(with-file $name do on-read $p[1]; done)

mkdir "by-service" do

on-create-dir name "insert into passwords (service) values (${name})"

grouped-for srv in "select distinct service from passwords where

${master_password} <> ’’" do on-create-file name "insert into passwords

(service, username) values (${srv[0]}, ${name})"

with-file "::remove::" do on-read "" on-write data "delete from

passwords where service = ${srv[0]}" done

for un in "select username, password from passwords where service =

${srv[0]} and username is not null" encrypt-by $master_password $(

with-file $name do on-read $un[1] on-write data "update passwords set

password = ${data} where username = ${name} and service = ${srv[0]}"

on-remove "delete from passwords where username = ${name} and service

= ${srv[0]}" done) done done

6. STABILITY AND SECURITY
QueryFS uses CL-FUSE functionality to catch errors in run
time. So a query with a mistake should not easily take
down the entire filesystem instance. On the other hand, both
malicious query and malicious plugin amount to arbitrary
code running with user priviliges, so untrusted plugins and
queries should not be run.

As the queries are processed with plugins, plugins may limit
code generation to exclude unsafe function calls. Unfortu-
nately, doing this well requires developing a security model
that can allow loading “safe” external libraries and has cor-
rect definition of “safe”. For queries this may be worked
around if plugins wrap the library calls they consider safe.
Anyway, if a query uses SQL and it is supposed to issue
“DELETE FROM”sometimes, it can just drop the database
unless a powerful query analyzer is used. Security model for
plugins is an even more complicated task, because they can
do whatever queries can, but they are also the natural place
to put wrapper over foreign code; and even well-intentioned
third-party code may be useful to a malicious plugin if such
third-party code can write to a file.

7. REUSABLE LIBRARIES WRITTEN
Regardless of your opinion about QueryFS project, you may
find one of its library useful.

7.1 CL-Fuse
A wrapper around FUSE libraries for Common Lisp.

ELS 2012 67

7.2 Esrap-PEG
A library to support standard programming language inde-
pendent “PEG” syntax for parser generation.

8. FUTURE PLANS
One of the long-term ideas of RelFS project was storing
metadata in a SQLite database in the directory containing
relevant data. For example, a USB HDD could contain a
picture archive and a database with metadata for all the
pictures. User could attach the database to QueryFS in-
stance and select files by metadata.

Another feature QueryFS could eventually support is help-
ing user to manage DB schema for metadata if user wants
to create metadata manually or using scripts. Currently
setting up the tables has to be done manually.

A “SPARQL” plugin for QueryFS would allow convenient
means of experimentation with NoSQL metadata storage.

From the point of view of concrete applications, creating a
convenient schema for storing email would be a good demon-
stration. Currently I read all my email using specialQueryFS
queries, but there is much space for improvement to make
search more convenient.

9. REFERENCES
[1] FUSE project, http://fuse.sf.net

[2] RelFS project, http://relfs.sf.net

[3] Holupirek, Grün, Scholl: BaseX and DeepFS — Joint
Storage for Filesystem and Database. EDBT 2009
(Demo Track), March 2009.
http://www.inf.uni-konstanz.de/dbis/publications/

download/joint_storage.pdf

[4] libferris project, http://libferris.com

[5] Gorter, O.: Database File System An Alternative to
Hierarchy Based File Systems.
http://tech.inhelsinki.nl/dbfs/dbfs-screen.pdf

ELS 2012 68

	0
	1
	2
	3
	1. INTRODUCTION
	2. ABCL
	3. JAVA INTEROP OVERVIEW
	3.1 Calling Java from Lisp
	3.2 Calling Lisp from Java
	3.3 Beyond FFI: extending Java in Lisp
	3.3.1 Implementing interfaces
	3.3.2 Extending classes

	4. A PRACTICAL EXAMPLE
	4.1 ManyDesigns Portofino
	4.2 Integrating Lisp in Portofino

	5. CONCLUSIONS
	6. REFERENCES

	4
	6
	7
	8
	9
	10
	11
	Blank Page

