
Proceedings of ELS 2013

6th European Lisp Symposium
June 3 – 4 2013
Madrid, Spain

Organization

Programme Chairs

• Christian Queinnec, UPMC, France

• Manuel Serrano, INRIA, France

Local Chair

• Juan José Garcia-Ripoll, IFF, Madrid

Programme Committee

• Pascal Costanza, Intel, Belgium

• Ludovic Courtès, Inria, France

• Theo D’Hondt, Vrije Universiteit Brussel, Belgium

• Erick Gallesio, University of Nice-Sophia Antipolis

• Florian Loitsch, Google, Denmark

• Kurt Noermark, Aalborg University, Denmark

• Christian Queinnec, UPMC, France

• Olin Shivers, Northeastern University, USA

• Manuel Serrano, Inria, France

• Didier Verna, Epita Research Lab, France

ELS 2013 iii

Sponsors

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England
www.lispworks.com

Franz Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
www.franz.com

Clozure Associates
Boston, MA 02205-5071
USA
www.clozure.com

INRIA
Domaine de Voluceau
Rocquencourt - BP 105
78153 Le Chesnay Cedex
France
www.inria.fr

Association of Lisp Users
USA
www.alu.org

iv ELS 2013

Contents

Organization iii
Programme Chairs . iii
Local Chair . iii
Programme Committee . iii
Sponsors . iv

Invited Talks 1
Asynchronous Programming in Dart – Florian Loitsch 1
Lisp and Music Research – Gérard Assayag . 1
Streams-Based, Multi-Threaded News Classification – Jason Cornez 1

Session I 3
Functional Package Management with Guix – Ludovic Courtès 4
Data-Transformer: an Example of Data-Centered Toolset – Mikhail Raskin 15
The Leonardo System and Software Individuals – Erik Sandewall 18

Session II 25
Tutorial: Typed Racket – Sam Tobin-Hochstadt . 26
Platforms for Games and Evaluation of Lisp Code – Arturo de Salabert 27

Session III 35
DBL - a Lisp-Based Interactive Document Markup Language – Mika Kuuskankare . . . 36
Infinite Transducers on Terms Denoting Graphs – Irène Durand and Bruno Courcelle . . 47

Session IV 59
Lazy Signal Combinators in Common Lisp – Max Rottenkolber 60
CL-NLP - a Natural Language Processing library for Common Lisp – Vsevolod Domkin 63

ELS 2013 v

Invited Talks

Asynchronous Programming in Dart

Florian Loitsch, Google

Florian Loitsch has a passion for dynamic languages, like Scheme, JavaScript and now Dart. He
wrote a Scheme-to-JavaScript compiler during his thesis, and then completed a JavaScript-to-
Scheme compiler in his spare time.
In 2010 he joined Google’s team in Aarhus (Denmark) where he worked on V8 and later Dart.
Being part of the Dart team Florian has helped specifying the language, which was presented in
late 2011. In 2012 he became the Tech Lead for the Dart libraries where, among other tasks, he
participated on the creation of a new asynchronous library that is based on Streams and Futures
(aka promises).

Lisp and Music Research

Gérard Assayag, IRCAM

Lisp has long been and still is a privileged language for building "experiments in musical intel-
ligence", to quote the title of a book by David Cope, a famous researcher in the field. Thus its
use in several "Computer Assisted Composition" systems or more generally for environments
oriented towards the modelling, representation, analysis and generation of music. Although
the choice of Lisp has been generally reserved to high level, symbolic and formal representa-
tions, it is also possible to benefit from this powerful functional language paradigm and from its
characteristic data / program duality (think of the musical duality between structures and pro-
cesses) in complex setups, where the whole range of representations and time scales is invoked
from the acoustic signal to the formal organization. Some interesting past and present systems
will be presented in this perspective, including OpenMusic and OMax, designed by the author
with his team at IRCAM.
Gerard Assayag is the founder of the Music Representations Team at IRCAM, where he has
designed with his collaborators OpenMusic and OMax, two lisp based environments which
have become international standards for computer assisted music composition / analysis and
for music improvisation. He is head of the IRCAM STMS research Lab since Jan 2011. IRCAM
is the biggest joint facility for music research and production in the world, where many leading
technologies and software have been created.

Streams-Based, Multi-Threaded News Classification

Jason Cornez, RavenPack

Streams are a way of organizing indefinite collections of data such that each item can natu-
rally flow through a network of computations. Using some simple abstractions, we construct
a computation network that operates on streams with each node being handled by a separate
computation thread. The result is efficient, maintainable and all done in Common Lisp.

ELS 2013 1

The financial industry is hungry to trade on news, but often ill-equipped to do so. The con-
tinuous publication of news is like big data in real time. RavenPack processes this flow and
produces actionable News Analytics for any industry with an appetite for news. Jason Cornez
joined RavenPack in 2003 to solve real-world problems using Common Lisp.

Session I

Functional Package Management with Guix

Ludovic Courtès
Bordeaux, France

ludo@gnu.org

ABSTRACT
We describe the design and implementation of GNU Guix, a
purely functional package manager designed to support a com-
plete GNU/Linux distribution. Guix supports transactional
upgrades and roll-backs, unprivileged package management,
per-user profiles, and garbage collection. It builds upon the
low-level build and deployment layer of the Nix package man-
ager. Guix uses Scheme as its programming interface. In
particular, we devise an embedded domain-specific language
(EDSL) to describe and compose packages. We demonstrate
how it allows us to benefit from the host general-purpose
programming language while not compromising on expres-
siveness. Second, we show the use of Scheme to write build
programs, leading to a “two-tier” programming system.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.4.5 [Operating
Systems]: System Programs and Utilities; D.1.1 [Software]:
Applicative (Functional) Programming

General Terms
Languages, Management, Reliability

Keywords
Functional package management, Scheme, Embedded domain-
specific language

Copyright c© 2013 Ludovic Courtès
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is available at http://www.gnu.org/licenses/gfdl.html.
The source of this document is available from http://git.sv.gnu.
org/cgit/guix/maintenance.git.
European Lisp Symposium 2013, Madrid, Spain

1. INTRODUCTION
GNU Guix1 is a purely functional package manager for the
GNU system [20], and in particular GNU/Linux. Pack-
age management consists in all the activities that relate
to building packages from source, honoring the build-time
and run-time dependencies on packages, installing, removing,
and upgrading packages in user environments. In addition
to these standard features, Guix supports transactional up-
grades and roll-backs, unprivileged package management,
per-user profiles, and garbage collection. Guix comes with a
distribution of user-land free software packages.

Guix seeks to empower users in several ways: by offering the
uncommon features listed above, by providing the tools that
allow users to formally correlate a binary package and the
“recipes” and source code that led to it—furthering the spirit
of the GNU General Public License—, by allowing them to
customize the distribution, and by lowering the barrier to
entry in distribution development.

The keys toward these goals are the implementation of a
purely functional package management paradigm, and the use
of both declarative and lower-level programming interfaces
(APIs) embedded in Scheme. To that end, Guix reuses
the package storage and deployment model implemented by
the Nix functional package manager [8]. On top of that, it
provides Scheme APIs, and in particular embedded domain-
specific languages (EDSLs) to describe software packages and
their build system. Guix also uses Scheme for programs and
libraries that implement the actual package build processes,
leading to a “two-tier” system.

This paper focuses on the programming techniques imple-
mented by Guix. Our contribution is twofold: we demon-
strate that use of Scheme and EDSLs achieves expressiveness
comparable to that of Nix’s DSL while providing a richer
and extensible programming environment; we further show
that Scheme is a profitable alternative to shell tools when
it comes to package build programs. Section 2 first gives
some background on functional package management and
its implementation in Nix. Section 3 describes the design
and implementation of Guix’s programming and packaging
interfaces. Section 4 provides an evaluation and discussion of
the current status of Guix. Section 5 presents related work,
and Section 6 concludes.

1http://www.gnu.org/software/guix/

4 ELS 2013

2. BACKGROUND
This section describes the functional package management
paradigm and its implementation in Nix. It then shows how
Guix differs, and what the rationale is.

2.1 Functional Package Management
Functional package management is a paradigm whereby the
build and installation process of a package is considered as a
pure function, without any side effects. This is in contrast
with widespread approaches to package build and installation
where the build process usually has access to all the software
installed on the machine, regardless of what its declared
inputs are, and where installation modifies files in place.

Functional package management was pioneered by the Nix
package manager [8], which has since matured to the point of
managing a complete GNU/Linux distribution [9]. To allow
build processes to be faithfully regarded as pure functions,
Nix can run them in a chroot environment that only contains
the inputs it explicitly declared; thus, it becomes impossible
for a build process to use, say, Perl, if that package was
not explicitly declared as an input of the build process. In
addition, Nix maps the list of inputs of a build process to a
statistically unique file system name; that file name is used to
identify the output of the build process. For instance, a par-
ticular build of GNU Emacs may be installed in /nix/store/-

v9zic07iar8w90zcy398r745w78a7lqs-emacs-24.2, based on
a cryptographic hash of all the inputs to that build process;
changing the compiler, configuration options, build scripts,
or any other inputs to the build process of Emacs yields
a different name. This is a form of on-disk memoization,
with the /nix/store directory acting as a cache of “function
results”—i.e., a cache of installed packages. Directories under
/nix/store are immutable.

This direct mapping from build inputs to the result’s directory
name is basis of the most important properties of a functional
package manager. It means that build processes are regarded
as referentially transparent. To put it differently, instead
of merely providing pre-built binaries and/or build recipes,
functional package managers provide binaries, build recipes,
and in effect a guarantee that a given binary matches a given
build recipe.

2.2 Nix
The idea of purely functional package started by making an
analogy between programming language paradigms and soft-
ware deployment techniques [8]. The authors observed that,
in essence, package management tools typically used on free
operating systems, such as RPM and Debian’s APT, imple-
ment an imperative software deployment paradigm. Package
installation, removal, and upgrade are all done in-place, by
mutating the operating system’s state. Likewise, changes
to the operating system’s configuration are done in-place by
changing configuration files.

This imperative approach has several drawbacks. First, it
makes it hard to reproduce or otherwise describe the OS
state. Knowing the list of installed packages and their version
is not enough, because the installation procedure of packages
may trigger hooks to change global system configuration
files [4, 7], and of course users may have done additional
modifications. Second, installation, removal, and upgrade are

not transactional; interrupting them may leave the system in
an undefined, or even unusable state, where some of the files
have been altered. Third, rolling back to a previous system
configuration is practically impossible, due to the absence of
a mechanism to formally describe the system’s configuration.

Nix attempts to address these shortcomings through the
functional software deployment paradigm: installed packages
are immutable, and build processes are regarded as pure
functions, as explained before. Thanks to this property,
it implements transparent source/binary deployment: the
directory name of a build result encodes all the inputs of its
build process, so if a trusted server provides that directory,
then it can be directly downloaded from there, avoiding the
need for a local build.

Each user has their own profile, which contains symbolic links
to the /nix/store directories of installed packages. Thus,
users can install packages independently, and the actual
storage is shared when several users install the very same
package in their profile. Nix comes with a garbage collector,
which has two main functions: with conservative scanning,
it can determine what packages a build output refers to; and
upon user request, it can delete any packages not referenced
via any user profile.

To describe and compose build processes, Nix implements
its own domain-specific language (DSL), which provides a
convenient interface to the build and storage mechanisms
described above. The Nix language is purely functional,
lazy, and dynamically typed; it is similar to that of the Vesta
software configuration system [11]. It comes with a handful of
built-in data types, and around 50 primitives. The primitive
to describe a build process is derivation.

1: derivation {

2: name = "example-1.0";

3: builder = "${./static-bash}";

4: args = ["-c" "echo hello > $out"];

5: system = "x86_64-linux";

6: }

Figure 1: Call to the derivation primitive in the Nix
language.

Figure 1 shows code that calls the derivation function with
one argument, which is a dictionary. It expects at least
the four key/value pairs shown above; together, they define
the build process and its inputs. The result is a derivation,
which is essentially the promise of a build. The derivation
has a low-level on-disk representation independent of the Nix
language—in other words, derivations are to the Nix language
what assembly is to higher-level programming languages.
When this derivation is instantiated—i.e., built—, it runs
the command static-bash -c "echo hello > $out" in a
chroot that contains nothing but the static-bash file; in
addition, each key/value pair of the derivation argument
is reified in the build process as an environment variable,
and the out environment variable is defined to point to the
output /nix/store file name.

Before the build starts, the file static-bash is imported
under /nix/store/...-static-bash, and the value associated

ELS 2013 5

with builder is substituted with that file name. This ${...}
form on line 3 for string interpolation makes it easy to insert
Nix-language values, and in particular computed file names,
in the contents of build scripts. The Nix-based GNU/Linux
distribution, NixOS, has most of its build scripts written in
Bash, and makes heavy use of string interpolation on the
Nix-language side.

All the files referenced by derivations live under /nix/store,
called the store. In a multi-user setup, users have read-
only access to the store, and all other accesses to the store
are mediated by a daemon running as root. Operations
such as importing files in the store, computing a derivation,
building a derivation, or running the garbage collector are
all implemented as remote procedure calls (RPCs) to the
daemon. This guarantees that the store is kept in a consis-
tent state—e.g., that referenced files and directories are not
garbage-collected, and that the contents of files and directo-
ries are genuine build results of the inputs hashed in their
name.

The implementation of the Nix language is an interpreter writ-
ten in C++. In terms of performance, it does not compete
with typical general-purpose language implementations; that
is often not a problem given its specific use case, but some-
times requires rewriting functions, such as list-processing
tools, as language primitives in C++. The language itself is
not extensible: it has no macros, a fixed set of data types,
and no foreign function interface.

2.3 From Nix to Guix
Our main contribution with GNU Guix is the use of Scheme
for both the composition and description of build processes,
and the implementation of build scripts. In other words,
Guix builds upon the build and deployment primitives of
Nix, but replaces the Nix language by Scheme with embedded
domain-specific languages (EDSLs), and promotes Scheme as
a replacement for Bash in build scripts. Guix is implemented
using GNU Guile 2.02, a rich implementation of Scheme
based on a compiler and bytecode interpreter that supports
the R5RS and R6RS standards. It reuses the build primitives
of Nix by making remote procedure calls (RPCs) to the Nix
build daemon.

We claim that using an embedded DSL has numerous practical
benefits over an independent DSL: tooling (use of Guile’s com-
piler, debugger, and REPL, Unicode support, etc.), libraries
(SRFIs, internationalization support, etc.), and seamless in-
tegration in larger programs. To illustrate this last point,
consider an application that traverses the list of available
packages and processes it—for instance to filter packages
whose name matches a pattern, or to render it as HTML. A
Scheme program can readily and efficiently do it with Guix,
where packages are first-class Scheme objects; conversely,
writing such an implementation with an external DSL such
as Nix requires either extending the language implementa-
tion with the necessary functionality, or interfacing with it
via an external representation such as XML, which is often
inefficient and lossy.

We show that use of Scheme in build scripts is natural, and

2http://www.gnu.org/software/guile/

can achieve conciseness comparable to that of shell scripts,
but with improved expressivity and clearer semantics.

The next section describes the main programming interfaces
of Guix, with a focus on its high-level package description
language and “shell programming” substitutes provided to
builder-side code.

3. BUILD EXPRESSIONS AND PACKAGE
DESCRIPTIONS

Our goal when designing Guix was to provide interfaces rang-
ing from Nix’s low-level primitives such as derivation to
high-level package declarations. The declarative interface is
a requirement to help grow and maintain a large software
distribution. This section describes the three level of abstrac-
tions implemented in Guix, and illustrates how Scheme’s
homoiconicity and extensibility were instrumental.

3.1 Low-Level Store Operations
As seen above, derivations are the central concept in Nix.
A derivation bundles together a builder and its execution
environment: command-line arguments, environment vari-
able definitions, as well as a list of input derivations whose
result should be accessible to the builder. Builders are typ-
ically executed in a chroot environment where only those
inputs explicitly listed are visible. Guix transposes Nix’s
derivation primitive literally to its Scheme interface.

1: (let* ((store (open-connection))

2: (bash (add-to-store store "static-bash"

3: #t "sha256"

4: "./static-bash")))

5: (derivation store "example-1.0"

6: "x86_64-linux"

7: bash

8: ’("-c" "echo hello > $out")

9: ’() ’()))

10:

11: ⇒
12: "/nix/store/nsswy...-example-1.0.drv"

13: #<derivation "example-1.0" ...>

Figure 2: Using the derivation primitive in Scheme
with Guix.

Figure 2 shows the example of Figure 1 rewritten to use
Guix’s low-level Scheme API. Notice how the former makes
explicit several operations not visible in the latter. First,
line 1 establishes a connection to the build daemon; line 2
explicitly asks the daemon to “intern” file static-bash into
the store; finally, the derivation call instructs the daemon
to compute the given derivation. The two arguments on
line 9 are a set of environment variable definitions to be set
in the build environment (here, it’s just the empty list), and
a set of inputs—other derivations depended on, and whose
result must be available to the build process. Two values are
returned (line 11): the file name of the on-disk representation
of the derivation, and its in-memory representation as a
Scheme record.

The build actions represented by this derivation can then
be performed by passing it to the build-derivations RPC.

6 ELS 2013

Again, its build result is a single file reading hello, and its
build is performed in an environment where the only visible
file is a copy of static-bash under /nix/store.

3.2 Build Expressions
The Nix language heavily relies on string interpolation to
allow users to insert references to build results, while hiding
the underlying add-to-store or build-derivations oper-
ations that appear explicitly in Figure 2. Scheme has no
support for string interpolation; adding it to the underlying
Scheme implementation is certainly feasible, but it’s also
unnatural.

The obvious strategy here is to instead leverage Scheme’s
homoiconicity. This leads us to the definition of build-

expression->derivation, which works similarly to deriva-

tion, except that it expects a build expression as an S-
expression instead of a builder. Figure 3 shows the same
derivation as before but rewritten to use this new interface.

1: (let ((store (open-connection))

2: (builder ’(call-with-output-file %output

3: (lambda ()

4: (display "hello")))))

5: (build-expression->derivation store

6: "example-1.0"

7: "x86_64-linux"

8: builder ’()))

9:

10: ⇒
11: "/nix/store/zv3b3...-example-1.0.drv"

12: #<derivation "example-1.0" ...>

Figure 3: Build expression written in Scheme.

This time the builder on line 2 is purely a Scheme expression.
That expression will be evaluated when the derivation is
built, in the specified build environment with no inputs. The
environment implicitly includes a copy of Guile, which is
used to evaluate the builder expression. By default this
is a stand-alone, statically-linked Guile, but users can also
specify a derivation denoting a different Guile variant.

Remember that this expression is run by a separate Guile pro-
cess than the one that calls build-expression->derivation:
it is run by a Guile process launched by the build daemon,
in a chroot. So, while there is a single language for both
the “host” and the “build” side, there are really two strata of
code, or tiers: the host-side, and the build-side code3.

Notice how the output file name is reified via the %output

variable automatically added to builder’s scope. Input file
names are similarly reified through the %build-inputs vari-
able (not shown here). Both variables are non-hygienically
introduced in the build expression by build-expression-

>derivation.

Sometimes the build expression needs to use functionality
from other modules. For modules that come with Guile, the

3The term “stratum” is this context was coined by Manuel
Serrano et al. for their work on Hop where a similar situation
arises [17].

expression just needs to be augmented with the needed (use-

modules ...) clause. Conversely, external modules first
need to be imported into the derivation’s build environment
so the build expression can use them. To that end, the
build-expression->derivation procedure has an optional
#:modules keyword parameter, allowing additional modules
to be imported into the expression’s environment.

When #:modules specifies a non-empty module list, an aux-
iliary derivation is created and added as an input to the
initial derivation. That auxiliary derivation copies the mod-
ule source and compiled files in the store. This mechanism
allows build expressions to easily use helper modules, as
described in Section 3.4.

3.3 Package Declarations
The interfaces described above remain fairly low-level. In
particular, they explicitly manipulate the store, pass around
the system type, and are very distant from the abstract
notion of a software package that we want to focus on. To
address this, Guix provides a high-level package definition
interface. It is designed to be purely declarative in common
cases, while allowing users to customize the underlying build
process. That way, it should be intelligible and directly usable
by packagers will little or no experience with Scheme. As an
additional constraint, this extra layer should be efficient in
space and time: package management tools need to be able
to load and traverse a distribution consisting of thousands
of packages.

Figure 4 shows the definition of the GNU Hello package, a
typical GNU package written in C and using the GNU build
system—i.e., a configure script that generates a makefile
supporting standardized targets such as check and install.
It is a direct mapping of the abstract notion of a software
package and should be rather self-descriptive.

The inputs field specifies additional dependencies of the
package. Here line 16 means that Hello has a dependency
labeled "gawk" on GNU Awk, whose value is that of the
gawk global variable; gawk is bound to a similar package

declaration, omitted for conciseness.

The arguments field specifies arguments to be passed to
the build system. Here #:configure-flags, unsurprisingly,
specifies flags for the configure script. Its value is quoted
because it will be evaluated in the build stratum—i.e., in
the build process, when the derivation is built. It refers to
the %build-inputs global variable introduced in the build
stratum by build-expression->derivation, as seen before.
That variable is bound to an association list that maps input
names, like "gawk", to their actual directory name on disk,
like /nix/store/...-gawk-4.0.2.

The code in Figure 4 demonstrates Guix’s use of embedded
domain-specific languages (EDSLs). The package form, the
origin form (line 5), and the base32 form (line 9) are ex-
panded at macro-expansion time. The package and origin

forms expand to a call to Guile’s make-struct primitive,
which instantiates a record of the given type and with the
given field values4; these macros look up the mapping of

4The make-struct instantiates SRFI-9-style flat records,

ELS 2013 7

1: (define hello

2: (package

3: (name "hello")

4: (version "2.8")

5: (source (origin

6: (method url-fetch)

7: (uri (string-append "mirror://gnu/hello/hello-"

8: version ".tar.gz"))

9: (sha256 (base32 "0wqd8..."))))

10: (build-system gnu-build-system)

11: (arguments

12: ’(#:configure-flags

13: ‘("-disable-color"

14: ,(string-append "-with-gawk="

15: (assoc-ref %build-inputs "gawk")))))

16: (inputs ‘(("gawk" ,gawk)))

17: (synopsis "GNU Hello")

18: (description "An illustration of GNU’s engineering practices.")

19: (home-page "http://www.gnu.org/software/hello/")

20: (license gpl3+)))

Figure 4: A package definition using the high-level interface.

field names to field indexes, such that that mapping incurs
no run-time overhead, in a way similar to SRFI-35 records
[14]. They also bind fields as per letrec*, allowing them to
refer to one another, as on line 8 of Figure 4. The base32

macro simply converts a literal string containing a base-32
representation into a bytevector literal, again allowing the
conversion and error-checking to be done at expansion time
rather than at run-time.

1: (define-record-type* <package>
2: package make-package

3: package?

4:

5: (name package-name)

6: (version package-version)

7: (source package-source)

8: (build-system package-build-system)

9: (arguments package-arguments

10: (default ’()) (thunked))

11:

12: (inputs package-inputs

13: (default ’()) (thunked))

14: (propagated-inputs package-propagated-inputs

15: (default ’()))

16:

17: (synopsis package-synopsis)

18: (description package-description)

19: (license package-license)

20: (home-page package-home-page)

21:

22: (location package-location

23: (default (current-source-location))))

Figure 5: Definition of the package record type.

which are essentially vectors of a disjoint type. In Guile
they are lightweight compared to CLOS-style objects, both
in terms of run time and memory footprint. Furthermore,
make-struct is subject to inlining.

The package and origin macros are generated by a syntax-

case hygienic macro [19], define-record-type*, which is
layered above SRFI-9’s syntactic record layer [13]. Figure 5
shows the definition of the <package> record type (the
<origin> record type, not shown here, is defined simi-
larly.) In addition to the name of a procedural constructor,
make-package, as with SRFI-9, the name of a syntactic con-
structor, package, is given (likewise, origin is the syntactic
constructor of <origin>.) Fields may have a default value,
introduced with the default keyword. An interesting use
of default values is the location field: its default value is
the result of current-source-location, which is itself a
built-in macro that expands to the source file location of
the package form. Thus, records defined with the package

macro automatically have a location field denoting their
source file location. This allows the user interface to report
source file location in error messages and in package search
results, thereby making it easier for users to “jump into” the
distribution’s source, which is one of our goals.

1: (package (inherit hello)

2: (version "2.7")

3: (source

4: (origin

5: (method url-fetch)

6: (uri

7: "mirror://gnu/hello/hello-2.7.tar.gz")

8: (sha256

9: (base32 "7dqw3...")))))

Figure 6: Creating a variant of the hello package.

The syntactic constructors generated by define-record-

type* additionally support a form of functional setters (some-
times referred to as “lenses” [15]), via the inherit keyword.
It allows programmers to create new instances that differ
from an existing instance by one or more field values. A
typical use case is shown in Figure 6: the expression shown
evaluates to a new <package> instance whose fields all have

8 ELS 2013

the same value as the hello variable of Figure 4, except for
the version and source fields. Under the hood, again, this
expands to a single make-struct call with struct-ref calls
for fields whose value is reused.

The inherit feature supports a very useful idiom. It allows
new package variants to be created programmatically, con-
cisely, and in a purely functional way. It is notably used to
bootstrap the software distribution, where bootstrap vari-
ants of packages such as GCC or the GNU libc are built
with different inputs and configuration flags than the final
versions. Users can similarly define customized variants of
the packages found in the distribution. This feature also
allows high-level transformations to be implemented as pure
functions. For instance, the static-package procedure takes
a <package> instance, and returns a variant of that pack-
age that is statically linked. It operates by just adding the
relevant configure flags, and recursively applying itself to
the package’s inputs.

Another application is the on-line auto-updater: when in-
stalling a GNU package defined in the distribution, the guix

package command automatically checks whether a newer
version is available upstream from ftp.gnu.org, and offers
the option to substitute the package’s source with a fresh
download of the new upstream version—all at run time.This
kind of feature is hardly accessible to an external DSL im-
plementation. Among other things, this feature requires
networking primitives (for the FTP client), which are typi-
cally unavailable in an external DSL such as the Nix language.
The feature could be implemented in a language other than
the DSL—for instance, Nix can export its abstract syntax
tree as XML to external programs. However, this approach is
often inefficient, due to the format conversion, and lossy: the
exported representation may be either be too distant from
the source code, or too distant from the preferred abstraction
level. The author’s own experience writing an off-line auto-
updater for Nix revealed other specific issues; for instance,
the Nix language is lazily evaluated, but to make use of its
XML output, one has to force strict evaluation, which in turn
may generate more data than needed. In Guix, <package>
instances have the expected level of abstraction, and they
are readily accessible as first-class Scheme objects.

Sometimes it is desirable for the value of a field to depend
on the system type targeted. For instance, for bootstrapping
purposes, MIT/GNU Scheme’s build system depends on
pre-compiled binaries, which are architecture-dependent; its
input field must be able to select the right binaries depending
on the architecture. To allow field values to refer to the target
system type, we resort to thunked fields, as shown on line
13 of Figure 5. These fields have their value automatically
wrapped in a thunk (a zero-argument procedure); when
accessing them with the associated accessor, the thunk is
transparently invoked. Thus, the values of thunked fields
are computed lazily; more to the point, they can refer to
dynamic state in place at their invocation point. In particular,
the package-derivation procedure (shortly introduced) sets
up a current-system dynamically-scoped parameter, which
allows field values to know what the target system is.

Finally, both <package> and <origin> records have an
associated “compiler” that turns them into a derivation.

origin-derivation takes an <origin> instance and returns
a derivation that downloads it, according to its method field.
Likewise, package-derivation takes a package and returns
a derivation that builds it, according to its build-system

and associated arguments (more on that in Section 3.4). As
we have seen on Figure 4, the inputs field lists dependencies
of a package, which are themselves <package> objects; the
package-derivation procedure recursively applies to those
inputs, such that their derivation is computed and passed as
the inputs argument of the lower-level build-expression-
>derivation.

Guix essentially implements deep embedding of DSLs, where
the semantics of the packaging DSL is interpreted by a ded-
icated compiler [12]. Of course the DSLs defined here are
simple, but they illustrate how Scheme’s primitive mecha-
nisms, in particular macros, make it easy to implement such
DSLs without requiring any special support from the Scheme
implementation.

3.4 Build Programs
The value of the build-system field, as shown on Figure 4,
must be a build-system object, which is essentially a wrap-
per around two procedure: one procedure to do a native
build, and one to do a cross-build. When the aforementioned
package-derivation (or package-cross-derivation, when
cross-building) is called, it invokes the build system’s build
procedure, passing it a connection to the build daemon, the
system type, derivation name, and inputs. It is the build
system’s responsibility to return a derivation that actually
builds the software.

(define* (gnu-build #:key (phases %standard-phases)

#:allow-other-keys

#:rest args)

;; Run all the PHASES in order, passing them ARGS.

;; Return true on success.

(every (match-lambda

((name . proc)

(format #t "starting phase ‘~a’~%" name)

(let ((result (apply proc args)))

(format #t "phase ‘~a’ done~%" name)

result)))

phases))

Figure 7: Entry point of the builder side code of
gnu-build-system.

The gnu-build-system object (line 10 of Figure 4) provides
procedures to build and cross-build software that uses the
GNU build system or similar. In a nutshell, it runs the
following phases by default:

1. unpack the source tarball, and change the current di-
rectory to the resulting directory;

2. patch shebangs on installed files—e.g., replace #!/-

bin/sh by #!/nix/store/...-bash-4.2/bin/sh; this
is required to allow scripts to work with our unusual
file system layout;

3. run ./configure --prefix=/nix/store/..., followed
by make and make check

ELS 2013 9

4. run make install and patch shebangs in installed files.

Of course, that is all implemented in Scheme, via build-

expression->derivation. Supporting code is available as
a build-side module that gnu-build-system automatically
adds as an input to its build scripts. The default build
programs just call the procedure of that module that runs
the above phases.

The (guix build gnu-build-system) module contains the
implementation of the above phases; it is imported on the
builder side. The phases are modeled as follows: each phase
is a procedure accepting several keyword arguments, and
ignoring any keyword arguments it does not recognize5. For
instance the configure procedure is in charge of running
the package’s ./configure script; that procedure honors the
#:configure-flags keyword parameter seen on Figure 4.
Similarly, the build, check, and install procedures run the
make command, and all honor the #:make-flags keyword
parameter.

All the procedures implementing the standard phases of
the GNU build system are listed in the %standard-phases

builder-side variable, in the form of a list of phase name-
/procedure pairs. The entry point of the builder-side code of
gnu-build-system is shown on Figure 7. It calls all the phase
procedures in order, by default those listed in the %standard-

phases association list, passing them all the arguments it
got; its return value is true when every procedure’s return
value is true.

(define howdy

(package (inherit hello)

(arguments

’(#:phases

(alist-cons-after

’configure ’change-hello

(lambda* (#:key system #:allow-other-keys)

(substitute* "src/hello.c"

(("Hello, world!")

(string-append "Howdy! Running on "

system "."))))

%standard-phases)))))

Figure 8: Package specification with custom build
phases.

The arguments field, shown on Figure 4, allows users to pass
keyword arguments to the builder-side code. In addition to
the #:configure-flags argument shown on the figure, users
may use the #:phases argument to specify a different set of
phases. The value of the #:phases must be a list of phase
name/procedure pairs, as discussed above. This allows users
to arbitrarily extend or modify the behavior of the build
system. Figure 8 shows a variant of the definition in Figure 4
that adds a custom build phase. The alist-cons-after

procedure is used to add a pair with change-hello as its

5Like many Scheme implementations, Guile supports named
or keyword arguments as an extension to the R5 and R6RS.
In addition, procedure definitions whose formal argument
list contains the #:allow-other-keys keyword ignore any
unrecognized keyword arguments that they are passed.

first item and the lambda* as its second item right after the
pair in %standard-phases whose first item is configure; in
other words, it reuses the standard build phases, but with
an additional change-hello phase right after the configure

phase. The whole alist-cons-after expression is evaluated
on the builder side.

This approach was inspired by that of NixOS, which uses
Bash for its build scripts. Even with “advanced” Bash fea-
tures such as functions, arrays, and associative arrays, the
phases mechanism in NixOS remains limited and fragile,
often leading to string escaping issues and obscure error re-
ports due to the use of eval. Again, using Scheme instead of
Bash unsurprisingly allows for better code structuring, and
improves flexibility.

Other build systems are provided. For instance, the standard
build procedure for Perl packages is slightly different: mainly,
the configuration phase consists in running perl Makefile.-

PL, and test suites are run with make test instead of make

check. To accommodate that, Guix provides perl-build-

system. Its companion build-side module essentially calls
out to that of gnu-build-system, only with appropriate
configure and check phases. This mechanism is similarly
used for other build systems such as CMake and Python’s
build system.

(substitute* (find-files "gcc/config"

"^gnu-user(64)?\\.h$")

(("#define LIB_SPEC (.*)$" _ suffix)

(string-append "#define LIB_SPEC \"-L" libc

"/lib \" " suffix "\n"))

(("#define STARTFILE_SPEC.*$" line)

(string-append "#define STARTFILE_PREFIX_1 \""

libc "/lib\"\n" line)))

Figure 9: The substitute* macro for sed-like substi-
tutions.

Build programs often need to traverse file trees, modify files
according to a given pattern, etc. One example is the “patch
shebang” phase mentioned above: all the source files must
be traversed, and those starting with #! are candidate to
patching. This kind of task is usually associated with “shell
programming”—as is the case with the build scripts found
in NixOS, which are written in Bash, and resort to sed,
find, etc. In Guix, a build-side Scheme module provides the
necessary tools, built on top of Guile’s operating system in-
terface. For instance, find-files returns a list of files whose
names matches a given pattern; patch-shebang performs
the #! adjustment described above; copy-recursively and
delete-recursively are the equivalent, respectively, of the
shell cp -r and rm -rf commands; etc.

An interesting example is the substitute* macro, which
does sed-style substitution on files. Figure 9 illustrates its
use to patch a series of files returned by find-files. There
are two clauses, each with a pattern in the form of a POSIX
regular expression; each clause’s body returns a string, which
is the substitution for any matching line in the given files.
In the first clause’s body, suffix is bound to the submatch
corresponding to (.*) in the regexp; in the second clause,
line is bound to the whole match for that regexp. This
snippet is nearly as concise than equivalent shell code using

10 ELS 2013

find and sed, and it is much easier to work with.

Build-side modules also include support for fetching files over
HTTP (using Guile’s web client module) and FTP, as needed
to realize the derivation of origins (line 5 of Figure 4). TLS
support is available when needed through the Guile bindings
of the GnuTLS library.

4. EVALUATION AND DISCUSSION
This section discusses the current status of Guix and its
associated GNU/Linux distribution, and outlines key aspects
of their development.

4.1 Status
Guix is still a young project. Its main features as a package
manager are already available. This includes the APIs dis-
cussed in Section 3, as well as command-line interfaces. The
development of Guix’s interfaces was facilitated by the reuse
of Nix’s build daemon as the storage and deployment layer.

The guix package command is the main user interface: it
allows packages to be browsed, installed, removed, and up-
graded. The command takes care of maintaining meta-data
about installed packages, as well as a per-user tree of symlinks
pointing to the actual package files in /nix/store, called
the user profile. It has a simple interface. For instance, the
following command installs Guile and removes Bigloo from
the user’s profile, as a single transaction:

$ guix package --install guile --remove bigloo

The transaction can be rolled back with the following com-
mand:

$ guix package --roll-back

The following command upgrades all the installed packages
whose name starts with a ‘g’:

$ guix package --upgrade ’^g.*’

The --list-installed and --list-available options can
be used to list the installed or available packages.

As of this writing, Guix comes with a user-land distribution
of GNU/Linux. That is, it allows users to install packages
on top of a running GNU/Linux system. The distribution
is self-contained, as explained in Section 4.3, and available
on x86_64 and i686. It provides more than 400 packages,
including core GNU packages such as the GNU C Library,
GCC, Binutils, and Coreutils, as well as the Xorg software
stack and applications such as Emacs, TeX Live, and several
Scheme implementations. This is roughly a tenth of the
number of packages found in mature free software distribu-
tions such as Debian. Experience with NixOS suggests that
the functional model, coupled with continuous integration,
allows the distribution to grow relatively quickly, because
it is always possible to precisely monitor the status of the
whole distribution and the effect of a change—unlike with im-
perative distributions, where the upgrade of a single package
can affect many applications in many unpredictable ways [7].

From a programming point of view, packages are exposed as
first-class global variables. For instance, the (gnu packages

guile) module exports two variables, guile-1.8 and guile-

2.0, each bound to a <package> variable corresponding to
the legacy and current stable series of Guile. In turn, this
module imports (gnu packages multiprecision), which
exports a gmp global variable, among other things; that gmp

variable is listed in the inputs field of guile and guile-2.0.
The package manager and the distribution are just a set of
“normal” modules that any program or library can use.

Packages carry meta-data, as shown in Figure 4. Synopses
and descriptions are internationalized using GNU Gettext—
that is, they can be translated in the user’s native language,
a feature that comes for free when embedding the DSL in
a mature environment like Guile. We are in the process of
implementing mechanisms to synchronize part of that meta-
data, such as synopses, with other databases of the GNU
Project.

While the distribution is not bootable yet, it already includes
a set of tools to build bootable GNU/Linux images for the
QEMU emulator. This includes a package for the kernel it-
self, as well as procedures to build QEMU images, and Linux
“initrd”—the “initial RAM disk” used by Linux when booting,
and which is responsible for loading essential kernel mod-
ules and mounting the root file system, among other things.
For example, we provide the expression->derivation-in-

linux-vm: it works in a way similar to build-expression-

>derivation, except that the given expression is evaluated
in a virtual machine that mounts the host’s store over CIFS.
As a demonstration, we implemented a derivation that builds
a “boot-to-Guile” QEMU image, where the initrd contains
a statically-linked Guile that directly runs a boot program
written in Scheme [5].

The performance-critical parts are the derivation primitives
discussed in Section 3. For instance, the computation of
Emacs’s derivation involves that of 292 other derivations—
that is, 292 invocations of the derivation primitive—corres-
ponding to 582 RPCs6. The wall time of evaluating that
derivation is 1.1 second on average on a 2.6 GHz x86_64

machine. This is acceptable as a user, but 5 times slower
than Nix’s clients for a similar derivation written in the Nix
language. Profiling shows that Guix spends most of its time
in its derivation serialization code and RPCs. We interpret
this as a consequence of Guix’s unoptimized code, as well as
the difference between native C++ code and our interpreted
bytecode.

4.2 Purity
Providing pure build environments that do not honor the
“standard” file system layout turned out not to be a problem,
as already evidenced in NixOS [8]. This is largely thanks
to the ubiquity of the GNU build system, which strives to
provide users with ways to customize the layout of installed
packages and to adjust to the user’s file locations.

The only directories visible in the build chroot environment
are /dev, /proc, and the subset of /nix/store that is ex-

6The number of derivation calls and add-to-store RPCs
is reduced thanks to the use of client-side memoization.

ELS 2013 11

plicitly declared in the derivation being built. NixOS makes
one exception: it relies on the availability of /bin/sh in the
chroot [9]. We remove that exception, and instead auto-
matically patch script “shebangs” in the package’s source,
as noted in Section 3.4. This turned out to be more than
just a theoretical quest for “purity”. First, some GNU/Linux
distributions use Dash as the implementation of /bin/sh,
while others use Bash; these are two variants of the Bourne
shell, with different extensions, and in general different be-
havior. Second, /bin/sh is typically a dynamically-linked
executable. So adding /bin to the chroot is not enough; one
typically needs to also add /lib* and /lib/*-linux-gnu to
the chroot. At that point, there are many impurities, and
a great potential for non-reproducibility—which defeats the
purpose of the chroot.

Several packages had to be adjusted for proper function in
the absence of /bin/sh [6]. In particular, libc’s system and
popen functions had to be changed to refer to “our” Bash
instance. Likewise, GNU Make, GNU Awk, GNU Guile, and
Python needed adjustment. Occasionally, occurrences of /-

bin/sh are not be handled automatically, for instance in test
suites; these have to be patched manually in the package’s
recipe.

4.3 Bootstrapping
Bootstrapping in our context refers to how the distribution
gets built “from nothing”. Remember that the build environ-
ment of a derivation contains nothing but its declared inputs.
So there’s an obvious chicken-and-egg problem: how does
the first package get built? How does the first compiler get
compiled?

The GNU system we are building is primarily made of C code,
with libc at its core. The GNU build system itself assumes
the availability of a Bourne shell, traditional Unix tools
provided by GNU Coreutils, Awk, Findutils, sed, and grep.
Furthermore, our build programs are written in Guile Scheme.
Consequently, we rely on pre-built statically-linked binaries
of GCC, Binutils, libc, and the other packages mentioned
above to get started.

Figure 10 shows the very beginning of the dependency graph
of our distribution. At this level of detail, things are slightly
more complex. First, Guile itself consists of an ELF exe-
cutable, along with many source and compiled Scheme files
that are dynamically loaded when it runs. This gets stored in
the guile-2.0.7.tar.xz tarball shown in this graph. This
tarball is part of Guix’s “source” distribution, and gets in-
serted into the store with add-to-store.

But how do we write a derivation that unpacks this tarball
and adds it to the store? To solve this problem, the guile-

bootstrap-2.0.drv derivation—the first one that gets built—
uses bash as its builder, which runs build-bootstrap-guile.-
sh, which in turn calls tar to unpack the tarball. Thus, bash,
tar, xz, and mkdir are statically-linked binaries, also part of
the Guix source distribution, whose sole purpose is to allow
the Guile tarball to be unpacked.

Once guile-bootstrap-2.0.drv is built, we have a function-
ing Guile that can be used to run subsequent build programs.
Its first task is to download tarballs containing the other

pre-built binaries—this is what the .tar.xz.drv derivations
do. Guix modules such as ftp-client.scm are used for
this purpose. The module-import.drv derivations import
those modules in a directory in the store, using the origi-
nal layout7. The module-import-compiled.drv derivations
compile those modules, and write them in an output direc-
tory with the right layout. This corresponds to the #:module

argument of build-expression->derivation mentioned in
Section 3.2.

Finally, the various tarballs are unpacked by the deriva-
tions gcc-bootstrap-0.drv, glibc-bootstrap-0.drv, etc.,
at which point we have a working C GNU tool chain. The
first tool that gets built with these tools (not shown here)
is GNU Make, which is a prerequisite for all the following
packages.

Bootstrapping is complete when we have a full tool chain
that does not depend on the pre-built bootstrap tools shown
in Figure 10. Ways to achieve this are known, and notably
documented by the Linux From Scratch project [1]. We can
formally verify this no-dependency requirement by checking
whether the files of the final tool chain contain references to
the /nix/store directories of the bootstrap inputs.

Obviously, Guix contains package declarations to build the
bootstrap binaries shown in Figure 10. Because the final tool
chain does not depend on those tools, they rarely need to
be updated. Having a way to do that automatically proves
to be useful, though. Coupled with Guix’s nascent support
for cross-compilation, porting to a new architecture will boil
down to cross-building all these bootstrap tools.

5. RELATED WORK
Numerous package managers for Scheme programs and li-
braries have been developed, including Racket’s PLaneT,
Dorodango for R6RS implementations, Chicken Scheme’s
“Eggs”, Guildhall for Guile, and ScmPkg [16]. Unlike GNU Guix,
they are typically limited to Scheme-only code, and take the
core operating system software for granted. To our knowl-
edge, they implement the imperative package management
paradigm, and do not attempt to support features such as
transactional upgrades and rollbacks. Unsurprisingly, these
tools rely on package descriptions that more or less resemble
those described in Section 3.3; however, in the case of at
least ScmPkg, Dorodango, and Guildhall, package descrip-
tions are written in an external DSL, which happens to use
s-expression syntax.

In [21], the authors illustrate how the units mechanism of
MzScheme modules could be leveraged to improve operating
system packaging systems. The examples therein focus on
OS services, and multiple instantiation thereof, rather than
on package builds and composition.

The Nix package manager is the primary source of inspiration
for Guix [8, 9]. As noted in Section 2.3, Guix reuses the low-
level build and deployment mechanisms of Nix, but differs
in its programming interface and preferred implementation
language for build scripts. While the Nix language relies on

7In Guile, module names are a list of symbols, such as (guix
ftp-client), which map directly to file names, such as
guix/ftp-client.scm.

12 ELS 2013

gcc-bootstrap-0.drv

tar

glibc-bootstrap-0.drv

gcc-bootstrap-0-guile-builder

glibc-bootstrap-0-guile-builder build-bootstrap-guile.sh

xz

module-import.drv

module-import-compiled.drv

gcc-4.7.2.tar.xz.drv

bash

guile-bootstrap-2.0.drv

glibc-2.17.tar.xz.drv

module-import.drv

module-import-compiled.drv

module-import-guile-builder

utils.scm

module-import-guile-builder

gcc-4.7.2.tar.xz-guile-builder

ftp-client.scm download.scm

module-import-compiled-guile-builder

glibc-2.17.tar.xz-guile-builder

mkdir guile-2.0.7.tar.xz

module-import-compiled-guile-builder

Figure 10: Dependency graph of the software distribution bootstrap.

laziness to ensure that only packages needed are built [9], we
instead support ad hoc laziness with the package form. Nix
and Guix have the same application: packaging of a complete
GNU/Linux distribution.

Before Nix, the idea of installing each package in a directory
of its own and then managing symlinks pointing to those
was already present in a number of systems. In particular,
the Depot [3], Store [2], and then GNU Stow [10] have long
supported this approach. GNU’s now defunct package man-
agement project called ‘stut’, ca. 2005, used that approach,
with Stow as a back-end. A “Stow file system”, or stowfs,
has been available in the GNU Hurd operating system core
to offer a dynamic and more elegant approach to user profiles,
compared to symlink trees. The storage model of Nix/Guix
can be thought of as a formalization of Stow’s idea.

Like Guix and Nix, Vesta is a purely functional build system
[11]. It uses an external DSL close to the Nix language. How-
ever, the primary application of Vesta is fine-grain software
build operations, such as compiling a single C file. It is a
developer tool, and does not address deployment to end-user
machines. Unlike Guix and Nix, Vesta tries hard to support
the standard Unix file system layout, relying on a virtual
file system to “map” files to their right location in the build
environment.

Hop defines a multi-tier extension of Scheme to program
client/server web applications [17]. It allows client code to
be introduced (“quoted”) in server code, and server code
to be invoked from client code. There’s a parallel between
the former and Guix’s use of Scheme in two different strata,
depicted in Section 3.2.

Scsh provides a complete interface to substitute Scheme in
“shell programming” tasks [18]. Since it spans a wide range of
applications, it goes beyond the tools discussed in Section 3.4
some ways, notably by providing a concise process notation
similar to that of typical Unix shells, and S-expression regular
expressions (SREs). However, we chose not to use it as its

port to Guile had been unmaintained for some time, and
Guile has since grown a rich operating system interface on
top of which it was easy to build the few additional tools we
needed.

6. CONCLUSION
GNU Guix is a contribution to package management of free
operating systems. It builds on the functional paradigm
pioneered by the Nix package manager [8], and benefits
from its unprecedented feature set—transactional upgrades
and roll-back, per-user unprivileged package management,
garbage collection, and referentially-transparent build pro-
cesses, among others.

We presented Guix’s two main contributions from a pro-
gramming point of view. First, Guix embeds a declarative
domain-specific language in Scheme, allowing it to benefit
from its associated tool set. Embedding in a general-purpose
language has allowed us to easily support internationaliza-
tion of package descriptions, and to write a fast keyword
search mechanism; it has also permitted novel features, such
as an on-line auto-updater. Second, its build programs and
libraries are also written in Scheme, leading to a unified
programming environment made of two strata of code.

We hope to make Guix a good vehicle for an innovative
free software distribution. The GNU system distribution we
envision will give Scheme an important role just above the
operating system interface.

Acknowledgments
The author would like to thank the Guix contributors for their
work growing the system: Andreas Enge, Nikita Karetnikov,
Cyril Roelandt, and Mark H. Weaver. We are also grateful
to the Nix community, and in particular to Eelco Dolstra for
his inspiring PhD work that led to Nix. Lastly, thanks to
the anonymous reviewer whose insight has helped improve
this document.

ELS 2013 13

7. REFERENCES
[1] G. Beekmans, M. Burgess, B. Dubbs. Linux From

Scratch. 2013. http://www.linuxfromscratch.org/lfs/ .

[2] A. Christensen, T. Egge. Store—a system for handling
third-party applications in a heterogeneous computer
environment. Springer Berlin Heidelberg, 1995, pp.
263–276.

[3] S. N. Clark, W. R. Nist. The Depot: A Framework for
Sharing Software Installation Across Organizational
and UNIX Platform Boundaries. In In Proceedings of
the Fourth Large Installation Systems Administrator’s
Conference (LISA ’90), pp. 37–46, 1990.

[4] R. D. Cosmo, D. D. Ruscio, P. Pelliccione, A.
Pierantonio, S. Zacchiroli. Supporting software
evolution in component-based FOSS systems. In Sci.
Comput. Program., 76(12) , Amsterdam, The
Netherlands, December 2011, pp. 1144–1160.

[5] L. Courtès. Boot-to-Guile!. February 2013.
http://lists.gnu.org/archive/html/bug-guix/2013-
02/msg00173.html .

[6] L. Courtès. Down with /bin/sh!. January 2013.
https://lists.gnu.org/archive/html/bug-guix/2013-
01/msg00041.html .

[7] O. Crameri, R. Bianchini, W. Zwaenepoel, D. Kostić.
Staged Deployment in Mirage, an Integrated Software
Upgrade Testing and Distribution System. In In
Proceedings of the Symposium on Operating Systems
Principles, 2007.

[8] E. Dolstra, M. d. Jonge, E. Visser. Nix: A Safe and
Policy-Free System for Software Deployment. In
Proceedings of the 18th Large Installation System
Administration Conference (LISA ’04), pp. 79–92,
USENIX, November 2004.

[9] E. Dolstra, A. Löh, N. Pierron. NixOS: A Purely
Functional Linux Distribution. In Journal of Functional
Programming , (5-6) , New York, NY, USA, November
2010, pp. 577–615.

[10] B. Glickstein, K. Hodgson. Stow—Managing the
Installation of Software Packages. 2012.
http://www.gnu.org/software/stow/ .

[11] A. Heydon, R. Levin, Y. Yu. Caching Function Calls
Using Precise Dependencies. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming Language
Design and Implementation, PLDI ’00, pp. 311–320,
ACM, 2000.

[12] P. Hudak. Building domain-specific embedded
languages. In ACM Computing Surveys, 28(4es) , New
York, NY, USA, December 1996, .

[13] R. Kelsey. Defining Record Types. 1999.
http://srfi.schemers.org/srfi-9/srfi-9.html .

[14] R. Kelsey, M. Sperber. Conditions. 2002.
http://srfi.schemers.org/srfi-35/srfi-35.html .

[15] T. Morris. Asymmetric Lenses in Scala. 2012.
http://days2012.scala-lang.org/ .

[16] M. Serrano, É. Gallesio. An Adaptive Package
Management System for Scheme. In Proceedings of the
2007 Symposium on Dynamic languages, DLS ’07, pp.
65–76, ACM, 2007.

[17] M. Serrano, G. Berry. Multitier Programming in Hop.
In Queue, 10(7) , New York, NY, USA, July 2012, pp.
10:10–10:22.

[18] O. Shivers, B. D. Carlstrom, M. Gasbichler, M. Sperber.
Scsh Reference Manual. 2006. http://www.scsh.net/ .

[19] M. Sperber, R. K. Dybvig, M. Flatt, A. V. Straaten, R.
B. Findler, J. Matthews. Revised6 Report on the
Algorithmic Language Scheme. In Journal of
Functional Programming , 19, 7 2009, pp. 1–301.

[20] R. M. Stallman. The GNU Manifesto. 1983.
http://www.gnu.org/gnu/manifesto.html .

[21] D. B. Tucker, S. Krishnamurthi. Applying Module
System Research to Package Management. In
Proceedings of the Tenth International Workshop on
Software Configuration Management , 2001.

14 ELS 2013

Data-transformer: an example of data-centered tool set

Michael A. Raskin
∗

Moscow Center for Continuous Mathematical Education
119002 Moscow

Bolshoy Vlasyevskiy 11
Russia

raskin@mccme.ru

ABSTRACT
This paper describes the data-transformer library, which
provides various input and output routines for data based
on a unified schema. Currently, the areas of the library’s use
include storage and retrieval of data via CLSQL; processing
CSV and similar tabular files; interaction with user via web
forms. Using the supplied schema, the data-transformer li-
brary can validate the input, process it and prepare it for
output. A data schema may also include channel-specific
details, e.g. one may specify a default HTML textarea size
to use when generating the forms.

1. INTRODUCTION
Processing medium and large arrays of data often encounters
the problem of the poor data quality. Use of human input
may even lead to incorrect data formats. The same problem
may occur when automated systems written by independent
teams for completely unrelated tasks have to interact. Usage
of wrong data formats may happen completely unexpect-
edly: spreadsheet processors sometimes convert 555-01-55
to 555-01-1955 just in case.

Finding and fixing such mistakes (both in the manually en-
tered data and in the exchange format handling) usually
relies on the automated verification. Of course, verification
is implemented differently depending on the needs of the
application in question.

Many software products use formally defined data schemas
for codifying the structure of the data being handled. We
could name XML Schemas and SQL database schemas among
the examples of such formal schemas. XML schemas are
declarative and SQL schemas are usually understood in a
declarative way; this improves portability but sometimes re-
stricts functionality.

∗This work was partially supported by RFBR grant
12-01-00864-a

The data-transformers library is a library with the oppo-
site approach: it tries to provide consistent handling with
many small features without any hope for portability. Sim-
ple things are defined declaratively, but in many cases pieces
of imperative code are included inside the schema. More-
over, declarative schemas for the separate data exchange
interfaces can be generated out of a single data-transformer
schema.

2. SCOPE
Initially this library has been written to support complex
validations when parsing CSV files. So the focus of this
specific library is on validating simple records one-by-one;
validating hierarchical data sets is not in the scope. Han-
dling of more complex data structures is done by wrappers
which use the data-transformer library functions to handle
each specific level of the hierarchy.

Interface of the data-transformer library supports many var-
ious operations, but all of them are applied to a single record
at a time (although the record fields may contain complex
data types for many of the operations).

3. DATA MODEL
The data transformers are defined by the schemas, usually
written as s-expressions. For actual data processing a data-
transformer class instance is created. It holds the data for-
mat definition, the data entry currently processed, and the
errors found during processing.

The record format is defined as an array of fields; each field
description (instance of the field-description class) holds the
specified parameters from the schema and a cache of the
computed default parameter values. All supported field pa-
rameters and the rules for deducing default values when nec-
essary are defined inside the data-transformer library, al-
though it is easy to add additional field parameters after
loading the main data-transformer library.

The default values for the field parameters usually depend
on the values of the other parameters.

The data held inside a data-transformer instance is an array
of the values (in the same order as the fields); this array
is supposed to contain the current representation of data
according to the current needs of the application. A data-
transformer instance is not meant to store the data for a
long period of time, it only keeps the performed conversions

ELS 2013 15

uniform.

4. INPUT VERIFICATION
Let us consider a typical data flow. The data-transformer li-
brary is used to validate the data in a CSV file and put it into
an SQL database. The process goes as follows. Check that
the text looks like something meaningful, then parse it into
the correct data type, check that this value doesn’t violate
any constraints, check that there are no broken cross-field
constraints, combine the fields when the input requirements
and the storage requirements are different (think of the date
formats), generate an SQL statement to save the data or
pass the list of errors to the UI code.

For example, a birth date is usually split into three columns
in our CSV forms. The text format validation ensures that
the day, the month and the year represent three integer num-
bers; parsing is done by parse-integer; the single-field vali-
dation ensures that year is in a generally reasonable range;
the cross-field validation ensures that such a date exists (i.e.
2013, 04 and 31 are legal values for a year, a month, and a
day number, but 2013-04-31 is not a legal date); and finally
the data is formatted into the YYYY-MM-DD ISO format
for the insertion into the database.

5. EXAMPLE DEFINITION
Example piece of a schema:

(defparameter *basic-schema*

‘(((:code-name :captcha-answer)

(:display-name "Task answer")

(:type :int)

(:string-verification-error

"Please enter a number")

(:data-verification-error "Wrong answer")

(:string-export ,(constantly "")))

((:code-name :email)

(:display-name "Email")

(:type :string)

, (matcher "^(.+@.+[.].+|)$")

(:string-verification-error

"Email is specified but it doesn’t

look like a valid email address"))))

(let

((schema (transformer-schema-edit-field

basic-schema :captcha-answer

(lambda (x)

(set-> x :data-verification

(lambda (y)

(and y (= y captcha-answer))))))))

; some code using the schema

)

This description (a mangled piece of a registration form) il-
lustrates the following attributes:
1) A code name for generating HTML, SQL and similar field
identifiers and a human readable name used for generating
the labels for HTML forms, CSV tables etc.
2) Types of the individual record fields. In our system the
types are used mainly for generating the SQL table defini-
tions.

3) Verification procedures. For the integer fields checking
against the regular expression ” *[+-]?[0-9]+[.]? *” is the
default text format check, so it is not specified. Although
the default check is used, a custom error message is speci-
fied for use when the format requirements are not met. The
data verification is added to the schema later, right before
the actual use. Note that the second verification step may
rely on the previous ones to ensure that it is passed nil or a
valid number.
4) Data formatting procedure. In this case, if the user en-
tered a wrong CAPTCHA answer, there is no point in show-
ing them their old answer, so we clear the field, instead.

6. CURRENTLY USED INPUT AND OUT-
PUT CHANNELS

Initial scope: CSV and SQL.

The only feature which is mostly specific for the CSV sup-
port is support for specifying a single date field and getting
separate fields for day, month and year with verification and
aggregation specified correctly by default. This is used in
some of our web forms, too.

SQL-specific features are more numerous. A record defi-
nition has to contain the list of the relevant fields in the
database; there is support for adding extra parameters and
specifying the WHERE-conditions and the source tables as
well. To simplify generating the SQL table definitions and
the queries, one may specify the foreign keys as such where
appropriate.

Creating a nice HTML output is quite similar to export-
ing data in the CSV format from the data viewpoint, one
just needs a template. However, validating the web forms
has some specifics. The data-transformer library supports
generating the input fields for web forms, getting the field
values from a Hunchentoot request object, handling the up-
loaded files (they are stored in a separate directory and the
file paths are put into the database), preparing the data for
use by the CL-Emb templates etc. Some of this function-
ality is also used for generating printable PDF documents
(CL-Emb supports generating the TEXcode just as well as
generating HTML).

7. WHAT DOES AND DOESN’T WORK FOR
US

The data-transformer library has been started to avoid a
mismatch between two data format descriptions (the code
that validates the CSV files and the SQL schema) and unify
validation. It grows organically, and therefore it is some-
times inconsistent.

When we started the project that includes the data-transformer
library, we were looking for a good validation library de-
signed to support many data exchange channels and have
not found any that met our needs. I guess I shall look bet-
ter if I have to start next big project from scratch. Or maybe
I will just take this code.

It is nice to have the field definitions always in sync, of
course. Although it is still possible that data storage and
data loading procedures are slightly mismatched, this prob-

16 ELS 2013

lem almost never occurs.

As one can see, we freely use Lisp code inside the data format
definition. This means that we don’t care about portability.
On the bright side, this means that we can easily perform
any needed check. For example, some of our online registra-
tions for various events can check whether there is enough
room for one more participant via a DB query. It is done
inside the verification procedure.

It turned out that the lack of portability means that the
data schemas are tied not only to the Common Lisp lan-
guage itself. The code is also coupled with the tools we use
(Hunchentoot, CLSQL, CL-Emb etc.) as well.

The excessive flexibility helps in an understaffed project.
For example, there is some code for the event registrations.
The main procedures of this code are almost never changed;
the changes are mostly restricted to the page templates and
fields lists, where all the definitions are relatively short.

The main problem is the frequent lack of time to find out
a way to remove small annoyances. Sometimes some code
repeatedly uses the library almost in the same way multiple
times, and it is hard to find a good way to express these
patterns. But it is probably not specific to our library.

Some functionality is still implemented in a wasteful way.
For example, currently validating web form submission it-
erates over the field list and checks whether a validation
procedure is defined for each field. It would be nice to allow
generating a progn with all the verifying code included to
remove the unnecessary branching (and the iteration over
the fields lacking the verification procedures as well).

8. SOURCE
Data-transformer library is a part of the MCCME-helpers
library (which serves as a core of one of our sites). Code
may be found at
http://mtn-host.prjek.net/viewmtn/mccme-helpers/

/branch/changes/ru.mccme.dev.lisp.mccme-helpers

ELS 2013 17

The Leonardo System and Software Individuals

Erik Sandewall
Computer and Information Science

Linköping University
58183 Linköping, Sweden

erisa@ida.liu.se

ABSTRACT
In this article we describe a software platform for cognitive
intelligent agents, called Leonardo, which has been imple-
mented in Lisp and which extends the principles underlying
the design of Lisp in several important ways. We shall first
describe Leonardo from the point of view of cognitive agents,
in order to give the motivation for the design, and then dis-
cuss how it relates to the salient characteristics of the Lisp
family of languages.

1. LEONARDO SYSTEM PHILOSOPHY
Leonardo is a Lisp-based system that has been developed
as a software platform for cognitive intelligent agents. It
is also very appropriate for other knowledge-based systems.
The present section introduces the purpose and approach
for the development of this system.

1.1 Definitions and Requirements
We define am autonomous agent as a software system that
maintains an explicit representation of actions whereby it
can not merely execute actions, but also reason about them,
plan future actions, analyze the effects of past actions, and
maintain and use an agenda. An autonomous agent is cog-
nitive if it maintains a qualitative model of its environment
and uses it for its action-related computations, for example
for the purpose of planning and plan execution. A cognitive
autonomous agent is called intelligent to the extent that its
performance of actions qualifies for this description, so that
it can be said to act intelligently.

Two characteristic properties of cognitive intelligent agents
are of particular interest for our topic, namely the capability
of learning and of delegation. One would like such an agent
to be able to learn from its own past experience, and to be
able to delegate tasks to other agents as well as to accept
delegation of tasks from others.

The learning requirement implies a requirement for longevity.

It is not interesting to have a system that can learn some-
thing during a short demo session and that loses what it has
learnt when the session ends. Meaningful learning in practi-
cal environments, robotic ones or otherwise, will only make
sense if the learning process can extend over months and
years, so that many things can be learnt successively, results
of learning can be used for further learning, and the learning
process itself can be improved by learning. Long-time learn-
ing implies that the cognitive intelligent agent itself must be
long-lived.

The delegation requirement implies that there must be a
notion of individuality [2] . Suppose you have a software
agent in your computer and you make a copy of it: is the
copy then the same agent or another one for the purpose of
delegation? Will both copies be responsible for completing
the delegated task? Questions like this suggest the need for
a concept of software individuals, ie. software artifacts for
which it is well defined what are the separate individuals.
If you make a copy of an individual then the copy shall be
considered as a separate individual, in particular for the pur-
pose of entering into contracts, for example when it comes
to delegation of tasks.

As a cognitive intelligent agent needs both the capability of
learning and the capability of delegation and cooperation, it
follows that it should be organized as a long-lived software
individual [3, 4] . This is the basic concept for the Leonardo
software platform. We shall now outline what a session with
a Leonardo individual is like. This outline corresponds to
the demo that we use in talks describing our approach.

1.2 Starting a Session with a Leonardo
Individual

A Leonardo Individual is technically a file directory with a
particular structure of subdirectories and files, and depen-
dencies between them. This directory can be moved from
one memory device to another, which is how it can have
a much longer life than the particular computer where it
is located at some point in time. The individual is active
when a computational session is started with respect to this
directory.

Each individual consists of a number of agents, some of
which may be cognitive or even intelligent, but some are
not. Each agent can perform computational sessions, but
not more than one session at a time. Agents can perform
actions during these sessions, and these are then also actions

18 ELS 2013

of the individual as a whole. Such actions may change the
individual’s environment, but also its own internal structure,
so that the individual can change over time as a result of its
own actions.

The most natural way of starting a session is to right-click
the icon representing the individual, ie. the particular di-
rectory in the file system that is the individual. This will
start a command-line dialog whereby the user can request
information from the agent. It will also (optionally) open
a window for a Session GUI whereby the user can inspect
current information in the agent and the individual.

If the user right-clicks the same icon in order to start an-
other, concurrent session with the same agent, then the sys-
tem rejects the attempt. If the user has copied the entire
directory for the individual and then starts a session with
the copy, then the system will recognize that a copy has been
made, confirm this to the user, and reorganize its contents
so as to represent that the copy is indeed another individual.
On the other hand, if the user has just moved the directory
to another place (this can only been done when no session is
in progress), then the system will not consider the individual
in question to be a new one.

The reorganization for a new individual involves obtaining
a new name for the purpose of communication between in-
dividuals, removing the individual’s memory of its own past
actions, removing the individual’s current agenda, and other
similar changes. The way for it to obtain a name is to send
a registration request to a Registrar, which is of course also
a Leonardo individual. The Registrar serves a ’society’ of
Leonardo individuals and keeps them informed about new
society members, their whereabouts and other network-level
information.

Whenever a session is started, the Leonardo software iden-
tifies its environment: what is the name of the computer
host where it is executing, what is the name of the Local
Area Network where this host is located, who is the current
owner, and so forth. The agent also creates a persistent
data object (in the form of a file in the individual’s direc-
tory structure) where it can store information about its own
actions, observed external events, and other things that per-
tain to the session in question. For this purpose it maintains
a sequential numbering of its own sessions.

To conclude, a newly started session with a Leonardo agent
resembles a session with Lisp interpreter in the sense that it
can receive commands in its command-line executive loop,
but it differs in the following ways.

• The session has a lot of information about its own in-
dividual and agent, other individuals, the owner, the
computer network structure, and so forth. All this
information is represented in the knowledge represen-
tation language that is used for Leonardo, so that it is
easily available for reasoning and other processing.

• In the style of an autonomous agent, it uses and ma-
nipulates explicit representations of its own actions.

• Through its explicit representation of information about

fellow individuals and of actions, it is able to commu-
nicate action requests to other agents, as well as to
respond to incoming action requests.

• The individual and each agent in it retains a history
of its own past sessions and the significant actions in
them.

• The characteristic information in the individual is ac-
cessible to the user via the Session GUI. This GUI can
also be extended so as to support the needs of specific
applications.

The following sections will describe these aspects in more
detail.

2. HIGHLIGHTS OF THE SYSTEM DESIGN
The Leonardo system design is analogous to the design of a
Lisp system insofar as it contains interpreter and compiler
for a programming language where programs are represented
as data structures, and the very same data structures can
also be used for expressing application data and a variety of
other languages in the system, besides the one that defines
its actions. However, there are also significant differences
from how Lisp systems are built. This section will describe
and discuss those differences.

2.1 Representation and Execution of Actions
It has already been mentioned that the Leonardo system
uses its own knowledge representation language. It is based
on the use of KR-expressions (Knowledge Representation
Expressions) which are somewhat similar to S-expressions,
but with a more expressive syntax in particular through the
use of several types of brackets. The language of evaluable
KR-expressions is called the Common Expression Language,
CEL.

Actions in Leonardo include both external and internal ac-
tions for the individual. External actions may be eg. sending
an email, or moving a robot arm. Internal actions may be
eg. changing some parts of its software according to a user
request, or constructing a decision tree for dealing with some
class of situations.

Actions are strictly different from terms. This is a ma-
jor difference from Lisp, where everything is functions and
terms, but some functions may have side-effects. Terms in
Leonardo are always evaluated functionally. For actions, on
the other hand, there is a distinction between evaluation and
execution, and execution consists of several steps.

Consider for example the following action expression in CEL:

[repeat .v <Smith.John Baker.Bob>

[send-email :to .v :msg (quotation car-143)]]

where of course .v is a variable that ranges over the two
entities in the sequence, and for each of them there is a
send-email action. In each cycle of the loop there is an
evaluation of the send-email expression, where the variable
.v is replaced by its value, and the quotation of the car in
question is computed or retrieved. The result of evaluation is
therefore simply another action expression where parameters
and terms have been replaced by their evaluated values.

ELS 2013 19

After this, the evaluated actions are to be executed. Execu-
tion takes place in three steps, namely precondition checking,
core execution, and presentation. Each action verb, such as
send-email is therefore in principle associated with three
separate things for its definition. The definition of the pre-
condition may be a stub of code, but it may also (and prefer-
ably) be an expression in logic which determines whether the
evaluated action is appropriate for core execution.

The definition of core execution may be written either in
CEL or in Lisp, and is only concerned with doing the action
as such. The outcome from the core execution routine shall
be an outcome record that indicates whether the execution
succeeded or failed, and what were the reasons for failure if
applicable. If the action also has some kind of result (newly
acquired information, for example) then this result is also
included in the outcome record.

The definition of presentation specifies how the outcome of
core execution, as described by the outcome record, is to be
presented to the user.

Conventionally written programs for ’actions’ usually inte-
grate all of these aspects into one single, procedural defini-
tion, especially in dynamic programming languages where
static precondition checking is not available. A definition of
an action may therefore contain code for checking whether
the given arguments are appropriate, and for displaying the
results to the user, both in the case of success and in the case
of failure. The definition of the core execution is sometimes
dwarfed by this surrounding code.

The organization of action execution in Leonardo has several
advantages. Specifying preconditions as logic expressions is
more compact, and if preconditions are not satisfied then the
system may use general-purpose routines for explaining the
fault to the user, thereby reducing the burden on the display
routine. When preconditions fail then it may also sometimes
be possible to invoke general-purpose planning or replanning
routines for finding a way around the problem.

The separation of the display routines is useful if the out-
come is sometimes to be presented using the Command-Line
Executive and sometimes using the Session GUI. More im-
portantly, however, this separation is essential when tasks
are sometimes to be delegated from one agent to another
one. In this case the display of the results shall probably not
be done in the host where the core execution takes place.

Similarly, when actions are delegated from one agent to an-
other then the precondition checking is likely to be shared
between the delegator and the delegee agent.

2.2 Included and Attached Facilities
A cognitive intelligent agent that is worthy of its name must
have a number of capabilities that go beyond the mere pro-
gramming language. The ability to operate a Session GUI
has already been mentioned. In Leonardo this is realized us-
ing a general-purpose web server within the Leonardo soft-
ware itself. This web server can be used both for the Session
GUI and for any situation where an application requires the
use of a web server for its specific purposes. The Session
GUI server is special in the sense that it only accepts input

from localhost clients.

The static and dynamic webpage definitions that are needed
for these servers could in principle have been written in raw
HTML, or using one of the many existing website design
software systems. However, for Leonardo we have chosen
to define a scripting language that can be used for both
webpages and ordinary text and that is tightly integrated
with the notation for defining and using actions. Just like
S-expressions can be used both for Lisp programs and for
definitions in a variety of languages such as KIF, KQML,
PDDL and others, we are using KR-expressions both for
terms, actions, preconditions, dynamic webpage definitions,
plain text (such as the source text of the present article),
and so forth. We are also beginning to use it for the display
definitions of action verbs.

This is one example of a general principle: when there is
a realistic choice, we prefer to define supporting facilities
within the framework of the Leonardo system itself, its rep-
resentation language, and its method of organizing actions
and conditions. There are several other examples of this ap-
proach. For version management of the evolving software in
Leonardo agents, for example, we use our own system which
is integrated with all other handling of program and data
files in the individual.

On the other hand, there are also some facilities that can not
reasonably be reimplemented within the Leonardo system,
such as a text editor, a web browser, or the Latex software to
mention just a few. The Leonardo system has a systematic
way of representing which software systems of these kinds
are available on each particular host where a Leonardo sys-
tem may execute, and how they shall be invoked.

2.3 Remote Facilities
In order to be full-fledged cognitive intelligent agents, Leonardo
individuals must be able to use software resources in hosts
other than their own. The Leonardo software therefore con-
tains fairly extensive facilities for access to, and download of
data sources from the Internet. This includes maintaining a
register of such sources and their characteristic properties,
login and password information for information sources, con-
version of XML and other data languages to the knowledge
representation language that is used within Leonardo, and
so forth.

Moreover, since some information resources are best accessed
by their API, the Leonardo system contains additional tools
for defining how to obtain access to such API and how to
decode the returned information.

3. PERSISTENCE AND MOBILITY
It was explained above that each Leonardo individual is a
thing that exists for a period of time and usually changes
during that period, and which, at each point in time, consists
of a directory in a computer file system, with its contents in
terms of subdirectories and files. It can only occur in one
single such place at each point in time during its existence
(except for backup copies), but it may move or be moved
between places.

A Leonardo individual is therefore a ’mobile agent’ in the

20 ELS 2013

sense that it can be moved from one host to another, or
from one memory device to another, and if it is located on a
detachable memory device then it can continue to function
even if that device is moved from one host to another. Such
moves are only done manually in the projects where we use
the system. It would be straightforward to define an action
whereby an individual can move itself to another location,
but so far we have not seen any practical need for such a
feature.

In order to achieve mobility for individuals in this sense, it
has been important to design the Leonardo software so that
the individual can have sessions under several different op-
erating systems (Windows type and Linux type), and under
different implementations of Common Lisp. The system has
been developed under Allegro Common Lisp, but it is also
operational under CLisp with minor restrictions. One step
in the procedure for starting a session is to identify the choice
of operating system and Lisp implementation at hand, and
to load ’adapter’ files containing definitions that are specific
for these choices.

4. REPRESENTATION LANGUAGE
Just like S-expression syntax is being used as a syntactic
framework for several different languages, the Leonardo sys-
tem uses KR-expressions as a syntactic framework for sev-
eral scripting languages. The basic layer of KR-expressions
has five types of atoms, namely symbols, strings, and num-
bers which behave like in Lisp, but in addition there are
variables and tags. Variables are symbols preceded by a full
stop; tags are symbols preceded by a colon symbol.

An entity in a KR-expression can be either a symbol, or
a composite entity which is formed using a symbolic func-
tion and its argument(s), surrounded by round parentheses.
Composite entities behave like Prolog terms; they can have
attributes and values just like atomic entities.

A composite KR-expression is either of the following:

A set, eg. {a b c d]

A sequence, eg. <a b c d>

A record, eg. [travel :by john :to stockholm]

A term, eg. (+ 4 9)

The Common Expression Language (CEL) is defined in terms
of KR-expressions and contains a set of functions for use in
terms, as well as a set of standard predicates. Literals are
expressed as records, composite logical expressions as terms,
for example as in

(and [is-substring "a" .x] [= (length .x) 3])

which has the value true in a context where .x is bound to
the string "abc".

The standard evaluator for CEL-expressions evaluates atoms
to themselves, except for those variables that are bound in
the evaluation context. Terms are evaluated by first evaluat-
ing their arguments, and then applying the leading function
in the term, provided that no variable is still present in any
of the arguments. Sets, sequences, and records are evaluated
elementwise, so eg. the value of a sequence expression is a
new sequence expression where each element has been re-
placed by its evaluated value, which may of course be itself.

Actions are expressed as records, and we have explained
above how the performance of an action consists of standard
evaluation of the action expression, followed by the three
execution steps.

For additional details, please refer to the Leonardo docu-
mentation.

5. DOCUMENT SCRIPTING LANGUAGE
It was mentioned that several languages are defined in terms
of KR-expressions and CEL syntax. The Document Script-
ing Language (DSL) is one such language, allowing evalua-
tion of terms in the same was as for CEL-expressions, but
with formatting commands and other document-oriented verbs
for use in action expressions. This language is used for defin-
ing webpages in the servers that an individual operates, in-
cluding the GUI server. The following is a simple example
of an expression in DSL.

[itemize

[item "First language:" [e "Lisp"]]

[item "Second language:" [e "Scheme"]]]

which if formatted into pdf will produce

• First language: Lisp

• Second language: Scheme

The following is a modified example defining a form with
one field for a user id and one field for the user’s password.

[request :to login-action :method post ^

[table

[row [box "User:" :charsize 20]

[box [input text :tag user

:show "" :charsize 50]]]

[row [box "Password:" :charsize 30]

[box [input password :tag pw

:show "" :charsize 50]]]

[sendbutton "Enter"]]]

The subexpressions correspond almost one-to-one to HTML
expressions for defining a form with two fields for user input.
The following example shows how a simple loop may be
formed:

[table

[repeat .c (get .p has-children)

[row [box .p]

[box (get .p has-age)]

[box (get .p has-birthday)]]]]

When evaluated in an environment where the variable .c is
bound to an entity representing a person, it will look up the
value of the has-children attribute of .c which should be a
sequence or set of other person entities, and generate a table
with one row for each of the children, and with fields for the
child’s name, age, and date of birth, assuming that these
data are also stored in the knowledgebase in the obvious
way.

Notice that DSL uses variables, terms, and control oper-
ators (for repetition and conditionals, for example) in the
same way as in executable CEL-expressions. For exam-
ple, the expression (get .p has-age) might as well have

ELS 2013 21

occurred in the definition of a command script. It is only
the reportoire of command verbs that strictly distinguishes
DSL-expressions from CEL-expressions.

DSL facilitates integration between formatting and conven-
tional computation. It is convenient for defining dynamic
webpages, and also for tables and other generated struc-
tures in documents. It would be possible, but inconvenient
to use it for running text, for example in an article such as
this one. For this purpose there is a similar Text Scripting
Language, TSL, which can be characterized by the following
example.

[itemize

[item The first language is [e Lisp]]

[item The second language is [e Scheme]]]

Thus TSL has very few reserved characters for the sake of
formatting, effectively only the left and right square brack-
ets, and the occurrence of a colon symbol at the beginning
of a word.

TSL and DSL have the same internal representation and
the same interpreter; it is only the surface syntax and the
corresponding parsers that differ. DSL is appropriate for
source documents that embed computation and interaction;
TSL is appropriate for static text. The use of a common
internal representation makes it easy to switch between the
two language variants within the same source text. The
Leonardo system contains translators from their common
internal representation to LaTeX and to HTML. All research
articles and reports in this project since late 2008 have been
authored using TSL, and all webpages have been defined
using DSL.

6. LEONARDO, LISP, AND LISP-LIKE
LANGUAGES

The relation between Leonardo and Lisp may be discussed
on several levels. First there is the comparison between
S-expressions and KR-expressions with respect to conve-
nience, readability, backward compatibility, and so forth.
Next there is the comparison between Lisp function defi-
nitions and CEL-expressions. Finally one may also relate
CEL and other S-expression-based languages, such as KIF
and PDDL.

Beginning with the comparison between Lisp programming
and CEL, the most important differences are as follows.

1. Lisp specifies that variables are represented as ordinary
symbols, and non-evaluation is signalled using the quote op-
erator. CEL treats variables as a separate syntactic type,
and specifies that symbols evaluate to themselves. This is
in line with standard mathematical notation, and with lan-
guages such as Prolog and KIF. It also turns out to be very
convenient in practical programming.

Several S-expression-based languages use the question-mark
as a prefix for variables, writing for example ?X where CEL
would write .x . The dot was preferred for being more dis-
crete, but the idea is the same.

2. Lisp does not distinguish between functions that have
side-effects and those that do not. CEL makes a strict and

syntactically expressed distinction between terms and ac-
tions, where terms are evaluated functionally and actions
are treated quite differently.

3. The separation of the different parts of the definition of
an action verb has already been explained.

4. Since the outcome of performing an action is represented
as an outcome record in Leonardo, it becomes possible to
characterize the failure of an action and to deal with it in a
procedural way, instead of by throwing and catching errors.

5. Leonardo has defined a markup language (DSL and TSL)
that is closely related to the language for defining terms and
actions (CEL). Lisp has, at best, a facility for writing HTML
as S-expressions.

It should be noted that most of the detailed code of Leonardo
applications is being written in Lisp, and the same applies
for the implementation of Leonardo itself. This may change
in the future, but it is the case today.

7. KR-EXPRESSIONS AS PUBLISHABLE
NOTATION

With respect to KR-expressions and comparing them with S-
expressions, one major consideration in the Leonardo project
has been the integration of the software system with KR-
related teaching materials. I am developing an on-line text-
book for KR-based Artificial Intelligence [1] in which I want
to have and use an easily readable notation for the variety
of knowledge structures that are currently in use in AI. This
includes logic formulas, of course, but it also includes other
structures, such as decision trees, causal nets, hierarchical
task networks, and others.

It is important, I think, to have a notation for these struc-
tures that can be used both in textbooks, in software docu-
mentation and other technical reports, and in the software
system itself. In this way it becomes as easy as possible
to transfer methods from the textbook to their actual use
in the software system. The differences between CEL and
Lisp notation that were described in the previous section
go well with the goals of the textbook, in particular in the
sense that CEL is closer to standard mathematical nota-
tion with respect to the use of variables and quotation. The
somewhat richer notation of KR-expressions compared to S-
expressions serve the same purpose. Some earlier authors
have tried using S-expressions as the standard notation in
their textbooks, but this has not become common practice.

Comparing ease of reading for different notations is a treach-
erous topic. I can only say that I have been a user of Lisp
and done almost all my programming in this language since
1966, and I have often defended its single-parenthesis-based
syntax in sceptical environments. However, even while being
so used to the S-expression syntax, I still find the richer KR-
expressions much easier to read and to work with. The use
of a few different kinds of brackets, instead of just a single
one, turns out to be a much bigger advantage for legibility
than what one might think at first.

1http://www.ida.liu.se/ext/aica/

22 ELS 2013

8. CURRENT USE
The Leonardo system is presently only used by the present
author. However, during the previous years it has also been
used by the students in my university course on Artificial
Intelligence and Knowledge Representation. Each student in
the course was given his or her own Leonardo individual and
used it for doing and reporting the assignments that came
with the course. The individual was enabled to download
the definitions of assignments, support the user while doing
them, pre-screen the results for correctness, and upload the
results to the course administration individual. The teach-
ing assistants for the course were therefore active Leonardo
users.

The Leonardo system has also been used as the platform
for a number of research projects in our group, including
the development of the Common Knowledge Library (CKL)
[2] Furthermore its services for document preparation and
webpage definition are in continuous use.

An new project is presently about to start where Leonardo
individuals with a facility for Hierarchical Task Manage-
ment (HTM) are used for intelligent processing of large-scale
datasets in bioinformatics.

9. A PERSPECTIVE ON SOFTWARE
We shall conclude with a somewhat philosophical note about
the character of systems software in general. Contemporary
software technology identifies some major types of software
artifacts: operating systems, programming language imple-
mentations, database systems, web servers, email servers,
and so forth. The roles of each of these types and the rela-
tionships among them are well established.

There have been some noteworthy experiments with orga-
nizing the entire software structure differently. In partic-
ular, the Lisp machines that were built in the late 1970’s
integrated the operating system and the implemented pro-
gramming language into one coherent artifact. However it
has not been followed by other similar efforts.

A Leonardo-style software individual cuts across the borders
between these traditional types of software artifacts, but in a
new way. Since it has a command-line executive and a capa-
bility for defining new commands in terms of existing ones,
it has all the characteristics of an incremental programming
system in the Lisp tradition. However, it also maintains a
model of its computational environment in terms of com-
puter hosts, memory devices, local area networks, as well as
available software packages in each host, available servers on
various hosts that can be accessed using a standardized http
interface, and so forth. In this way it performs some of the
functions that are otherwise considered as pertaining to an
operating system.

Furthermore, the knowledgebase within the Leonardo indi-
vidual performs many of the functions of a database system,
in particular with respect to long-term preservation. A facil-
ity for working with very large scale databases is presently
being developed.

2http://piex.publ.kth.se/ckl/

The present Leonardo system is implemented on top of the
large Allegro and Clisp systems, which run on top of the
large Windows or Linux operating systems. However, it has
been designed with the long-term goal of moving it to a plat-
form consisting of a minimal operating system and a mini-
mal implementation of Lisp or another functional language,
where major parts of the previous platform have been re-
alized within the Leonardo system itself. Our hypothesis is
that the resulting software architecture would be more effec-
tive and contain much fewer duplications of similar services.

10. A PERSPECTIVE ON INDIVIDUALITY
IN SOFTWARE

The notion of software individuals has been fundamental
in the design of the Leonardo system. It goes back to the
notion of biological software [1] where the idea is that since
human intelligence is “implemented” in biological tissue, and
since machine intelligence must necessarily be implemented
on software structures, it is reasonable to try to reproduce
some of the characteristics of the biological substrate in the
software medium. However, this should not be done by try-
ing to simulate low-level biological processes in software; it
should be done instead in ways that are characteristic of,
and natural for software, and therefore as a kind of software
engineering in the broad sense of the word.

Transferring the notion of an organism, or an individual to
the frameworks of software was then an important first step,
and the design and use of software individuals is our exper-
iment with this idea. It turns out to have interesting con-
nections to other issues in information technology, and in
particular for digital rights management (DRM). The issue
there is by what means may it be possible to identify one
copy of a software system or a video recording, in such a way
that it can be moved and backup-ed freely, but duplication
is made impossible?

The present implementation of Leonardo assumes that the
entire structure in a software individual is represented as a
file directory with its subdirectories, and that the structures
of different individuals are entirely disjoint. One may well
ask whether it should be possible for several individuals to
share the most basic parts of their code, so that update of
that code can happen at a single time, instead of by repeated
updates. One may also observe that current developments,
including aspects of the “cloud” technology, tend to weaken
the notion of what is the file system of a particular host or
memory device. These developments add more possibilities
to the space of possible designs, and makes it even more com-
plicated. It is important I think not to be overwhelmed by
all the new options, and to retain focus on what is important
here, namely the notion of an individual as such, while at
the same time being open to the new ways of implementing
an individual that are becoming available.

11. DOCUMENTATION AND AVAILABIL-
ITY

The Leonardo website is located at
http://www.ida.liu.se/ext/leonardo/

This website contains documentation for how to start using
the system and for several of its more specific aspects. It also
contains links for the download of the current version of the

ELS 2013 23

system. All aspects of the software and its documentation
is open-source under a GNU development license.

12. REFERENCES
[1] Erik Sandewall. Biological software. In Proceedings of

the International Joint Conference on Artificial
Intelligence, 1979.

[2] Erik Sandewall. On the design of software individuals.
Electronic Transactions on Artificial Intelligence,
5B:143–160, 2001.

[3] Erik Sandewall. A software architecture for AI systems
based on self-modifying software individuals. In
Proceedings of International Conference on LISP, 2003.

[4] Erik Sandewall. The Leonardo Computation System. In
Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and
Gordon Plotkin, editors, From Semantics to Computer
Science: Essays in memory of Gilles Kahn. Cambridge
University Press, 2008.

24 ELS 2013

Session II

Tutorial: Typed Racket

Sam Tobin-Hochstadt
Northeastern University
samth@ccs.neu.edu

ABSTRACT
This tutorial proposal describes Typed Racket, a statically-
typed dialect of Racket developed over the past 6 years. The
tutorial would cover the basics of Racket and Typed Racket
for anyone with a Lisp programming background and con-
tinue with a detailed example describing the implementation
of an HTTP server implemented in Typed Racket.

1. INTRODUCING TYPED RACKET
Typed Racket [3] was originally developed to address the

desire for optional type checking in Racket programs. There-
fore, Typed Racket supports two key features not found in
other languages with static types: (a) a type system de-
signed to work with existing Racket programs [4], and (b)
seamless interoperability between dynamically and statically
typed portions of the program [2].

Typed Racket now provides support for a wide variety
of Racket’s distinctive features, ranging from dynamic type
tests to delimited continuations; numeric types to first-class
classes. Based on this support, Typed Racket is now used
in many Racket systems, and recently two large systems
have been built entirely using Typed Racket: an extensive
library for mathematical computation1 and a compiler from
a subset of Racket to JavaScript2.

The Typed Racket system itself has also been extended
with numerous tools, including an optimizing compiler that
leverages types to improve performance, with substantial
performance gains on many programs [5]. The compiler is
also able to provide recommendations to the programmer as
to how they can improve the performance of their programs.

Recently, Typed Racket has been adapted to Clojure by
Ambrose Bonnaire-Sergeant, in a system now being inte-
grated into the main Clojure distribution as core.typed [1].

1http://docs.racket-lang.org/math/
2http://hashcollision.org/whalesong/

Submission to ELS ’13

2. THE PROPOSED TUTORIAL
The proposed tutorial has three parts, and will last 120

minutes.

Introduction to Racket and the Racket environment.
This part will introduce Racket to a broad Lisp audience,

with emphasis on key features such as the module system,
how to use the IDE and command line tools, and available
libraries.

Introduction to Typed Racket.
This segment, which will make up the bulk of the tuto-

rial, will cover the basics of Typed Racket: the syntax, how
typechecking works, what features are supported by the type
system, and how integration with dynamically-typed Racket
libraries works. It focuses on helping tutorial participants
write small programs in Typed Racket.

A server in Typed Racket.
This portion will incrementally develop a simple dynamic

web server, implemented entirely using Typed Racket and
building on Racket’s networking libraries. Participants will
be able to write almost all the code necessary for the pro-
gram.

A previous version of this tutorial was given at Racket-
Con 2012 in Boston in October 2012. Sample material as
well as a video recording from that version are available at
con.racket-lang.org.

3. REFERENCES
[1] Ambrose Bonnaire-Sergeant. A practical optional type

system for Clojure. Honours Thesis, University of
Western Australia, 2012.

[2] Sam Tobin-Hochstadt and Matthias Felleisen.
Interlanguage migration: from scripts to programs. In
DLS ’06, pages 964–974, 2006.

[3] Sam Tobin-Hochstadt and Matthias Felleisen. The
design and implementation of Typed Scheme. In POPL
’08, pages 395–406, 2008.

[4] Sam Tobin-Hochstadt and Matthias Felleisen. Logical
types for untyped languages. In ICFP ’10, pages
117–128, 2010.

[5] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan
Culpepper, Matthew Flatt, and Matthias Felleisen.
Languages as libraries. In PLDI ’11, pages 132–141,
2011.

26 ELS 2013

System for functional and formal evaluation of Lisp code
Arturo de Salabert

Universidad Autónoma de Madrid, Escuela Politécnica Superior, Computer Science Dept.
Francisco Tomás y Valiente 11, 28049 Madrid, Spain

+34-914975531
arturo.desalabert@uam.es

ABSTRACT
This paper introduces Corrector, a code reviewing and grading
tool designed to verify not only the functional accuracy of func-
tions returning complex results like structures, networks or trees,
but also to estimate the formal elegance and simplicity or the
compliance to requirements of a solution.

Categories and Subject Descriptors
I.2.1, I.2.2 [Computing Methodologies]: Artificial Intelligence –
Games, Automatic analysis of algorithms, Program verification
D.2.4 [Software]: Software Engineering - Software/Program
Verification

General Terms
Algorithms, Design, Experimentation, Languages, Verification.

Keywords
Unit testing, Common Lisp, Education, Plagiarism.

1. INTRODUCTION
Teaching a computer language can be a gratifying experience,
but it is necessarily linked to the arduous task of reviewing and
grading code. Not only functional correctness, but also style,
elegance and creativity of the code can and should be evaluated.
Furthermore, the grading must be systematic (kept constant along
multiple reviews) and transparent (open to scrutiny by students).
This is especially important when teaching Lisp not as yet anoth-
er language, but as a tool to learn functional programming. Un-
like Haskell, Lisp allows procedural, functional and OO pro-
gramming paradigms, and does not enforce one programming
style over another. Most students tend to think and code proce-
durally, or do not quite grasp the difference of approaches to be
able to choose the most appropriate in each case. Therefore, part
of the arduous task of reviewing code is not just checking that it
produces the expected results, but that it is coded in a certain
way. With this considerations in mind was developed Corrector,
a software verification and evaluation tool that has been used at
the UAM since 2007 to grade all students’ code in two different
AI courses.

2. SYSTEM OVERVIEW
Corrector does quite more than unit testing, but even for just unit
testing it is able to be adjusted for flexibility, accepting multiple
solutions and grading them according to their respective quality.
Unlike unit testing, the objective of Corrector is not to accept or
reject some function, but to grade its quality based on several
criteria like functional correctness, performance and even style.

The behavior of Corrector is controlled by the instructor using a
Corrector Script, based on a command language able to specify
one or more solutions and their corresponding scores, to request
multiple coding requisites or coding paradigms, or to penalize
some others. Furthermore, since the parsing performed by these
functions requires stripping down the code to some primary form,
it can also be used to compare solutions and to detect plagiarism
between them.

Figure 1. Corrector overview

Corrector processes a batch of files containing student solutions
(algorithms in Lisp code) to exercises in various AI subjects like
logic, search, logical programming, classification, machine learn-
ing, etc., and performs a sequence of evaluations. In addition, as
explained earlier, Lisp is used with the intention of introducing
students to functional programming; therefore the use of recur-
sion, parallelism and iteration is also analyzed and graded.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ELS’13, June 3–4, 2013, Madrid, Spain.

ELS 2013 27

3. SYSTEM COMPONENTS
The two major system components of the Corrector system are
the engine and the script to define and control its execution. Fig-
ure 1 shows a block diagram of Corrector.

3.1 The Corrector Engine
The Corrector engine processes a selected range of text files
containing Lisp code and applies a sequence of tests as specified
by the script. Each step in the process produces a log detailed
enough to provide students with explanation when required,
similarly, each test in the script is graded and its results docu-
mented and saved. At the end of the process a final grade is giv-
en and a shortlist of the mistakes is compiled. The main modules
of Corrector are described in the following sections.

3.1.1 Pre-process
This module is responsible for two tasks. The first one is per-
forming initial format related checks and preparing the received
files for further processing. Recoverable deviations from required
standards like incorrect names or unnecessary functions are doc-
umented and penalized. Unrecoverable errors like unbalanced
parenthesis or missing key functions abort the current correction
and the process continues with the next file.

The second and most important task is to initialize the Corrector
environment for the next evaluation process. Initial versions of
the corrector required to close and restart the Lisp session to
ensure that each correction starts with a clean system. Unbinding
the known functions and symbols followed by a full garbage
collection is not enough, since students may have defined auxil-
iary functions with unpredictable names, which not only reduces
the available resources, but may also interfere with what other
students try to do. Since all tests have timeouts and some of the
tests may involve accurate timing of execution, it is very im-
portant that each battery of tests runs under the same conditions.
The approach taken has been to parse the code to be evaluated
(see next section) and keep track of all function and symbol defi-
nitions by the student to remove them after the Evaluator has
finished. We could have used other techniques to accomplish this
objective, like examining the symbols table, but considering that
parsing the code is required anyway to evaluate programming
style, this seems to be the simplest and most efficient solution.

3.1.2 Parser
Parenthesis-based closures and recursive compliance to S-
expressions (sexps) are despised by the majority of students (and
some teachers) as the main exponent of Lisp ugliness. However,
the rare few who manage to overcome their initial repulsion may
discover that the advantages widely overweight the strangeness.
One of the considerable advantages of sexps is that both defining
the language and parsing it are remarkably easy… as long as it
keeps its lispness. Unfortunately not all Lisp is lispy, precisely,
macros and functions that don’t follow the S-expression defini-
tion must be treated like exceptions and are the difficult part to
parse, e.g.: defun, let, cond, do… This is the reason why stu-
dents are not allowed to define their own macros.
The Parser module analyzes student code, ignoring everything
except function definitions. Student code is not allowed to have
either assignments or symbol definitions or executions. Once a
defun in found, it still has to be accepted by the Parser. Some

functions may be protected against redefinition because they are
part of the software that the student must complete. One of the
components of the Pre-processor is a function that loads a file
and protects all its functions (exceptions can be specified in the
parameter list). The code of the Corrector itself is protected in
the same way.
If the function definition is acceptable, the Parser analyzes recur-
sively all the functions used within the user function. The recur-
sion tree stops when either a Lisp primitive or a protected func-
tion is found. The first don’t need further parsing for obvious
reasons and the second are considered primitives at all effects.
The fully expanded list of primitives or pseudo-primitives used
by each student function is kept for future use. This procedure
allows enforcing programming styles, such as recursion or paral-
lelism, or detecting errors in the student’s code, such as missing
definitions or use of forbidden functions. These are primitives
specifically banned by the professor either at global level or spe-
cifically for a particular exercise in order to force students to
code in a particular programming style. The same mechanism can
be used for the opposite objective, to enforce that certain func-
tions are used.

3.1.3 Evaluator
Only when the student’s code succeeds in the previous tests is it
allowed to run. The Evaluator module performs a controlled
evaluation of the student code. Evaluation is secured in two
ways: execution time is limited by a timeout and errors are ig-
nored. Both precautions protect the Evaluator against hang-ups,
infinite loops or execution errors in the student code. In most
cases, before running student code, some preparation is needed:
assign values to global variables, define structures, etc. All this
is normally done by Corrector Script commands. Once the envi-
ronment of the student function is fixed as required, they are
evaluated with specific arguments as specified by the script.
Results are compared with the expected results and grades are
given accordingly to the closeness to the desired result. Compar-
ing student results with expected results is not trivial, since there
are many types of data that may need to be compared like lists,
sets, arrays, trees, networks, or structures containing a combina-
tion of them. The type of comparison desired is specified by the
script and can be different for each exercise.

3.2 The Corrector Script
Corrector runs a number of tasks autonomously, but when it
comes to the functional evaluation of the code, it needs to be
guided by a script created specifically for the exercises to be
corrected. The Corrector Script specifies what tests must be run
on which functions, in what context, under what conditions, what
is the expected result, how many points is the test worth and how
will the test be graded. If there is more than one acceptable re-
sult, each of the valid outcomes is given its corresponding value.
The script is a list formed by triplets belonging to two types of
instructions, commands and tests. A script command is an in-
struction to Corrector to perform some action. It could be seen as
a programming language because it has loops and conditions. A
test is the specification of two things: the execution of a student
function on some arguments and the expected result. The syntax
of the two types of instructions is:
<cid> <param> <comment>
<test> <separator> <result>

28 ELS 2013

Where <cid> is the command id; <param> is a list that will be
used by the command as parameter; <comment> is just a string
containing a comment that will be displayed in the log every time
that this instruction is executed by the Evaluator; <test> is an
execution of some student function; <separator> is any se-
quence of characters except the semicolon with the only objective
of being a visual to identify what is a test and what is a result, it
must be present to fill its place but it is ignored by the parser;
<result> is the expected result or results of the test, can be any
print format valid in lisp. Most of these items have multiple op-
tions. Describing the whole syntax would require more space
than we have available. Figure 2 shows a simplified but complete
case of script.

3.3 Main technical characteristics
3.3.1 360-degree evaluation
Running unknown student code in a dynamic interpreter has
many risks but also interesting advantages. The major risk is that
the foreign code may interfere (purposely or not) with the con-
trolling process. A careful analysis of the source code and the
banning of potentially dangerous primitives can help reduce this
risk. The major advantage is that the student code can be evalu-

ated, controlled or modified, from within. Furthermore, the
CMND command allows the full power or Lisp from the script.

3.3.2 Robustness against code errors
The environment is refreshed after each correction, including all
functions and symbols defined or modified by the student code.

3.3.3 Security, accountability
The parsing function prevents against Trojans or other attacks.
The simplicity of Lisp S-expressions is a very strong advantage
to facilitate code inspection. Use of macros is therefore not al-
lowed in the student code. A detailed log provides accountability
and reproducibility of the results.

4. ACKNOWLEDGMENTS
This work was partially funded by the Spanish National Plan of
R+D, project# TIN2008-02081 and by the Autonomous Commu-
nity of Madrid, CAM project# S2009/TIC-1650. Special thanks
to Franz Inc. for their invaluable and reliable support since 2010.

5. ANNEX
Simplified example of a Corrector Script.

Figure 2. Simplified example of Corrector Script.

ELS 2013 29

Platforms for Games and Adversarial Search
Arturo de Salabert

Universidad Autónoma de Madrid, Escuela Politécnica Superior, Computer Science Dept.
Francisco Tomás y Valiente 11, 28049 Madrid, Spain

+34-914975531
arturo.desalabert@uam.es

ABSTRACT
This paper introduces two platforms for the experimentation in
games strategies within the study of Adversarial Search, part of
the practical curriculum in Artificial Intelligence at the UAM.
The first one (Thor) is a platform for performing tournaments
amongst a large number of players. The second (NetGame) is a
platform for executing P2P games in real time between remote
players. It is oriented to performing individual matches and in-
cludes social network characteristics. Both platforms are fully
implemented in Lisp. This paper focuses on technical and Lisp
related issues. The educational potential of these systems has
been described in previous work [1].

Categories and Subject Descriptors
I.2.1, I.2.2 [Computing Methodologies]: Artificial Intelligence –
Games, Automatic analysis of algorithms, Program verification
D.2.4 [Software]: Software Engineering - Software/Program
Verification

General Terms
Algorithms, Design, Experimentation, Languages, Verification.

Keywords
Common Lisp, Adversarial Search, Education.

1. INTRODUCTION
Thor is a platform for performing tournaments. AI students are
asked to send players (Lisp code) for a given game, which are
confronted against each other and ranked according to perfor-
mance. The platform is being used since 2010 by over 200 stu-
dents per year, performing over 100,000 matches each term.

Thor checks periodically for new players and confronts them with
a selection of other players to place them in the existing ranking.
Before being allowed to execute, the code must pass some quali-
ty and security controls in order to ensure a minimum perfor-
mance and to detect potential attacks to the integrity of the sys-
tem. The code is also analyzed syntactically to insure that it fol-
lows some specific guidelines.

NetGame facilitates one-to-one games between players in real
time by publishing a board of available players who accept being

challenged by others. The social network dimension of the sys-
tem is enabled by the ability of both sides to select their adver-
saries. Players higher in the ranking attract more attention and
receive more challenges, but they can also decide to be more
selective, so the system develops quickly a preferential attach-
ment behavior [2]. Status, scores, historical data and other rele-
vant information are compiled on a report and published on the
web on real time.

Both platforms are independent, but they share common compo-
nents. Thor involves three major functions, which for stability
and resilience run in different servers: the upload server, where
the students send their code, the publications server, where the
results are published, and the proper tournament server, where
players are evaluated and confronted to each other. NetGame
does not need an upload function, since the code is never sent
and runs on remote machines, but involves 2*N remote machines
for each game played concurrently, where N is the number of
players involved in a game.

2. THOR

2.1 Physical Architecture
To warrantee its availability, security and scalability the system
functionality has been divided into three servers: a delivery serv-
er, where students upload their players, a publication server,
where the ranking and other information is continuously updated,
and the proper tournament server, not visible to the world. Thor
periodically downloads players from the delivery server (plain
text files with Lisp code), runs the tournament and publishes
results uploading html files to the publication server. All three
servers run Linux distributions. The tournament server runs Al-
legro 9 on CentOS. The delivery and publication servers run
open-source applications over Ubuntu, the first an ftp with write
but no read rights, the second a web server. This article focuses
only on the tournament server.

2.2 Software Architecture
Although the system is available 24x7, its default status is sleep-
ing, waiting for a new group of players to be uploaded by the
students. The start-timer function is used to wake it up peri-
odically. The incoming group of players is then processed as a
batch. Figure 1 shows the main modules of the Thor tournament
platform: Loader, Checker and Arbiter, and the control flow once
it has been awakened. Their main components are described in
the following sections. Each component writes on a common
activity log with a configurable level of detail, including a
timestamp and enough information to trace its activity along the
3 weeks that the tournament is normally active (Annex Figure 3).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ELS’13, June 3–4, 2013, Madrid, Spain.

30 ELS 2013

2.2.1 Loader
The Loader module is responsible for downloading the players
(via Unix shell commands) from the delivery server and for per-
forming a number of authentication and validations. Since grades
are given based on the performance of the players and students
are very sensitive in this aspect, for accountability purposes files
are never deleted. Downloading is selective; only files within a
certain time span are retrieved and the rest are ignored. This
approach allows reproducing the tournament situation at any
desired time. The downloaded files are authenticated using pri-
vate keys and validated against several format and content re-
quirements. Files not conforming are silently ignored; they never
reach the stage of being published, a disincentive to possible
anonymous attacks or vandalism.

Figure 1. Thor overview.

2.2.2 Checker
The Checker is a much more complex module, responsible for
analyzing the code and ensuring that it fulfills a number of for-
mal, functional and performance requirements. All checks must
result positive before the student code is evaluated, i.e. given
control. Before entering the sequence of checks the student code
goes through a Pre-processing phase, in which its functions are

renamed to allow them to coexist with any other possible student
code, some necessary but potentially dangerous primitives are
renamed and substituted by secure versions, and the constructs
for managing and reloading the player in the future are created.
The later is fundamental to make the system resilient to failure,
as explained later on.

Formal-checks analyze aspects like: error-free compilation, type
and number of functions defined, programming style, use of re-
cursive or iterative techniques, mandatory use of certain primi-
tives, abstention of use of forbidden or dangerous primitives that
could be used to interfere with the game mechanics (students
have its full code), etc. Functional-checks control that the player
can sustain a certain level of play, that it returns the expected
type of data, etc. Performance-checks time the player when con-
fronted to some fixed situations to make sure that it performs
faster than a certain reference. Only players that pass all these
tests are allowed to proceed to the next module.

2.2.3 Arbiter
The Arbiter is in charge of performing the individual games,
creating and maintaining the ranking and reporting and publish-
ing the results in html format. Maintaining the ranking involves
assigning points to the players after each match. The tournament
can operate in two modes, round-robin (RRT) and divisions
(DT), each one of them with its corresponding point’s mecha-
nism. The final tournament is played in RRT, but there is no
time to perform it between periodic updates, therefore the DT is
normally used.

2.3 Main technical characteristics
2.3.1 Failure resiliency
Thor is designed to be able to run unattended 24x7 and to recov-
er from most failure situations like a system crash, a power shut-
down or a network failure. The status of the system is saved after
each cycle of operations, including all relevant information relat-
ed to the student code. After a reboot the system rebuilds itself
up to the status of the last backup. Only games under the granu-
larity of the periodic backup would be missing, but would be
replayed automatically at the next round. Apart from the obvious
lack of response during the duration of the failure, Thor is able to
resume the tournament without human intervention, unnoticed by
the users.

2.3.2 Robustness, security, accountability
Thor distributed architecture ensures its availability in case of
failures of the web or ftp servers. A secret key procedure ensures
authenticity. The parsing function prevents against Trojans or
other attacks. The simplicity of Lisp S-expressions is a very
strong advantage to facilitate code inspection. The use of macros
is therefore not allowed in the student code. A detailed log pro-
vides accountability and reproducibility of the results.

2.3.3 Dynamicity, scalability, game independence
A big advantage of Lisp is its dynamic nature. Not only can the
code be modified during run time, but the identity of the servers,
the nature of the game, the level and verbosity of the log can be
modified at any time. Furthermore, the decoupled architecture of
the system allows multiple tournament servers to be running
simultaneous and asynchronously, each of them publishing re-

ELS 2013 31

sults either as a backup of each other or as a technique to obtain
more throughput if the game becomes too heavy or there are too
many users.

3. NETGAME

3.1 Physical Architecture
The server provides only a blackboard service called Majordomo
(see Figure 4). The game is running simultaneously on the multi-
ple machines of the remote contenders, and they send each other
just their moves. For any one-to-one confrontation, the network
topology is a triangle, with bidirectional communications be-
tween the players and unidirectional between the players and the
server. Due to its distributed philosophy, the system is highly
scalable. An unlimited number of games can be played simulta-
neously. Furthermore, the unavailability of the server does not
affect the individual games. The players exchange moves and
just report status to the server. The server produces a general
report that is sent to the UAM web server, as in the case of Thor.
Figure 2 shows a block diagram of the system. For 2 player
games like checkers the total number of linked machines is 2*N
remotes + 2 servers, where N is the number of simultaneous
games, with Majordomo at the hub.

3.2 Software Architecture
Students participate in two roles, boaster or challenger. Boasters
announce their availability to Majordomo, who publishes it. A
game takes place when a request from a challenger is accepted
by the chosen boaster. Everything is coded in Common Lisp but
here, unlike the tournament, there is no code exchange between
players; they could run on any OS and code in any language, as
long as they can establish a P2P communication over TCP/IP
sockets.

3.2.1 Majordomo
Majordomo is available 24x7. Normally its role is merely com-
piling and publishing, via an external web server, the status re-
ceived from all players, and keeping a log of the main events.
The log provides interesting data for a social network analysis of
the evolution of the games. This will be addressed on a separate
paper. All communications from the players are one-way data-
grams. Once the challenger knows the contact data of his/hers
desired partner, none of the players needs nor waits for any re-
sponse from Majordomo. However, Majordomo has another level
of operation, the security modus, where the contact data of the
boasters is not published, just their alias. Any interested chal-
lenger needs to request from Majordomo the IP of its chosen
partner. Based on its own rules (challenger preregistration,
booster preferences, and black list) Majordomo may answer the
request or remain silent. The secure modus requires two-way
communication with the players, therefore is less scalable and it
is dependent on the availability of Majordomo. However, all
communication is asynchronous, so scalability limitations could
slow down but not freeze the system.

3.2.2 Players: boaster and challenger
The player code can run in two modes: boaster and challenger.
The only difference between them is in the P2P operation, the
first is permanently listening through an open socket while the
second just opens a temporary socket for the duration of one

game. Therefore, students wanting to play as boasters must leave
a computer on-line for as long as they announce in their initial
commitment. They can also play as challengers, running a second
session of the game either on the same machine or on another
machine. Students playing in challenger role only need to choose
from the published list of available boasters, configure the game
parameters to use it as contender and run the game. The boaster
will receive the challenge and may decide to accept it or to ig-
nore it. If the game is running in secure level, the configuration
of the boaster is not public and will not be known, not even to
the challenger.

Figure 2. NetGame overview.

The game runs on both players simultaneous but independently,
the local moves are supplied by the player’s own code and com-
municated to the adversary via the P2P module, the adversary
moves are received the same way. Together with the move also
the resulting configuration is sent. If any of the players detects a
difference between its own status and that received from the
adversary the game is stopped and the situation reported to Ma-
jordomo.

3.3 Main technical characteristics
3.3.1 Failure resiliency
NetGain server is designed with the same failure resiliency char-
acteristics than Thor; therefore we won’t repeat them here.

32 ELS 2013

3.3.2 Robustness, security, traceability
NetGain runs on multiple machines in a detached fashion. Fail-
ure of any or several of them will not affect the rest of the sys-
tem. Due to the exchange of just moves, there is no risk of Tro-
jans or code attacks. Dual execution of the game and the ex-
change of status ensure against code tampering, and the security
mode, provides anti-intrusion measures like black lists or pre-
registration of players IP’s, although at the cost of higher band-
width. Finally, the log maintained by Majordomo provides valu-
able data for social network analysis.

3.3.3 Scalability, soft- and hardware independence
The system is highly scalable because both bandwidth and pro-
cessing requirements on the server are extremely low. Most of
the processing and communications occur in and between the
remote players. Since only moves are exchanged, every player
could be running on different hardware and software.

4. ACKNOWLEDGMENTS
These platforms were partially funded by grants of the European
Convergence Office in 2009 and 2010 and by the Spanish Na-

tional Plan of R+D, project# TIN2008-02081 and by the Auton-
omous Community of Madrid, CAM project# S2009/TIC-1650.
We are also grateful to Franz Inc. for their reliable support.

5. REFERENCES
[1] de Salabert, A., Díez, F., Cobos, R. & Alfonseca, M. 2011.

An interactive platform for AI Games. In Proceedings of Re-
search in Engineering Education Symposium (Madrid,
Spain, October 04 – 07, 2011). 736-957.
http://innovacioneducativa.upm.es/rees

[2] Price, D. D. S. 1976. A general theory of bibliometric and
other cumulative advantage processes. Journal of the
American Society for Information Science 27 (5): 292–306.
doi:10.1002/asi.4630270505

6. ANNEX
Two examples of output: A selection of Thor’s log for a small
batch of new players and a NetGame blackboard.

Figure 3. Example of Thor’s log for a small batch of new players.

Figure 4. Example of the NetGame status blackboard.

ELS 2013 33

Session III

DBL

A Lisp-based Interactive Document Markup Language

Mika Kuuskankare
Department of Doctoral Studies in Musical Performance and Research

Sibelius Academy
mkuuskan@siba.fi

ABSTRACT
DBL (Document Builder Language) is a novel, Lisp-based
document markup language designed for document prepara-
tion. It is realized using the LispWorks Common Lisp En-
vironment. Some of the functionality assumes the presence
of a UNIX command-line, which is used to automate tasks,
such as converting between image formats, when necessary,
or launching build scripts. The DBL system consists of the
DBL language, a parser, an interactive viewer/editor, and
several backends for translating the internal representation
of DBL into other formats, such as HTML.

DBL is a work in progress. This paper describes its current
state.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Markup languages; I.7.1
[Document and Text Editing]: Document management

General Terms
Applications

1. INTRODUCTION
Markup languages specify code for formatting, both the lay-
out and the style of a document. This is done within a
text file by annotating the document using pieces of code
called tags. Well-known and widely used markup languages
include LaTeX and HTML. Some of the languages are pri-
marily intended to be human readable. These are sometimes
called lightweight markup languages. A lightweight markup
language is a markup language that has a simple syntax
and is easy for humans to enter and read. Markdown[6] is
an example of such a language.

Approximately half of the dozen or so Lisp-based markup
languages, found in the CLiki[4] website, deal with gen-
erating HTML or XHTML code. CL-WHO[3], CL-
Markdown[1], and yaclml[8] are examples of such libraries.

Apart from CL-Markdown, these libraries are also based on
the Lisp s-expression syntax. CL-Markdown provides an
interface to Markdown, which, in turn, is a text-to-HTML
conversion tool. Other markup languages include, for exam-
ple, Scribble[7]. Scribble extends the Common Lisp reader
with the text markup syntax of the Scheme-based Scribble
document preparation systems. cl-typesetting[2] is an exten-
sive and a more general purpose typesetting and document
preparation application. It is able to generate beautifully
laid-out PDF documents directly from a description written
in Lisp. According to the author, it is intended to be an
alternative to the TEX-like typesetting systems.

The Document Builder Language (DBL) is a novel, Lisp-
based document markup language for typesetting interactive
and static multimedia documents. The DBL system consists
of the DBL language, a parser, an interactive viewer/editor,
and several backends. The DBL parser is implemented with
the help of Esrap[5], a Lisp-based packrat parser by Siivola.
However, we are using our own fork1 which implements an
extension, making it possible to use the Lisp reader as a
lexer. Unlike most other Lisp-based packages, the DBL lan-
guage is not based on S-expressions. Instead, for the most
part, it is based on the concept of keyword-value pairs. The
idea is that a DBL document should look, as much as pos-
sible, like normal text.

DBL is written in LispWorks Common Lisp and realized as
a standalone ASDF2 system. Primarily, DBL has been de-
veloped for the needs of PWGL[14]. PWGL, in turn, is a
visual music programming language written on top of Com-
mon Lisp, CLOS and OpenGL. Within PWGL, DBL has
two primary purposes. First, it provides the basis for its
internal documentation system, making it possible to doc-
ument the code, the system itself, and the user-libraries.
Second, it is intended as an interface for producing inter-
active teaching material. PWGL specific extensions make
it possible to mix interactive PWGL components, such as
the musical score editor ENP[12], with standard User Inter-
face (UI) components, such as text and images. Currently,
the interactive PWGL Tutorial is written using a combina-
tion of DBL and normal PWGL patches. A document called
’PWGL-Book’3 can be automatically produced using the tu-

1https://github.com/kisp/esrap
2Another System Definition Facility, http://
common-lisp.net/project/asdf/
3PWGL Book can be downloaded from http://www2.
siba.fi/PWGL/downloads/PWGL-book.pdf.zip

36 ELS 2013

torial as a source. Furthermore, DBL can also be used as
a documentation tool for MacSet[10], which is, along with
PWGL, one of the music-related software packages devel-
oped at Sibelius Academy.

The rest of the paper is structured as follows. First, we
briefly introduce the DBL markup language. Next, we de-
scribe in detail the collection of currently available DBL
components. Finally, we present a framework for a music-
related application realized with the help of DBL and offer
some concluding remarks and suggestions for future devel-
opments.

2. DBL
DBL has three main components, the language, the parser,
and the backends. The DBL parser translates source code
written in the DBL language into an internal object repre-
sentation called DBL document. The DBL document is a
container object that holds a list of DBL components. The
backends, then, work with the internal representation to pro-
duce output in different formats, such as CAPI4, HTML, and
PDF (see Figure 1).

DBL format

DBL parser

DBL Document

CAPI HTML LaTeX

Figure 1: The DBL workflow

2.1 DBL Language
The DBL language, for the most part, is based on keyword-
value pairs instead of s-expressions. However, Lisp can be
used to programmatically generate documents or content.
The motivation behind this design is to create a language
that:

(1) could easily be written by hand, for instance when using
a text processing software, and

(2) would be close enough to Lisp to make it possible to
algorithmically generate both the format and content.

Appendix A shows an example where pieces of ’lorem ip-
sum’, the de facto nonsensical placeholder text used in pub-
4Common Application Programmer’s Interface is a library
by LispWorks for the LispWorks Common Lisp program-
ming environment for implementing Graphical User Inter-
face (GUI) elements and their interaction. It provides a
standard set of GUI elements and their behaviors, and pro-
vides for a CLOS-based way of defining new ones.

lishing, are generated automatically by calling a Lisp func-
tion lorem-ipsum.

DBL components are created by naming the component us-
ing an appropriate tag. The tags are Lisp keywords, such
as :figure or :table. The tag can be followed by one or
more mandatory attributes and any number of optional at-
tributes. The attribute values themselves are usually strings,
numbers, or keywords. All DBL components can also have
an ID. The ID can be used for message passing between
the components in interactive applications. An example of
a DBL definition for a component of type figure is given
below:

DBL Code
:figure "myimage.png"
:caption "My image caption"

The :figure tag requires one mandatory attribute, a string
naming the file of the image. The image file has to be in the
same directory as the DBL document referring to it (in case
no matching file is found, a special ’image not found’ image
is displayed instead). The :caption is optional and takes a
string as a value.

2.2 DBL Parser
The DBL parser is written with the help of Esrap, a Com-
mon Lisp packrat[9] parsing library. A packrat parser guar-
antees linear parse time through the use of memoization.
Previous parse attempts for a particular grammar expres-
sion at a particular location are cached. If the grammar
involves retrying the same expression at that particular lo-
cation again, the parser skips the defined parsing logic and
just returns the result from the cache. Packrat parsers also
lend themselves well to designing dynamic and extensible
languages. The following sample code shows the parser rule
for the figure component:

DBL Code
(defrule figure (and (figure-p dbl-token)

(or (stringp dbl-token)
(pathnamep dbl-token))

(? dbl-id)
(* figure-options))

(:destructure (token filename id args)
(declare (ignore token))
(apply #’make-instance ’figure

:id id
:filename filename
(apply #’append args))))

The rule states that a parsable figure definition consists of a
proper figure tag, a string or a pathname naming an image
file, an optional ID and any number of optional arguments.
If the form is successfully parsed an object of a type figure
is created. Some of the DBL components, such as the fig-
ure, require only an opening tag. Others, however, require
both opening and closing tags to create an environment or
a hierarchical structure. The section component, for exam-
ple, is defined by enclosing DBL item definitions between
:section-start and :section-end tags.

Normally, a parser performs some sort of lexical analysis,
by which the input character stream is split into meaningful

ELS 2013 37

symbols defined by the grammar. In our case, we don’t
look at the input stream on a character by character basis;
instead, we have extended the Esrap parser to use the Lisp
reader as a lexer. In this way, we are able to read Lisp
objects, such as keywords and strings, and, at the same,
take an advantage of the flexibility of the Esrap parser to
define the logic of the DBL language as a whole. The dbl-
token rule is at the center of the DBL parser. It reads from
the input stream one Lisp form at a time while consuming
all of the excess whitespace characters. The dbl-token rule
is defined as follows:

DBL Code
(defrule dbl-token (and read (* (or #\space #\newline)))

(:destructure (token whitespace)
(declare (ignore whitespace))
token))

2.3 DBL Backends
Currently, there are four official backends: (1) CAPI,
(2) HTML (3) LATEX, and (4) DBL. The DBL backend re-
verses the process of the DBL parser by converting the inter-
nal representation into text. Eventually, this backend will
be used to build an automatic test suite.

In principle, all the backends work in a similar manner.
They create a project folder where the translated document
and all of the supporting files, such as images and template
files, are copied. The template files normally include a col-
lection of default images, such as the ’image missing’ image
and, in the case of the HTML backend, also a CSS style
sheet. The LATEX template, in turn, includes a defaults.tex
file and several style files defining special formats and com-
mands. When needed, the backbends convert the original
images into formats better suited for the backend in ques-
tion. For example, in the case of HTML, EPS files are con-
verted into PNG’s with the help of ImageMagick. Finally,
in the case of the LATEXbackend, a special build script is
also executed, which, in turn, calls pdflatex and makeindex
to typeset the document.

New DBL backends can be implemented by defining a back-
end and a set of dbl-export methods. A minimal DBL back-
end definition would be as follows:

Lisp Code
(def-dbl-backend html ())

(defmethod dbl-export ((self document) (backend html))
;;; do backend specific inits here
(dolist (item (items self))

(dbl-export item backend))))

In addition, for every DBL component, a corresponding dbl-
export method would need to be defined.

Appendix A shows a sample document typeset with the
CAPI backend. The CAPI backend translates the DBL com-
ponents into CAPI-based interface elements. The CAPI-
based DBL documents may contain interactive parts, such
as buttons and, when used in tandem with PWGL, also mu-
sic notation editors, patches, etc.

2.4 Supporting Tools
The DBL package also incorporates the following tools for
viewing and editing DBL documents:

• DBL Viewer is used to render DBL documents using
the CAPI backend. It accepts both individual DBL
files and directories containing DBL documents and
accompanying data. This is the primary front-end for
the users.

• DBL Editor is a tool that makes it possible to edit
and view DBL documents. It supports update while
typing and syntax validation. Furthermore, it can
be connected to, for example, ’aspell’ for rudimentary
spell checking.

3. DBL COMPONENTS
This section describes the current set of DBL components.
Figure 3 shows the DBL component class hierarchy. The
two base classes are dbl-item and dbl-container. Every DBL
component inherits from a dbl-item. DBL-container objects
can hold an arbitrary number of dbl-items. In general, con-
tainer objects can hold dbl-items of any kind. There are,
however, some exceptions. For example, the items environ-
ment (see section 3.9) cannot contain sections (see section
3.1).

DBL-ITEM

BODY-TEXT

CAPI-ELEMENT

CODE

COMMENT

FIGURE

IMPORTANT

ITEM

LABEL

LINK

MOVIE

TITLE-PAGE

TOC

VSPACE

DBL-CONTAINER

DBL-DOCUMENT

INLINE-ITEMS

ITEMIZE

ITEMIZE-ITEM

ITEMS

LAYOUT

SECTION

TABLE

COLUMN-LAYOUT

ROW-LAYOUT

SECTION*

Figure 2: The DBL object hierarchy.

38 ELS 2013

The following paragraph lists the DBL tags. Most of the
time, the name of the component is the same as that of the
tag. However, when this is not the case, the component
name is also shown: (1) :section-start/:section-end for sec-
tion, (2) :body-text, (3) :figure, (4) :code, (5) :items/:inline-
items, (6) :link, (7) :important, (8) :table, (9) :com-
ment, (10) :items-start/:items-end for itemize, (11) :item-
start/:item-end for itemize-item, (12) :column-layout/:row-
layout, (13) :movie, (14) :toc, (15) :vspace, (16) :capi, and
(17) :title-start/:title-end for title page.

The following sections discuss the most important DBL com-
ponents.

3.1 section
A component of type section is created using the :section-
start and :section-end tags. Sections can be arbitrarily nested
to create subsections. The sections are automatically num-
bered. The :section-start tag must be followed by a string
naming the section title. The :section-end tag is not followed
by any arguments.

3.2 body-text
The body-text component defines a piece of ’bread’ text. It
is indicated using the :body-text tag and it takes a list of
strings as arguments. Each string begins a new paragraph.

3.3 figure
The figure component is defined using the :figure tag and
it has one required attribute, the pathname of the image.
The pathname is usually given as a relative pathname, e.g.,
’piechart.png’. In this case, an image named ’piechart.png’
must be located in the same directory as the document that
refers to it. Absolute pathnames can be used, too. However,
this makes the DBL documents less portable across differ-
ent machines. The :figure component accepts two optional
attributes – :caption and :adjust. The :adjust can have one
of three values: :left, :right, or :center).

3.4 code
The code component is used to define text that is displayed
using a fixed-width font. It preserves both spaces and line
breaks. The code components inherits from the body-text.
It has one optional attribute – :caption.

3.5 items
The Items component is used for simple ordered or un-
ordered lists. The list is defined using the :items tag followed
by any number of list items. The list items are entered using
a combination of hyphens, i.e., ’-’, ’- -’, or ’- - -’, and a string.
The number of hyphens defines the list item level. The items
cannot contain other DBL components. For more compli-
cated list structures use the items environment (section 3.9).
The DBL definition given below was used to produce the list
shown in Figure 3:

DBL Code
:items
- "Europe"
-- "Finland"
--- "Helsinki"
--- "Espoo"

-- "France"
--- "Paris"
- "Asia"
-- "Japan"
--- "Tokyo"

Figure 3: An items component typeset with the help
of the CAPI backend.

3.6 link
The link component defines a hyperlink, which is used to
link to a local file or directory, or to a web page. It has one
mandatory attribute: a string naming a URL. Furthermore,
the :link tag can be followed by two optional attributes:
(1) :link-text defines the piece of text that is displayed in-
stead of the URL, and (2) :protocol specifies how to open
the linked document and can be either :http or :file. Click-
ing on the link text opens the linked resource in all of the
official backends.

3.7 important
The important component defines a piece of text that is
typeset so that it stands out from the bread text. It inherits
from the body-text component and has the same attributes
and arguments. The following example shows how the im-
portant component appears in the final document:

In the beginning the Universe was created.
This has made a lot of people very angry
and been widely regarded as a bad move.
– Douglas Adams

3.8 table
The table component defines a simple table for arranging
data in rows and columns. The cell content is defined by
entering a required number (a multiple of the number of
columns in the table) of strings in row-major order. The
table has 4 optional attributes: (1) :columns; (2) :title, which
is used to give the table a title string; (3) :caption, which is
used to give the table a caption string; and (4) :has-title-
column. The :has-title-column attribute is a boolean value
specifying whether the columns have titles. If the value is
true then the first row of strings represents the titles for each
column.

ELS 2013 39

3.9 items environment
As opposed to its simpler counterpart presented in section
3.5, the items environment can be used to define more com-
plicated lists. The items environment must be surrounded
by :items-start/:items-end tags. Inside the environment, the
items can be nested within one another; they can be up to
four levels deep and must be enclosed within the :item-start
and :item-end tags. The most important difference between
this and the simple items component is that the compo-
nents of the items environment can contain any valid DBL
elements (except for sections). The following figure gives an
example of a complex list, where the items contain not only
text but also images.

DBL Code
:items-start

:item-start "Notational Objects"
:item-start "Chords"
:body-text "Chords are container objects holding an

arbitrary number of notes."
:item-end
:item-start "Notes"
:figure "note.png"
:caption "A note with a stem and a single flag"

:item-end
:item-end
:item-start "Expressions"
:item-end

:items-end

Figure 4: An items component typeset with the help
of the CAPI backend.

3.10 row/column layouts
The row-layout and column-layout can be defined using the
:row-start/:row-end and :column-start/:column-end tag pairs.
These layouts can contain any valid DBL components and
the layouts can be nested. The layouts can be used for,
among other things, placing several images side by side.

3.11 toc
In the case of DBL projects (defined as a folder of DBL docu-
ments) the toc component inserts the table of contents into a
DBL document. It takes one optional argument, the section
depth. The depth refers to the directory hierarchy starting
from the top-level project pathname. Only directories are
considered.

3.12 capi-element

The capi component can be used to generate normal
UI components, such as buttons. The following CAPI
classes are supported by the backends: (1) capi:push-
button, (2) capi:radio-button-panel, and (3) capi:check-
button-panel. The components can only be used within the
CAPI backend. In terms of the other backends, if possible,
these components are exported only for completeness and
they don’t have any function other than a visual one.

3.13 movie
The movie component is specific to the Mac OS X operating
system. It uses Apple QuickTime to insert a component, in
any of the supported multimedia formats, into a DBL doc-
ument. The CAPI and HTML backends are able to export
most of these components. Also, the LATEX backend uses
an experimental multimedia class for embedding movies into
the resulting PDF document.

4. DBL DOCUMENTS
DBL documents are plain text files containing DBL code.
They can be written and edited using any text editor. A
folder containing DBL documents and supporting files is
called a DBL project.

DBL documents can have several document options, such
as font, font size, and language. The options can be set on
file-by-file basis, or, in the case of DBL projects, they can be
saved in a special file located in the root folder of the project.
The file must be named ’ settings’ and it must contain valid
DBL document options.

One of the more interesting document options is :language.
This option makes it possible to select the primary language
and any number of secondary languages. The following piece
of DBL code establishes that the primary language of the
document is English and that the secondary language is
French. The order and the number of the languages can
be changed at any time.

DBL Code
:language :en :fr

Now, a paragraph of text can be assigned to any of the given
languages using a special DBL language tag that names the
language. Appendix B shows an example of a paragraph
where the same text is entered in two different languages.
The secondary language is typeset in a slightly different
manner to make it easy to distinguish it from the primary
one. If there is no paragraph text corresponding to the spec-
ified language then the text for the primary language is used.
In this case, the primary language is English, and the sec-
ondary language is French. However, if the ’:language’ prop-
erty would name only French language, then the document
would show only the paragraphs with French text using the
default paragraph style.

5. A DBL EXAMPLE
In this section we give a brief example of a music pedagog-
ical application realized with the help of DBL running on
top of the PWGL environment. Here, we implement a DBL

40 ELS 2013

document that at the same time teachers basic harmoniza-
tion and incorporates components for realizing interactive
exercises as a part of the document. Using the combination
of DBL and PWGL, the whole process of teaching the sub-
ject matter, realizing the pertinent exercises, and checking
the answers given by the users, can be automated.

The explanatory text and images are realized as standard
DBL components. ENP, our music notation program, is
used here as a CAPI-based GUI component for representing
the exercise and inputting the students solution. The har-
monization rules are implemented using our music scripting
system ENP-script[11]. We implement a rule that checks for
correct harmonic functions, as well as a rule that checks for
parallel movement.5 These rules are not only used to check
the correctness of the assignment, but also to present visual
clues and textual advice for the user using the elaborate
expression system provided by ENP (see [12] for examples).

The assignment is relatively straightforward: the student is
given an overview of the rules of harmonization. In the inter-
active component, a melodic line (the top voice) and three
other voices are provided. The students are then required to
harmonize the melody by modifying the notes in the other
three voices.

Appendix C shows the DBL definition of our sample appli-
cation which consists of a text component, a music notation
component and a push button. The music notation editor
is used to input the solution. The :enp tag shown here is a
PWGL specific DBL component that creates an ENP score
from a special s-expressions-based format[13]. The push but-
ton, at the bottom of the document, is used by the student to
request that the software evaluate the given solution. The
comments and corrections are rendered directly as a part
of the music notation making it easy to relate the textual
instructions with the relevant parts of the solution.

This document can be exported in HTML as well as in PDF
format. The interactive part is simply rendered as an im-
age (EPS for PDF, and a PNG for HTML). Appendix D
shows the application in the Safari Web browser after being
exported as a HTML page.

6. FUTURE DEVELOPMENTS
The current version of DBL can’t typeset or represent ’rich
text’. Paragraphs are written in one style only. In the future,
the paragraph parser should be extended so that users would
be able insert formatting instructions alongside the bread
text. Also, even though the HTML and LATEX backends
would be able to export the new ’rich text’ format without
problems, a new component would have to be implemented
for the CAPI backend. The following shows a hypothetical
syntax for indicating formatting instructions:

DBL Code
:body-text :ref "figure:species1" "shows a typical
example of" :italic "Species Counterpoint."

5Parallel movement is a theoretical concept that every stu-
dent of music theory and composition is supposed to master
and, which, to put it simply, is considered paramount for
writing good sounding common practice music

The above would translate to the following piece of format-
ted text:

Figure 1 shows a typical example of Species Counterpoint.

Also, the same limitations apply to the table component.
Currently, it accepts plain strings as rows and columns.
A more comprehensive table component should be able to
typeset not only rich text but also be able to include other
components, such as images, in its definition.

Finally, currently, the syntax validation only indicates if the
parsing was successful or not, therefore better syntax val-
idation and visualization are needed. Ideally, the offend-
ing position would be shown in both the textual and visual
parts.

7. CONCLUSIONS
This paper presents a Lisp-based document markup lan-
guage. DBL is a standalone Lisp library that can be used
for creating rich documents within the LispWorks Common
Lisp Environment. DBL is comprised of the DBL language,
the parser, and several backends. The purpose of the back-
ends is to convert the DBL representation into formats such
as PDF or HTML. DBL also makes it possible to define
interactive documents with the help of the CAPI backend.

The primary purpose of DBL is to replace the various doc-
umentation systems used by PWGL. Eventually, DBL will
be used not only for documenting the PWGL system itself,
but also for documenting the source code. An automatic
reference document could then be compiled by scanning the
source code, compiling a DBL document and exporting it
using one of the available backends.

8. ACKNOWLEDGMENT
The work of Mika Kuuskankare has been supported by the
Academy of Finland (SA137619). The author would also
like to thank CCRMA at Stanford University, for hosting
this research project.

ELS 2013 41

9. REFERENCES
[1] Cl-markdown.

http://common-lisp.net/project/cl-markdown/.

[2] cl-typesetting.
www.fractalconcept.com/asp/cl-typesetting.

[3] CL-WHO. http://weitz.de/cl-who/.

[4] CLiki. http://www.cliki.net.

[5] Esrap. http://nikodemus.github.com/esrap/.

[6] Markdown. http://en.wikipedia.org/wiki/Markdown.

[7] Scribble. http://www.cliki.net/Scribble.

[8] yaclml.
http://common-lisp.net/project/bese/yaclml.html.

[9] B. Ford. Packrat parsing: Simple, powerful, lazy,
linear time. In International Conference on Functional
Programming, 2002.

[10] M. Kuuskankare, M. Castrén, and M. Laurson.
MacSet: A Free Visual Cross-Platform Pitch-Class Set
Theoretical Application. In Proceedings of
International Computer Music Conference, volume I,
pages 51–54, Copenhagen, Denmark, 2007.

[11] M. Kuuskankare and M. Laurson. Annotating Musical
Scores in ENP. In International Symposium on Music
Information Retrieval, pages 72–76, London, UK,
2005.

[12] M. Kuuskankare and M. Laurson. Expressive Notation
Package. Computer Music Journal, 30(4):67–79, 2006.

[13] M. Laurson and M. Kuuskankare. From RTM-notation
to ENP-score-notation. In Journées d’Informatique
Musicale, Montbéliard, France, 2003.

[14] M. Laurson, M. Kuuskankare, and V. Norilo. An
Overview of PWGL, a Visual Programming
Environment for Music. Computer Music Journal,
33(1):19–31, 2009.

42 ELS 2013

APPENDIX

A.
The DBL Editor components: (a) the document browser, (b) the DBL code input view, (c) the active document preview
typeset with the CAPI backend, and (d) an optional spell checker panel. When the ’Auto typeset’ option (see the bottom left
corner) is selected, then the preview is updated whenever the piece DBL code is successfully parsed.

ELS 2013 43

B.
A paragraph of text written in two different languages: (a) in English using the :en tag, and (b) in French using the :fr tag.

44 ELS 2013

C.

ELS 2013 45

D.

46 ELS 2013

Infinite transducers on terms denoting graphs

Bruno Courcelle
courcell@labri.fr

Irène A. Durand
idurand@labri.fr

LaBRI, CNRS, Université de Bordeaux, Talence, France

ABSTRACT
Starting from Courcelle’s theorem which connects the problem of
verifying properties of graphs of bounded clique-width with term
automata, we have developed the Autograph Lisp library1 which
provides automata for verifying graph properties [2]. Because most
of these automata are huge, fly automata have been introduced in
the underlying library Autowrite and have become the default type
of automata [11]. By default, the operations on automata are now
performed on fly automata.

This article shows how fly automata can be generalized to attributed
fly automata and finally to transducers.

We apply these concepts in the domain of graph theory. We present
some computations performed by transducers on terms represent-
ing graphs. This transducer approach for computing graph values
is an alternative to the classical algorithms of graph theory.

Categories and Subject Descriptors
D.1.1 [Software]: Programming Techniques, Applicative (Func-
tional) Programming; F.1.1 [Theory of Computation]: Models
of Computation, Automata; G.2.2 [Mathematics of Computing]:
Graphs Theory, Graph Algorithms

Keywords
Term automata, Term transducers, Lisp, graphs

1. INTRODUCTION
At ELS2010 [2], we showed that bottom-up term automata could
be used to verify monadic second order properties on graphs of
bounded clique-width which can be represented by terms. Although
finite, these automata are often so large that their transitions table
cannot be built.

To solve this problem, we have introduced automata called
fly automata which were first presented at ELS2011 [11]. In such

1itself based on the Autowrite Lisp library

automata, instead of the transition function being represented as a
set of values, it is represented as the code of a computable function.
In this setting, the states of an automaton need not be listed; a fi-
nite subset of the whole set of states is produced on the fly by the
transition function during the run of the automaton on a term.

Fly automata solve the problem of representing huge finite automata
but also yield new perspectives as they need not be finite; they may
be infinite in two ways: they may have an infinite denumerable
signature and an infinite denumerable set of states.

Fly automata are nicely implemented in Lisp, the core of the au-
tomaton being its transition function. Also Lisp conditions are used
to detect early failure.

In the graph framework, we may obtain fly automata working for
any clique-width with a signature containing an infinite number of
constant symbols. Also we may use natural integers as states to
count for instance the number of vertices of a graph.

Usually, a term automaton has a set of transitions and a set of states,
a subset of which are the final states. A fly automaton has a transi-
tion function and a final state predicate which says whether a state
is final or not. When running an automaton on a term, one gets a
target which may be just one state if the automaton is deterministic
or a set of states otherwise; the target is final if it is a final state (de-
terministic case) or contains a final state (non deterministic case).
The term is recognized when the target is final.

As we have no limit on the number of states, we may extend our fly
automata to compute attributed states which are states associated
with an attribute which is computed along the run.

Attributes may be of many different types: they are often integers,
sets of positions, symbols, terms and tuples, sets, and multisets of
the previous types.

In the framework of graphs, attributes may be color assignments
(colorings) or subset assignments, number of colorings, number of
subset assignment, etc. An attributed automaton is just an automa-
ton whose transition function is completed with an attribute func-
tion which synthetizes the attribute of the states. The attribute func-
tion computes the new attribute from the attribute of the arguments
and the function symbol. When the automaton is non deterministic,
the same state may be obtained by several computations but with
different attributes; in that case, we must provide a function to com-
bine the attributes for this state. We shall refer to this function as
the combine-fun.

ELS 2013 47

In this paper, we extend the concept of fly automaton to attributed
fly automaton and finally to fly transducer. A fly transducer has an
output function instead of a final state predicate. As for an automa-
ton, the run of a transducer on a term produces a target. The output
function is applied to the final target for the final result. In our
case, a transducer will be an attributed automaton with an output
function that will be applied to the attribute of the final target.

A fly automaton may be seen as a particular case of a transducer
where the output function is the final state predicate.

The Autowrite software [13] entirely written in Common Lisp
was first designed to check call-by-need properties of term rewrit-
ing systems [9]. For this purpose, it implements classical finite
term (tree) automata. In the first implementation, just the empti-
ness problem (does the automaton recognize the empty language)
was used and implemented.

In subsequent versions [10], the implementation was continued in
order to provide a substantial library of operations on term au-
tomata. The next natural step was to try to solve concrete problems
using this library and to test its limits.

Starting from Courcelle’s theorem [7] which connects the prob-
lem of verifying properties of graphs of bounded clique-width with
term automata, we have developed the Autograph library [14]
(based on Autowrite) which provides automata for verifying
graph properties [2].

Because most of these automata are huge, we introduced fly au-
tomata into Autowrite and made them the default type of au-
tomata [11]. By default, the operations on automata are performed
on the fly automata. The traditional table-automata are just com-
piled versions of finite fly automata.

The purpose of this article is:

• to show how fly automata can be generalized to attributed fly
automata and finally to transducers,

• to describe part of the implementation,

• and to present some computations performed by such trans-
ducers on terms and terms representing graphs.

This transducer approach for computing graph values is an alterna-
tive to the classical algorithms of graph theory.

One advantage of the use of automata or transducers is that, us-
ing inverse-homomorphisms, we can easily get algorithms working
on induced subgraphs from the ones working on the whole graph
which is most often not feasible with classical algorithms of graph
theory.

Some graph coloring problems will be used as examples throughout
the paper.

2. PRELIMINARIES
We recall some basic definitions concerning terms and how terms
may be used to represent graphs of bounded clique-width.

2.1 Signature and terms
We consider a signature F (set of symbols with fixed arity).

EXAMPLE 2.1. Let F be a signature containing the symbols
{a, b, add_a_b, ren_a_b, ren_b_a, oplus}
with

arity(a) = arity(b) = 0 arity(oplus) = 2

arity(add_a_b) = arity(ren_a_b) = arity(ren_b_a) = 1

In Section 3, we show that this signature is suitable for writing
terms representing graphs of clique-width at most 2.

We denote the subset of symbols of F with arity n by Fn. So
F =

⋃
n Fn. By T (F), we denote the set of (ground) terms built

upon the signature F .

EXAMPLE 2.2. t1, t2, t3 and t4 are terms built with the signa-
ture F of Example 2.1.

t1 = oplus(a,b)

t2 = add_a_b(oplus(a,oplus(a,b)))

t3 = add_a_b(

oplus(a,oplus(a,oplus(b,b))))

t4 = add_a_b(

oplus(a,

ren_a_b(add_a_b(oplus(a,b)))))

In Table 1, we see their associated graphs. The connection between
terms and graphs will be described in Section 3.2.

3. APPLICATION DOMAIN
Part of this work will be illustrated in the framework of graphs of
bounded clique-width. In this section, we present the connection
between graphs and terms. First we define the graphs.

3.1 Graphs as a logical structure
We consider finite, simple, loop-free undirected graphs (extensions
are easy)2. Every graph can be identified with the relational struc-
ture 〈VG, edgG〉 where VG is the set of vertices and edgG the bi-
nary symmetric relation that describes edges: edgG ⊆ VG × VG

and (x, y) ∈ edgG if and only if there exists an edge between x
and y.

Properties of a graph G can be expressed by sentences of relevant
logical languages. Monadic Second order Logic is suitable for ex-
pressing many graph properties like k-colorability, acyclicity (no
cycle), k-acyclic-colorability,

3.2 Term representation of graphs of bounded
clique-width

DEFINITION 1. Let L be a finite set of vertex labels also called
ports and let us consider graphs G such that each vertex v ∈ VG

has a label label(v) ∈ L. The operations on graphs are:

• oplus: the union of disjoint graphs,

for every pair of distinct vertex labels (a, b) ∈ L × L:
2We consider such graphs for simplicity of the presentation but
we can also work with directed graphs, loops, labeled vertices and
edges. A loop is an edge connecting one single vertex.

48 ELS 2013

• unary edge addition operations add_a_b3 that add the miss-
ing edges between every vertex labeled a to every vertex la-
beled b,

• unary relabeling operations ren_a_b that rename a to b, and

for every vertex label a ∈ L,

• constants a such that the term a denotes a graph with a single
vertex labeled by a and no edge.

Let FL be the set of these operations and constant symbols.

Every term t ∈ T (FL) defines a graph G(t) whose vertices are the
leaves of the term t. Note that because of the relabeling operations,
the labels of the vertices in the graph G(t) may differ from the
ones specified in the leaves of the term and that several terms may
represent the same graph up to isomorphism.

A graph has clique-width at most k if it is defined by some t ∈
T (FL) with |L| ≤ k. The clique-width of a graph is the minimal
such k. We shall abbreviate clique-width by cwd.

Examples of terms with their associated graph are given in Table 1.

t1 t2 t3 t4

b

a a a

b

ba

ab b b

a

Table 1: The graphs corresponding to the terms of Example 2.2

3.3 Clique-width of some well-known graphs
The problem of finding a decomposition of a graph (i.e. a term
representing the graph) with a minimal number of labels (so the
clique-width) is NP-complete [15].

However, an approximation can always be found, the worst approxi-
mation being the one using as many labels as vertices in the graph
and as many add_a_b operations as edges in the graph.

For instance, the graph corresponding to t3 of Table 1 can be de-
composed as

add_a_d(
add_c_d(
add_b_c(
add_a_b(
oplus(a,oplus(b,oplus(c,d))))))

which uses 4 ports labels.

However, the clique-width parameter being crucial in our algo-
rithm, it is important to minimize the number of port labels. So
term t3 which uses 2 labels would be preferable to the term above.

For some classical family of graphs, the clique-width is known. For
instance, cliques Kn have clique-width 2, for all n > 1. A term kn

3for the oriented case both add_a_b and add_b_a are used; for the
unoriented case, we may assume a total order on the port labels and
use the add_a_b such that a < b.

representing Kn is recursively given by:
{

k1=a

kn=ren_b_a(add_a_b(oplus(kn−1,b)))

Pn graphs (chains of n nodes) have clique-width 3 for n > 3. A
term pn representing a graph Pn is recursively given by:
{

p1=b

pn=ren_c_b(ren_b_a(add_b_c(oplus(pn−1,c)))

Rectangular grids n × m with m < n have clique-width m + 2.
Square grids n× n have clique-width n+ 1; the latest decomposi-
tion is a bit tricky [17].

3.4 Representation of colored graphs
To deal with colored graphs, we use a modified constant signature.
If we are dealing with k colors then every constant c yields k con-
stants c~1, . . . , c~k. In a term, the constant c~i means that the
corresponding vertex is colored with color i.

EXAMPLE 3.1. For instance, the term
add_a_b(oplus(a~1,oplus(b~2,oplus(a~1,b~2))))
represents a proper 2-colored version of term t3 of Example 2.2.

3.5 Representation of sets of vertices
To deal with graphs with identified subsets of vertices, we also use
a modified constant signature. If we are dealing with m subsets
V1, . . . , Vm then every constant c yields 2m constants of the form
c^w where w is a bit vector b1 . . . bm such that bi = 1 if the corre-
sponding vertex belongs to Vi, bi = 0 otherwise.

4. TERM AUTOMATA
4.1 Finite term automata
We recall the definition of finite term automaton. Much more in-
formation can be found in the on-line book [1].

DEFINITION 2. A (finite bottom-up) term automaton4 is a
quadruple A = (F , Q,Qf ,∆) consisting of a finite signature F ,
a finite set Q of states, disjoint from F , a subset Qf ⊆ Q of fi-
nal states, and a set of transitions rules ∆. Every transition is
of the form f(q1, . . . , qn) → q with f ∈ F , arity(f) = n and
q1, . . . , qn, q ∈ Q.

Term automata recognize regular term languages[20]. The class
of regular term languages is closed under the Boolean operations
(union, intersection, complementation) on languages which have
their counterpart on automata.

EXAMPLE 4.1. A graph is stable if it has no edges. The au-
tomaton 2-STABLE of Figure 1 recognizes stable graphs of clique-
width 2. The states <a>, , <ab> mean that the graph con-
tains no edge and respectively at least a vertex labeled a, at least
a vertex labeled b, at least a vertex labeled a and a vertex labeled
b; they are all final states. The state error is the only non final
4Term automata are frequently called tree automata, but it is not a
good idea to identify trees, which are particular graphs, with terms.

ELS 2013 49

Automaton 2-STABLE
Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*
States: <a> <ab> error
Final States: <a> <ab>

Transitions a -> <a> b ->
add_a_b(<a>) -> <a> add_a_b() ->
ren_a_b(<a>) -> ren_b_a(<a>) -> <a>
ren_a_b() -> ren_b_a() -> <a>
ren_a_b(<ab>) -> ren_b_a(<ab>) -> <a>
oplus*(<a>,<a>) -> <a> oplus*(,) ->
oplus*(<a>,) -> <ab> oplus*(,<ab>) -> <ab>
oplus*(<a>,<ab>) -> <ab> oplus*(<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> error ren_a_b(error) -> error
add_a_b(error) -> error ren_b_a(error) -> error
oplus*(error,q) -> error for all q

Figure 1: Automaton recognizing stable graphs

state; it means that an edge has been found. The rule which triggers
the first error state is the add_a_b(<ab>) -> error rule;
such operation adds an edge between vertices labeled a and ver-
tices labeled b. We shall see later that this automaton is in fact the
compiled version of a finite fly automaton.

From this automaton, we can derive another automaton for deci-
ding whether a subgraph induced by a subset of vertices V1 is
stable. We have seen that membership of a vertex to a subset of
vertices V1 is expressed with a bit added to the constants. a^1 rep-
resents a vertex labeled a belonging to V1 while a^0 represents a
vertex labeled a not belonging to V1. The term
add_a_b(oplus(a^1,oplus(b^0,oplus(a^1,b^0))))
represents the same graph as t3 in Example 2.2 but with the two
vertices labeled a in V1.

To the previous automaton, we add the symbol @ for representing
an empty graph (so a stable graph), the state #f for representing
a neutral final state (which will be used as long as no vertex in V1

has been found) and the rules

@ -> #f
zzz_x_y(#f) -> #f
oplus(q,#f) -> q

for every zzz ∈ {add,ren}, every x,y ∈ {a,b} such that x 6= y
and every q state of 2-STABLE and consider the homomorphism
h such that

h(a^1)=a

h(a^0)=@

h(b^1)=b

h(b^0)=@

and h(f) = f for every non constant symbol.

Applying h−1 to the automaton 2-STABLE yields an automaton
which recognizes graphs such that V1 is stable. Only the constant
rules differ

a^1 -> <a>
b^1 ->
a^0 -> #f
b^0 -> #f

To distinguish these finite automata from the fly automata defined
in Subsection 4.2 and as we only deal with terms in this paper we

shall refer to the term automata defined in Definition 2 as table-
automata.

4.2 Fly term automata
DEFINITION 3. A fly term automaton (fly automaton for short)

is a triple A = (F , δ, fs) where

• F is a countable signature of symbols with a fixed arity,
• δ is a computable transition function,

δ :
⋃

n Fn × Qn → Q

fq1 . . . qn 7→ q

where Q is a countable set of states, disjoint from F ,
• fs is the final state predicate

fs : Q → Boolean

which indicates whether a state is final or not.

Note that, both the signature F and the set of states Q may be
infinite. A fly automaton is finite if both its signature and its set of
states are finite.

Operations on term languages like Boolean operations, homomor-
phisms and inverse-homomorphisms have their counterpart on fly
automata [3, 4]. For instance, the union of two fly automata recog-
nizes the union of the two languages recognized by the automata.

We use the term basic for fly automata that are built from scratch in
order to distinguish them from the ones that are obtained by combi-
nations of existing automata using the operations cited in the above
theorem. We call the latter composed fly automata.

The run of an automaton on a term labels the nodes of the term
with the state(s) reached at the corresponding subterm. The run
goes from bottom to top starting at the leaves.

In Autowrite, this is implemented via the
compute-target(term automaton)
operation which, given a term and an automaton, returns the target
(a single state if the automaton is deterministic or a container of
states otherwise).

A term is recognized by the automaton when after the run of the
automaton on the term, a final state is obtained at the root.

50 ELS 2013

(defmethod stable-transitions-fun
((root constant-symbol) (arg (eql nil)))

(let ((port (port-of root)))
(when (or (not *ports*)

(member port *ports*))
port
(make-stable-state
(make-ports-from-port port)))))

(defmethod stable-transitions-fun
((root abstract-symbol) (arg list))

(common-transitions-fun root arg))

Figure 2: Transition function for constants

In Autowrite, this is implemented by the
recognized-p(term automaton)
operation which returns true if at least one state in the target is final
according to the final state predicate of the automaton.

In fact, we have an intermediate operation
compute-final-target(term automaton) which returns the
final target that is the target without non final states. Then the
recognized-p(term automaton) operation is implemented by
checking whether the final target is empty.

4.3 Examples with the stability property
We can create an infinite fly automaton that verifies that a graph is
stable for any clique-width.

We create it as a basic automaton (in the sense given in Section 4.2).
This means that we must define the structure of the states for this
automaton and the transition function that computes the states. This
automaton is deterministic.

Its states are of uniform type; the state computed at the root of a
term represents the set of port labels encountered so far.

(defclass stable-state (graph-state)
((ports :type ports

:initarg :ports
:reader ports)))

The transition function is stable-transitions-fun.

For a constant symbol a, a stable-state is created with ports
being the singleton {a}. This is shown in Figure 2.

For the non constant symbols, the transition function calls
common-transitions-fun
which switches to a call to graph-oplus-target, graph-ren-target
or
graph-add-target according to the symbol (see Figure 3).

If we fixed the clique-width cwd, then we could compile this fly
automaton to a minimal table-automaton with 2cwd states. The au-
tomaton 2-STABLE of Figure 1 is in fact the compiled version of
the fly version with cwd = 2.

Figure 4 shows that the graph corresponding to the term t3 is not
stable. Figure 5 that the subgraph induced by the vertices with port
a is stable. The automaton used is obtained by inverse homomor-

(defmethod graph-ren-target
(a b (so stable-state))

(make-stable-state
(ports-subst
b a
(ports so))))

(defmethod graph-add-target
(a b (so stable-state))

(let ((ports (ports so)))
(unless (and
(ports-member a ports)
(ports-member b ports))
so)))

(defmethod graph-oplus-target
((s1 stable-state) (s2 stable-state))

(make-stable-state
(ports-union (ports s1) (ports s2))))

Figure 3: Transition function for stability

AUTOGRAPH> (recognized-p

t3
(stable-automaton))

NIL
NIL
AUTOGRAPH> *t3*
add_a_b(oplus(a,oplus(a,oplus(b,b))))
AUTOGRAPH> (recognized-p

t3
(stable-automaton))

NIL
NIL

Figure 4: Examples with stability

phism as described in Example 4.1.

4.4 Examples with graph-colorings
In graph theory, a graph is k-colored if its vertices are colored with
k colors. The coloring is proper if two adjacent vertices do not
have the same color. The graph represented by the term given in
Example 3.1 has a proper 2-coloring.

4.4.1 Graph coloring verification
For a fixed number of colors k, we can create an infinite fly au-
tomaton which verifies that a graph has a proper k-coloring for any
clique-width.

AUTOGRAPH> *s3*
add_a_b(oplus(a^1,oplus(a^1,oplus(b^0,b^0))))
AUTOGRAPH> (recognized-p

s3
(nothing-to-x1
(stable-automaton)))

T
!<{a}>

Figure 5: Stability of induced subgraph
ELS 2013 51

Figure 6: Petersen’s Graph

The constants have colors which are positive integers in [1, k]; the
constant a~i means that this vertex has color i for i ∈ [1, k].

We create it as a basic automaton (in the sense given in Section 4.2).
This means that we must define the structure of the states for this
automaton and the transition function that computes the states. This
automaton is deterministic.

Its states are of uniform type; the state computed at the root of a
term represents a function which, given a constant name c, gives
the set of color numbers appearing on leaves c~i in the term.

(defclass colors-state (graph-state)
((color-fun :initarg :color-fun

:reader color-fun)))

For instance, the color-fun of the state reached at the root of
term oplus(a~1,oplus(b~1,a~2)) should return {1,2} when
applied to a, {1}when applied to b, and the empty set when applied
to any other constant label.

The transition function of the automaton is described a little further.

If we fixed the clique-width cwd, then we could compile this fly
automaton to a table-automaton with 22cwd − 1 states. That would
give 22×6 − 1 states in order to get an automaton able to work on
Petersen’s graph (see Figure 6) for which our best decomposition
has cwd = 6. The term representing Petersen’s graph has 37 nodes
and depth 28.

We can use that automaton, to verify that some graphs are properly
k-colored. We shall see later that by doing a color-projection (eras-
ing the colors) of this automaton, we obtain a non deterministic
automaton which recognizes graphs that are k-colorable. The two
rules a~1 -> q1, a~2 -> q2 would become the non determinis-
tic rule a -> o{q1,q2} via the color-projection.

In Figure 7, we show the function colored-automatonwhich re-
turns such an infinite automaton. When the optional cwd (clique-
width) parameter is omitted, the resulting automaton has an infi-
nite signature and an infinite number of states. The crucial part
to implement is the operation colored-transition-fun which
corresponds to the transition function of the automaton. When the
optional parameter cwd is zero, then the automaton has an infi-
nite signature and works on terms of any clique-width. Otherwise
(cwd > 0), there is a finite number of port labels so that the sig-
nature has a finite number of constants and the automaton should
not recognize constants with a port >= cwd. The *ports* spe-

cial variable records the list of autorized labels when finite and is
NIL otherwise; it is used when the transition function is applied to
a constant.

(defun colored-automaton
(k &optional (cwd 0))

(make-fly-automaton
(setup-color-signature cwd k)
(lambda (root states)

(let ((*ports* (port-iota cwd))
(*colors* (color-iota k)))

(colored-transitions-fun
root states)))

:name (format
nil
"~A-COLORED-~A" cwd k))))

Figure 7: Automaton for verifying the coloring of a graph

For a colored constant c~i, the transition function returns a
colors-state whose color-fun gives the singleton {i} for c
and the empty set for every other constant.

(defmethod colored-transitions-fun
((root color-constant-symbol)
(arg (eql nil)))

(let ((port (port-of root)))
(when (or (endp *ports*)

(member port *ports*))
(let* ((color (symbol-color root))

(color-fun
(add-color-to-port

color
port
(make-empty-color-fun))))

(make-colors-state color-fun)))))

For the non constant symbols, as for the stable case, the transition
function calls the method graph-oplus-target,
graph-ren-target or
graph-add-target
according to the symbol.

For the disjoint union operation oplus, the color-fun of the
new state returns the union of the color-fun of the children.
There may be no failure. The function graph-oplus-target im-
plements this operation.

(defmethod graph-oplus-target
((s1 colors-state) (s2 colors-state))

(make-colors-state
(merge-color-fun
(color-fun s1)
(color-fun s2))))

The only operations which may lead to a failure are the add_a_b
operations, because they may connect two vertices which have the
same color; in that case, the transition function returns NIL. This
failure should be transmitted directly to the root of the term via
Lisp conditions.
The function graph-add-target implements this operation.

52 ELS 2013

(defmethod graph-add-target
(a b (colors-state colors-state))

(let ((color-fun
(color-fun colors-state)))

(unless (intersection
(get-colors a color-fun)
(get-colors b color-fun))

colors-state)))

In Figure 8, we call the function to obtain an infinite automaton
that verifies whether a graph of any clique-width has a proper 2-
coloring.

AUTOGRAPH> (setf *2-colored*
(colored-automaton 2))

0-COLORED-2 ;; deterministic
AUTOGRAPH> (compute-target

(input-term "a~1")

2-colored)
<a:1> ;; one state

Figure 8: Automaton for coloring verification

Finally, Figure 10 shows the use of this automaton on a 2-colored
graph. We use term t3 of Table1 (which corresponds to a cycle of
size 4) with two different colorings:
one is proper (*t3_1* see Figure 9), the other one is not (*t3_2*).

a~1

b~2

b~2

a~1

Figure 9: A proper 2-coloring of t3

AUTOGRAPH> *t3_1*
add_a_b(
oplus(a~1,oplus(a~1,oplus(b~2,b~2))))

AUTOGRAPH> (recognized-p

t3_1
2-colored)

T
<a:1 b:2>
AUTOGRAPH> *t3_2*
add_a_b(
oplus(a~1,oplus(a~2,oplus(b~2,b~1))))

AUTOGRAPH> (recognized-p

t3_2
2-colored)

NIL
NIL

Figure 10: Verification of the coloring of a graph

4.4.2 Graph k-colorability
To obtain an automaton for deciding whether an uncolored graph is
k-colorable, one must apply a projection (inverse homomorphism)
which removes the colors from the constants to the previous au-
tomaton. The result is a non deterministic automaton.

AUTOGRAPH> (setf

2-colorability
(color-projection-automaton

2-colored 2))
fly-asm(0-COLORED-2) ;; non deterministic

Now, we run the automaton on some terms.

AUTOGRAPH> (compute-target
(input-term "a")

2-colorability)
o{<a:1> <a:2>} ;; 2states

We verify that a clique of size 3 is not 2-colorable:

AUTOGRAPH> (recognized-p
(graph-kn 3) ;; clique of size 3

2-colorability)
NIL
NIL

but that the graph corresponding to t3 is 2-colorable:

AUTOGRAPH> *t3*
add_a_b(oplus(a,oplus(a,oplus(b,b))))
AUTOGRAPH> (recognized-p

t3 *2-colorability*)
T
o{<a:1 b:2> <a:2 b:1>} ;; 2 states

It is nice to know that a graph is k-colorable but it would be even
nicer to effectively find a proper coloring (or all proper colorings)
of a graph. A simple fly automaton is not enough for that, as it
just gives a boolean answer. In the next section, we shall show
how a fly automaton may be enhanced in order to compute more
interesting answers than boolean values. In particular, we shall be
able to compute or enumerate the proper colorings of a graph.

5. FLY TRANSDUCERS
Because, the number of states of a fly automaton may be infinite,
we may associate attributes to the states of the fly automata in order
to compute more complicated information than just states.

5.1 Attributed fly automata
An attributed fly automaton B is a fly automaton which is based on
another automaton A.

The transition function of B is the one of A enhanced in order to
compute an attribute associated with each state. So the automa-
ton computes attributed states instead of states. Attributed states
are a particular kind of state. They are states that contain states.
In Autowrite we already had states that contain a state; for in-
stance indexed-states for computing disjoint unions of automata.
The in-state class captures that behaviour.

ELS 2013 53

(defclass in-state-mixin ()
((in-state :initform nil

:initarg :in-state
:accessor in-state)))

(defclass in-state
(in-state-mixin abstract-state) ())

Then the class for attributed-states is derived from the in-state
class.

(defclass attributed-state (in-state)
((state-attribute
:initarg :state-attribute
:accessor state-attribute)

(combine-fun :initarg :combine-fun
:reader combine-fun)))

In the deterministic case, instead of computing just the state q, it
computes an attributed-target which is just an attributed-state [q, a]
where q is the state computed by A and a the attribute.

In the non-deterministic case, instead of computing a set of states
{q1, . . . , qp}, it computes an attributed target which is a set of at-
tributed states

{[q1, a1] . . . , [qp, ap]}.

The final state predicate must be extended to work on attributed
states: an attributed state [q, a] is final if the state q is.

At each node of the term, the attribute (or the attributes in the
non deterministic case) are computed from the ones obtained at the
child nodes.

In the deterministic case, just one function must be provided which
for each symbol f ∈ Fn returns a function of n arguments to be
applied to the n attributes computed at the child node. We refer to
it as the symbol-fun.

Suppose we have a term t = f(t1, . . . , tn) and already recursively
computed the attributed state [qi, ai] for each child ti. Let g =
symbol-fun(f). The attribute for t is given by g(a1, . . . , ab).

In the non deterministic case, we may obtain the same state using
different applicable rules. In that case, we need a function in order
to combine the attributes into a single one. We refer to it as the
combine-fun.

An instance of the class afuns contains all what is needed to at-
tribute an automaton.

(defclass afuns ()
((symbol-fun :reader symbol-fun

:initarg :symbol-fun)
(combine-fun :reader combine-fun

:initarg :combine-fun)))

(defun make-afuns (symbol-fun combine-fun)
(make-instance ’afuns

:symbol-fun symbol-fun
:combine-fun combine-fun))

We can for instance count the number of runs (which is interesting
for the non deterministic case). Here is the attribution mechanism
for counting runs.

(defgeneric count-run-symbol-fun (symbol))
(defmethod count-run-symbol-fun

((s abstract-symbol))
#’*)

(defparameter

count-afun
(make-afuns #’count-run-symbol-fun #’+))

The following attribute-transitions-funoperation transforms
the transitions of a non attributed fly automaton into attributed tran-
sitions according to the attribution mechanism afun.

(defmethod attribute-transitions-fun
((transitions abstract-transitions) afun)

(lambda (root attributed-states)
(compute-attributed-target
root
(apply-transition-function
root
(mapcar #’in-state attributed-states)
transitions)

afun
attributed-states)))

An attributed state [q, a] is final for the attributed automaton if q
was final for the non attributed automaton.

(defmethod attribute-final-state-fun
((automaton abstract-automaton))

(lambda (attributed-state)
(final-state-p
(in-state attributed-state)
automaton)))

With the two previous operations, we can define the operation which
transforms a non attributed automaton into an attributed one ac-
cording to the attribution mechanism afun.

(defmethod attribute-automaton
((automaton abstract-automaton) afun)

(let ((transitions
(transitions-of automaton)))

(make-fly-automaton-with-transitions
(make-fly-transitions
(attribute-transitions-fun
transitions afun)

(deterministic-p automaton)
(complete-p automaton)
(completion-state-final transitions)
:transitions-type
’fly-casted-transitions)

(signature automaton)
(attribute-final-state-fun automaton)
(format nil "~A-att" (name automaton)))))

5.2 Fly transducers
A fly transducer is just a fly automaton with an output function
which may be applied to the targets.

If the fly automaton is not attributed, by default, the output function
54 ELS 2013

is the final state predicate which returns a Boolean value.

If the fly automaton is attributed, by default, the output function
returns the attribute of the final target: in the deterministic case,
the target is just a state [q, a] and the result is just the attribute a;
in the non deterministic case, the target is a container of attributed
states [q1, a1], . . . , [qp, ap] and the result is computed by applying
the combine-fun of the attribution mechanism to the attributes
a1, . . . , ap.

The main operations applicable to a term and a fly transducer are
compute-value (term fly transducer) and
compute-final-value (term fly transducer).

5.2.1 Counting graph-colorings
We would like a fly transducer for counting the number of k-colorings
of a graph. Note that the problem is #P -complete for k = 3.

We start with the automaton *2-colored* computed previously
(see Figure 8) and recognizing graphs having a proper k-coloring,
then we attribute it with *count-afun*.

(setf *2-colored-counting*
(attribute-automaton

2-colored
count-afun))

Then we do the color-projection as before.

(setf *count-2-colorings*
(color-projection

2-colored-counting
2))

The resulting automaton computes attributed states each one con-
taining the number of runs leading to the state.

AUTOGRAPH> (compute-final-target

t3
count-2-colorings)

o{[!<a:1 b:2>,1] [!<a:2 b:1>,1]}

Used as a transducer, it computes the number of k-colorings of the
graph:

AUTOGRAPH> (compute-final-value

t3
count-2-colorings)

2
T

For some well-known graphs of graph theory like Petersen’s graph,
the chromatic polynomial has already been computed: it gives the
number of colorings for each k. We could verify experimentally
that our method gives the same values as the chromatic polynomial.

The chromatic polynomial for Petersen’s graph is

k(k − 1)(k − 2)

(k7 − 12k6 + 67k5 − 230k4 + 529k3 − 814k2 + 775k − 352)

For instance, we may verify that Petersen’s graph has 12960 4-

colorings. Note that the problem of deciding whether a graph is
k-colorable is NP-complete for k > 2.

AUTOGRAPH> (compute-final-value
(petersen)
(color-projection-automaton
(attribute-automaton
(coloring-automaton 4)

count-afun)
4))

12960
T
AUTOGRAPH> (petersen-chromatic-polynomial 4)
12960

5.2.2 Computing graph-colorings
The coloring of a graph described by a term may be given by a func-
tion which, given a constant position in the term, gives the assigned
color number. The positions are denoted by Dewey’s words which
are words in [0, m[∗ where m is the maximal arity of a symbol in
the signature.

For representing graphs, the maximal arity is 2 (oplus), so the
positions will contain only zeros or ones.

The root position is denoted by the empty word. In outputs, it will
be denoted by E.

For instance, the set of positions of the term a is { E } and the set
of positions of add_a_b(oplus(a,b)) is
{ E, 0, 00, 01 }.

It is not diffcult to compute such colorings as an attribute on the
automaton which verifies that a graph has a proper k-coloring.

This attribution mechanism is accessible via the variable
assignment-afun.
The code implementing this mecanism is presented in Figure 12 at
the end of the paper. It works both for color assigment and subset
assignment. The combine-fun is just a union; The symbol-fun
is the assignment-symbol-fun function; for every non con-
stant operation it returns the function for computing the attribute: it
extends the positions computed so far with the correct child num-
ber; in the case of colored constant symbols, if returns a zeroary
function that will initiate the attribute as a list containing the empty
position associated with the color of the constant.

AUTOGRAPH> (setf *af2*
(attribute-automaton

2-colored
assignment-afun))

0-COLORED-2-att

The following example shows how to obtain all the possible proper
colorings for the graph t3.

ELS 2013 55

AUTOGRAPH> (setf *f2*
(color-projection-automaton

af2 2))
fly-asm(0-COLORED-2-att)
AUTOGRAPH> (compute-final-value *t3* *f2*)
(([00:1] [010:1] [0110:2] [0111:2])
([00:2] [010:2] [0110:1] [0111:1]))

T

Although being finite, the set of possible proper colorings of a
graph may be of exponential size. We do not necessarily need all
proper colorings. If that is the case, then the enumeration mecha-
nism described in ELS2012 [12] is just what we need.

We construct an enumerator of the final values of the fly transducer
whose values are colorings. Then we just enumerate these values
in order to obtain as many proper colorings as we need.

AUTOGRAPH> (defparameter *e*
(final-value-enumerator
(petersen)

compute-4-colorings))

E

Then we call the enumerator to get the colorings one by one.

AUTOGRAPH> (call-enumerator *e*)
(([0000:3]

[000100000:2]
[0001000010000:3]
[000100001000100000000000000:2]
[000100001000100000000000001:1]
[00010000100010000000000001:1]
[0001000010001000000000001:1]
[000100001000100000000001:2]
[00010000100010000000001:3]
[0001000010001000000001:2]))

T

Given the size and complexity of the value computed by our trans-
ducers, we obtain different classes of complexity (FPT, XP) [16, 8].
This has been studied and submitted to CAI2013 [5].

6. EXPERIMENTS
We have worked on many graph properties, many of which are de-
scribed in [11, 4, 5] in particular on acyclic-colorings [18].

In graph theory, an acyclic-coloring is a (proper) vertex coloring
in which every 2-chromatic subgraph is acyclic. The acyclic chro-
matic number A(G) of a graph G is the least number of colors
needed in any acyclic-coloring of G. It is NP-complete to deter-
mine whether A(G) ≤ 3 (Kostochka 1978). So acyclic-colorability
is not a trivial matter.

McGee’s graph is shown in Figure 11; it is regular (degree 3); it
has 24 vertices and 36 edges; we have a decomposition yielding
a term of clique-width 10, size 76 and depth 99. This graph is
3-acyclic-colorable (but not 2-acyclic-colorable). We may verify
this last fact in less than three hours and compute the number of
3-acyclic-colorings (57024) in less than six hours.

7. CONCLUSION AND PERSPECTIVES

Figure 11: McGee’s Graph

We have defined fly transducers on terms which can compute infor-
mation about terms. When terms represent graphs, we can compute
information about graphs.

One advantage of fly automata and fly transducers are their flexi-
bility and the possibility to transform or combine them in order to
obtain new ones. This can be elegantly done through the functional
paradigm of Lisp. The CLOS layer is also heavily used both in
Autowrite and Autograph.

In this paper we did not address the difficult problem of finding
a clique-width decomposition of a graph (so the clique-width) of
a graph. This problem was shown to be NP-complete in [15].
[19] gives polynomial approximated solutions to solve this prob-
lem. More can be found in [6].

In some applications, the graphs may be given by their decompo-
sition. Some methods exist for specific graphs like cliques, grids,
square grids, trees, For other graphs like Petersen’s or McGee’s,
we had previously done hand decompositions. In most cases, we
do not know whether we have the best decomposition (the smallest
clique-width).

Recently, we have started developping a system DecompGraph
for approximated clique-width decomposition of graphs. Approxi-
mated means, that it will not necessarily give the smallest possible
clique-width.

The DecompGraph is independent from Autograph.
With DecompGraph, we can at least decompose the graphs we
had already worked on and were pleased to improve the hand de-
composition of Petersen’s graph from cwd = 7 to cwd = 6. For
McGee’s graph however, we did not find a better decomposition
(cwd = 10) with DecompGraph.

The decomposition of a graph is a kind of preprocessing phase.
Once the graph is decomposed into a term, we may keep the de-
composition and apply as many fly automata or fly transducers as
we want on the term.

The fact that we can now decompose graphs (although may be not
very big ones) means that we are able to effectively prove graph
properties and compute graph properties starting from the graph
itself which was not possible before.

56 ELS 2013

Any domain using terms for representing objects (language pro-
cessing, protocol verification, . . .) could benefit from fly transduc-
ers. We are looking for applications in graphs or any other domain
using terms.

Acknowledgements
The authors thank the referee for his very accurate and constructive
remarks.

8. REFERENCES
[1] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,

D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications. 2002. Draft, available from
http://tata.gforge.inria.fr.

[2] B. Courcelle and I. Durand. Verifying monadic second order
graph properties with tree automata. In Proceedings of the
3rd European Lisp Symposium, pages 7–21, May 2010.

[3] B. Courcelle and I. Durand. Fly-automata, their properties
and applications. In B. B.-M. et al., editor, Proceedings of
the 16th International Conference on Implementation and
Application of Automata, volume 6807 of Lecture Notes in
Computer Science, pages 264–272, Blois, France, July 2011.
Springer Verlag.

[4] B. Courcelle and I. Durand. Automata for the verification of
monadic second-order graph properties. Journal of Applied
Logic, 10(4):368 – 409, 2012.

[5] B. Courcelle and I. Durand. Automata for monadic
second-order model-checking. In Proceedings of the 5th
International Conference on Algebraic Programming,
Porquerolles Island, Aix-Marseille University, France, 2013.
To appear in September 2013.

[6] B. Courcelle and J. Engelfriet. Graph Structure and Monadic
Second-Order Logic, a Language Theoretic Approach.
Cambridge University Press, 2012.

[7] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed
parameter complexity of graph enumeration problems
definable in monadic second-order logic. Discrete Applied
Mathematics, 108(1-2):23 – 52, 2001.

[8] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized
complexity: A framework for systematically confronting
computational intractability. In Contemporary Trends in
Discrete Mathematics: From DIMACS and DIMATIA to the
Future, volume 49, pages 49–99. AMS-DIMACS
Proceedings Series, 1999.

[9] I. Durand. Autowrite: A tool for checking properties of term
rewriting systems. In Proceedings of the 13th International
Conference on Rewriting Techniques and Applications,
volume 2378 of Lecture Notes in Computer Science, pages
371–375, Copenhagen, 2002. Springer-Verlag.

[10] I. Durand. Autowrite: A tool for term rewrite systems and
tree automata. Electronics Notes in Theorical Computer
Science, 124:29–49, 2005.

[11] I. Durand. Implementing huge term automata. In
Proceedings of the 4th European Lisp Symposium, pages
17–27, Hamburg, Germany, March 2011.

[12] I. Durand. Object enumeration. In Proceedings of the 5th
European Lisp Symposium, pages 43–57, Zadar, Croatia,
May 2012.

[13] I. Durand. Autowrite. Software, since 2002.
[14] I. Durand. Autograph. Software, since 2010.
[15] M. Fellows, F. Rosamond, U. Rotics, and S. Szeider.

Clique-width minimization is NP-hard. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing,
pages 354–362, Seattle, 2006.

[16] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. Rosamond,
S. Saurabh, S. Szeider, and C. Thomassen. On the
complexity of some colorful problems parameterized by
treewidth. Information and Computation, 209(2):143 – 153,
2011.

[17] M. C. GOLUMBIC and U. ROTICS. On the clique-width of
some perfect graph classes. International Journal of
Foundations of Computer Science, 11(03):423–443, 2000.

[18] B. Grünbaum. Acyclic colorings of planar graphs. Israel
Journal of Mathematics, 14:390–408, 1973.

[19] S.-I. Oum. Approximating rank-width and clique-width
quickly. ACM Trans. Algorithms, 5(1):1–20, 2008.

[20] J. Thatcher and J. Wright. Generalized finite automata theory
with an application to a decision problem of second-order
logic. Mathematical Systems Theory, 2:57–81, 1968.

ELS 2013 57

(defun union-fun (&key (fun #’union) (test #’equalp))
(lambda (&rest attributes)

(reduce (lambda (a1 a2) (funcall fun a1 a2 :test test))
attributes :initial-value ’())))

(defgeneric position (position-assignment))
(defgeneric assignment (position-assignment))

(defclass position-assignment ()
((position :initarg :position :reader position)
(assignment :initarg :assignment :reader assignment))

(:documentation "position with color or subset assignment"))

(defun make-position-assignment (position assignment)
(make-instance ’position-assignment

:position position
:assignment assignment))

(defgeneric left-extend-position-assignment (position-assignment i))
(defmethod left-extend-position-assignment

((position-assignment position-assignment) (i integer))
(make-position-assignment
(left-extend-position (position position-assignment) i)
(assignment position-assignment)))

(defgeneric assignment-fun (attributes1 attributes2))
(defmethod assignment-fun ((attributes1 list) (attributes2 list))
(loop

with attributes = ’()
for a1 in attributes1
do (loop for a2 in attributes2

do (push (append a1 a2) attributes))
finally (return attributes)))

(defgeneric assignment-symbol-fun (s))
(defmethod assignment-symbol-fun ((s vbits-constant-symbol))
(lambda ()

(list (list (make-position-assignment (make-position ’()) (vbits s))))))

(defmethod assignment-symbol-fun ((s color-constant-symbol))
(lambda ()

(list (list (make-position-assignment
(make-position ’())
(symbol-color s))))))

(defmethod assignment-symbol-fun ((s abstract-parity-symbol))
(lambda (&rest attributes)

(setf attributes
(loop

for attribute in attributes
for i from 0
collect
(loop

for position-assignments in attribute
collect
(loop

for position-assignment in position-assignments
collect (left-extend-position-assignment

position-assignment i)))))
(if (endp (cdr attributes))

(car attributes)
(reduce #’assignment-fun attributes))))

(defparameter *assignment-afun* (make-afuns #’assignment-symbol-fun (union-fun)))

Figure 12: The attribute mecanism for computing position assignment

58 ELS 2013

Session IV

Lazy Signal Combinators in Common Lisp

Max Rottenkolber
Rottenkolber Software Engineering

Karlstraße 15
53115 Bonn, Germany

max@mr.gy

ABSTRACT
This demonstration explores an intuitive approach to signal
synthesis using Higher-order functions to compute lazy re-
presentations of signals. Given a few primitives which adhere
to said representation, ad hoc combinations of signals can be
formed to be used to synthesize new signals intuitively. Re-
sults from an experimental implementation of this approach
in an embedded1 signal synthesis language called SOUNDLAB

prove the approach to be powerful and extensible.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Performing Arts;
H.5.5 [Information Systems]: Information Interfaces and
Presentation—Sound and Music Computing

General Terms
Demonstration

Keywords
Signal synthesis, combinatorial higher-order functions, Com-
mon Lisp

1. INTRODUCTION
The described approach is mainly inspired from experience
gained by using analogue sound synthesizers. While every
analogue synthesizer has its own unique sound based on the
physical parts it is made of, most do share their key con-
cepts. Usually a limited number of oscillators generate si-
gnals resembling—more or less—sine waves which are then
modulated by being combined with each other in different
ways.

SOUNDLAB—an experimental implementation of the presen-
ted approach—is designed to enable the user to explore ways
of signal combination. It does so by defining an embedded

1Embedded in Common Lisp, that is.

domain specific language which provides axioms that gene-
rate primitive signals and axioms that combine arbitrary si-
gnals into new signals. The semantics of the language are ba-
sed on a signal interface agreed on by every component. Fur-
thermore SOUNDLAB allows the use of Common Lisp’s means
of abstraction to define compound signals and signal combi-
nators. Primitive as well as compound parts of the system
form a homogeneous group of objects defined by their sha-
red interfaces, which grant the system power and flexibility
of a Lisp system.

There are of course many free software implementations2 of
signal synthesis systems with programming language interfa-
ces. SOUNDLAB is—when compared to others—much simpler
and entirely written and embedded in Common Lisp.

SOUNDLAB is free software licensed under theGNU AGPL and
can be obtained at http://mr.gy/software/soundlab/.

2. RENDERING SIGNALS
Before discussing signal synthesis, we must define ways for
consuming the synthesized signal as well as for verification
of our results. Because our domain is music, we need to be
able to play back signals as sound. Furthermore visualizing
a signal can be useful for debugging since some properties
of a signal are better conceived visually than aurally.

For both forms of presentation a technique called sampling is
used—which will not be described in detail here. All that is
needed to know for this approach, is that the sampling rou-
tine records a sequence of linear amplitude values according
to a time span and a function—or signal—which maps va-
lues of time to values of amplitude. The resulting sequence
resembles the kind of data that can be fed into standard
digital sound adapters or plotting applications.

;;; Approximate type of a sampling function.

(FUNCTION ((FUNCTION (REAL) REAL) REAL)

(SEQUENCE REAL))

SOUNDLAB derives its signal type from this rationale. It al-
so exports two functions which record signals to standard
WAVE audio files and Gnuplot compatible data files respec-
tively. SOUNDLAB also chooses arbitrary but sensible units and
2See for instance Overtone (http://overtone.github.io)
and Csound (http://www.csounds.com).

60 ELS 2013

scales for time and amplitude. Time is chosen to be a num-
ber in seconds greater than zero and amplitude is chosen to
be a number ranging from −1 to 1. Results of inputs to the
sampling routine exceeding these bounds are undefined.

3. SIGNAL SYNTHESIS
3.1 Signals as functions
As discussed in the previous section, functions are the natu-
ral way to model a signal. Furthermore signals as functions
encourage lazy operations without enforcing them—which
can later be useful for aggressive optimizations.

;;; Type of a signal.

(FUNCTION (REAL) REAL)

A crucial type of signal is the sine wave—since in theory, all
signals are sums of sine waves. Common Lisp provides us
with a sine function SIN which serves our purpose well. We
could pass #’SIN to a sampling routine as is, which would
produce a very low frequency signal below the human hea-
ring threshold. In order to specify other frequencies a con-
structor SINE is defined which accepts a frequency in Hz and
returns the respective sine signal.

;;; Constructor for primitive sine signals.

(defun sine (frequency)

(lambda (x) (sin (* 2 pi frequency x))))

Additionally a constructor for chorded signals could be de-
fined as a function that takes two signals as arguments and
returns a function that sums and normalizes them according
to the boundaries we defined in the previous section.

;;; Constructor for a chord of two signals.

(defun chord-2 (signal-1 signal-2)

(lambda (x) (* (+ (funcall signal-1 x)

(funcall signal-2 x))

1/2)))

The CHORD-2 function demonstrates the important traits of
signals as functions. A new signal in form of an anonymous
function is being compiled whenever we call CHORD-2. Becau-
se the actual processing of the arguments is postponed until
sampling occurs, operation on signals is cheap. Furthermore
calls to CHORD-2 can be combined to create chords with an
arbitrary number of voices.

3.2 Signal combination
As seen in the previous section, modeling signals as functions
enables us to write small, cheap and powerful signal com-
binators which can be chained to arbitrary extent. When
chosen carefully, a small set of primitive combinators and
signals can be used to create infinitely complex sounds.

;;; Type of a signal combinator.

(FUNCTION (&REST (FUNCTION (REAL) REAL))

(FUNCTION (REAL) REAL))

While building SOUNDLAB, some primitives turned out to be
especially useful. FLATLINE—a constant signal constructor—
serves a simple but important purpose. It takes a number
as its only argument and returns a flat signal with a con-
stant amplitude. When passed to a signal combinator its
purpose is usually to scale combinations of signals. ADD is a
general signal adder. It takes an arbitrary number of signals
and sums them. Likewise, MULTIPLY multiplies signals. The
CHORD-2 combinator of the previous section can be defined
more generally using these primitives.

;;; Implementation of FLATLINE.

(defun flatline (amplitude)

(lambda (x)

(declare (ignore x))

amplitude))

;;; Generic implementation of CHORD.

(defun chord (&rest signals)

(multiply (apply #’add signals)

(flatline (/ 1 (length signals)))))

Note that—due to the normalization performed by CHORD-2—
the equivalent of (chord a b c) is

(chord-2 (chord-2 a b) (chord-2 c (flatline 1)))

as opposed to

(chord-2 (chord-2 a b) c)

which would produce the chord of C and the chord of A and
B instead of the chord of A, B and C.

Furthermore, using signals as arguments to operations whe-
re constants would suffice whenever possible has proven to
be feasible and powerful. Whenever a component is being
modeled that would be controlled by a knob or fader in an
analogue synthesizer, then its digital counterpart should be
controlled by a signal. Take for instance a signal combina-
tor MIX* whose purpose is to merge two signals—just like
CHORD—while additionally providing a way to control how
much each input signal amounts to the mixed signal. So
what would have been a Dry/Wet knob on an analogue syn-
thesizer becomes a signal in our case. Our MIX* takes three
signals as arguments, two to be mixed and a third to control
their amounts. For ease of implementation we also introduce
SUBTRACT—the counterpart to ADD.

ELS 2013 61

;;; Implementation of MIX*.

(defun mix* (signal-a signal-b ratio-signal)

(add (multiply signal-a

(subtract (flatline 1)

ratio-signal))

(multiply signal-b

ratio-signal)))

Staying within closure of the signal representation—that is
trying hard to define our operations on a uniform signal re-
presentation only—grants the system a lot of power and fle-
xibility. All of the presented signal combinators can be plug-
ged into each other without restriction. As of now some care
has to be taken to not produce signals exceeding the defined
boundaries—see Rendering signals. Additionally, some com-
binators make use of non-audible signals. For instance MIX*

expects RATIO-SIGNAL to return values ranging from zero
to one and MULTIPLY is used in combination with FLATLINE

to moderate signals. SOUNDLAB fails to address the issue of
having multiple informal subtypes of signals. As of now the
user has to refer to the documentation of a combinator to
find out if it expects certain constraints—as is the case with
MIX*. Nevertheless, our few examples can already be used to
produce complex sounds. The code snippet below works in
SOUNDLAB as is and produces a rhythmically phasing sound.

;;; Possible usage of the presented combinators.

(defun a-4 () (sine 440))

(defun a-5 () (sine 220))

;; Normalize a sine to 0-1 for use as RATIO-SIGNAL.

(defun sine-ratio ()

(multiply (add (sine 1)

(flatline 1))

(flatline 1/2)))

;; Produce a WAVE file.

(export-function-wave

;; A complex signal.

(mix* (chord (a-4) (a-5))

(multiply (a-4) (a-5))

(sine-ratio))

;; Length of the sampling in seconds.

4

;; Output file.

#p"test.wav")

4. THE STATE OF SOUNDLAB
As of the time of this writing SOUNDLAB consists of roughly
500 lines of source code. It depends on a minimal library for
writing WAVE files and is written entirely in Common Lisp.
The source code is fairly well documented and frugal.

While being compact SOUNDLAB provides basic routines for
working with western notes and tempo, a few primitive wa-
veforms, ADSR envelopes with customizable slopes and the
ability to form arbitrary waveforms from envelopes, a good
handfull of signal combinators and last but not least an ex-
perimental lowpass filter. A stable API is nowhere near in
sight but some trends in design are becoming clear.

On the roadmap are classic sound synthesis features like
resonance, routines for importing signals from WAVE files
and many small but essential details like bezier curved slopes
for envelopes.

5. CONCLUSIONS
SOUNDLAB—even in its immature state—presents an oppor-
tunity to explore abstract signal synthesis from scratch for
engineers and artist alike. Its simplicity encourages hacking
and eases understanding. While many complex problems
surrounding signal synthesis remain unsolved, its lazy com-
binatorial approach forms a powerful and extensible frame-
work capable of implementing classic as well as uncharted
sound synthesis features.

The demonstrated approach proved to be especially suited
to exploratory sound engineering. Ad-hoc signal pipelines
can be built quickly in a declarative way, encouraging re-
usability and creativity. In comparison to other tools in the
domain the line between using and extending the system is
blurry. Where Csound lets the user declaratively configure
instruments and controls using XML, SOUNDLAB emphasizes
the user to use its built-in primitives and all of Common Lisp
to stack layers of signal sources and modulators on top of
each other. When compared to Overtone—a Clojure front-
end to the SuperCollider audio system—SOUNDLAB’s back-
end independency and simplicity make it seem more suited
for exploration and hacking. Its core concepts are few and
simple and its codebase is tiny and modular despite some
advanced features like envelopes, musical scales and tempo,
a lowpass filter and many kinds of signal combinators being
implemented.

Many of Common Lisp’s idioms proved to be an ideal fit
for the domain of signal synthesis. Furthermore, embedding
a signal synthesis language in Common Lisp provides the
system with unmatched agility. While the core approach is
mainly built on top of functional paradigms, extensions like
signal subtype checking—as mentioned in section 3.2—could
be implemented using macros.

I personally had tons of fun building and playing with SOUND-

LAB. I encourage everyone interested in computerized mu-
sic to dive into the source code and experiment with the
system—it really is that simple. Feedback and contributions
are welcome!

6. ACKNOWLEDGMENTS
Thanks to Michael Falkenbach for teaching me a whole lot
about analogue audio hacking.3

Thanks to Vera Schliefer for introducing me to signal theory.

Thanks to Drew Crampsie for providing the Common Lisp
community with resources regarding the implementation of
monadic combinators. 4

3http://soundpiloten.de
4http://common-lisp.net/~dcrampsie/smug.html

62 ELS 2013

CL-NLP — a Natural Language Processing library for Common Lisp

Vsevolod Domkin

vseloved@gmail.com

Abstract
CL-NLP is the new Common Lisp Natural Language Processing library the development of which has
started in 2013. The purpose of the library is to assemble a comprehensive suite of NLP algorithms,
models and adapters to popular NLP resources for Common Lisp. Similar projects in other languages
include the Python Natural Language Toolkit NLTK [NLTK], which is the most popular starting point
for educational work and academic research, Stanford CoreNLP [CoreNLP] and Apache OpenNLP
[OpenNLP] libraries.

The motivations for its creation include the following:

• Lisp is very well suited for NLP projects, providing broad support for statistical calculations,
symbolic computation, as well as string and tree mainpulation;

• unfortunately, a lot of work was done in the NLP area in Common Lisp before the advent of
open-source, and its artifacts are scattered across various libraries, university Internet web-sites
and books, not gathered under one roof, curated and supported. The idea behind CL-NLP is to
provide a central repository for such artifacts in the future;

• the existing open source Common Lisp NLP tools are insufficient.

This article presents an overview of the current state of CL-NLP, a discussion of its implementation and
a plan for its further development.

Keywords: Natural Language Processing, Programming Environments, Software Architectures,
Reusable Software,Language Constructs and Features

1. Overview

1.1. Previous work

There is an existing NLP Lisp library — cl-langutils [langutils], which was considered as a candidate to
serve as a base for this effort, but its original authors had abandoned it, and it has not seen active
development for a long period of time with only occasional bugfixes. The main concern with cl-
langutils is that it doesn't provide a modular foundation suitable for supporting many alternative ways
to solving the same tasks which is required to assemble the suite of algorithms that should become CL-
NLP.

Apart from langutils, other repositories of NLP-related Common Lisp code include:

• code from “Natural Language Processing in Lisp” book [NLPinLisp]

• code from “Natural Language Understanding” book [NLU]

ELS 2013 63

• code from “Paradigms of Artificial Intelligence Programming” book [PAIP]

• code from “Artificial Intelligence Programming” book [AIProg]

• CMU AI repository [CMUAI]

• Lexiparse project [Lexiparse]

• Sparser project [sparser]

• CL-EARLY-PARSER project [CLEarly]

• Basic-English-Grammar project [BasicEngGrammar]

• Various Wordnet interfaces, including cl-wordnet [CLWordnet] and cffi-wordnet [cffiWordnet]

• Soundex project [Soundex]

1.2. Library design

The most important design goal for CL-NLP is to provide a modular extensible foundation to
accumulate over time various NLP algorithms and models. To achieve it the library uses several layers
of modularization facilities: systems, packages and CLOS generic functions.

At the top level the library is provided as two ASDF systems:

• cl-nlp implements the core functionality;

• cl-nlp-contrib provides various adapters to external systems, that have additional
dependencies not essential to the core library.

At the namespacing level the library is split into packages of three types:

• basic packages that provide the foundational data structures and utilities to serve as the common
“language” of CL-NLP – these include: nlp.core, nlp.util, nlp.test-util, and
nlp.corpora;

• functional packages in cl-nlp system that implement a broad range of functionality in one of
the areas of the libraries scope: nlp.syntax, nlp.generation, nlp.phonetics etc;

• functional packages in cl-nlp-contrib system that implement specific adapters to external
NLP resources: nlp.contrib.wordnet, nlp.contrib.ms-ngrams;

• nlp-user package which collects all the public symbols from the other packages and provides
additional facilities to enhance the usability of interactive development with CL-NLP.

Common Lisp's lack of hierarchical packages is often regarded as a shortcoming of the language. Yet,
package hierarchy may be emulated by using an appropriate naming scheme, like the scheme of CL-
NLP packages and the use of some utility functions. At the same time the package system is built with
separation of concerns in mind that is lacking in hierarchical namespace systems of such languages as
Python and Java that tie package names to the file system and make it difficult to evolve such hierarchy
without the help of special tools. Besides, this coupling doesn't allow to easily aggreagate names from
more than 1 file in a module that is often desirable.

At the next level each package exports a number of generic functions for major operations that serve as
the API entry point: tokenize, lemmatize, tag, parse etc. The methods of such generic functions
implement specific algortihms of tokenization, lemmatization etc. By convention the first argument of

64 ELS 2013

each generic function should be an instance of the class which specifies, what algorithm should be
implemented. For instance, such classes as regex-tokenizer, markov-chain-generator, hmm-
tagger are defined. These instances provide parametrization possibilities for the algorithms and allow
for code reuse through inheritance.

The following code demonstrates this principle int the implementation of the simple regular-expression
based word tokenizer.

(defgeneric tokenize (tokenizer string)
 (:documentation
 "Tokenize STRING with TOKENIZER. Outputs 2 values:
 - list of words
 - list of spans as beg-end cons pairs"))

(defclass regex-word-tokenizer (tokenizer)
 ((regex :accessor tokenizer-regex :initarg :regex
 :initform
 (re:create-scanner
 "\\w+|[!\"#$%&'*+,./:;<=>?@^`~…\\(\\) {}\\[\\|\\]⟨⟩ ‒–—
«»“”‘’¶-]")―

 :documentation
 "A simpler variant would be [^\\s]+ —
 it doesn't split punctuation, yet sometimes it's desirable."))
 (:documentation
 "Regex-based word tokenizer."))

(defmethod tokenize ((tokenizer regex-word-tokenizer) string)
 (loop :for (beg end) :on (re:all-matches (tokenizer-regex tokenizer)
 string)
 :by #'cddr
 :collect (subseq string beg end) :into words
 :collect (cons beg end) :into spans
 :finally (return (values words
 spans))))

Additionally, the CLOS method-combination facilities are extensively used to factor auxiliary actions
out of the main methods implementations.

(defmethod tokenize :around ((tokenizer tokenizer) string)
 "Pre-split text into lines and tokenize each line separately."
 (let ((offset 0)
 words spans)
 (loop :for line :in (split #\Newline string) :do
 (multiple-value-bind (ts ss) (call-next-method tokenizer line)
 (setf words (nconc words ts)
 spans (nconc spans (mapcar #`(cons (+ (car %) offset)
 (+ (cdr %) offset))
 ss)))
 (incf offset (1+ (length line)))))
 (values words
 spans)))

To further simplify development with CL-NLP singleton instances of certain classes with default

ELS 2013 65

parameter values are defined where it is possible. For instance, there's a default <word-tokenizer>
singleton, which is an instance of postprocessing-regex-word-tokenizer class. Also by convention
these instances have their names in angular brackets and there is a special macro for efficiently defining
them. This is how the macro is invoked:

(define-lazy-singleton word-chunker
 (make-instance 'regex-word-tokenizer
 :regex (re:create-scanner "[^\\s]+"))
 "Dumb word tokenizer, that will not split punctuation from words.")

It uses define-symbol-macro in its definition:

(defmacro define-lazy-singleton (name init &optional docstring)
 "Define a function NAME, that will return a singleton object,
 initialized lazily with INIT on first call.
 Also define a symbol macro <NAME> that will expand to (NAME)."
 (with-gensyms (singleton)
 `(let (,singleton)
 (defun ,name ()
 ,docstring
 (or ,singleton
 (setf ,singleton ,init)))
 (define-symbol-macro ,(mksym name :format "<~A>") (,name)))))

One of the biggest shortcomings of the design of NLP libraries based on conventional approach to
object-orientation, such as NLTK or OpenNLP, is that the algorithms are implemented inside the
concrete classes. Taking into account the extensive usage of inheritance this brings to the situation in
practice, when parts of the implementation are scattered around several classes and files which greatly
impedes its readability and in effect clarity. Another problem is the need to properly instantiate the
classes before performing the tasks which may not be straighforward, especially in multi-threaded
systems, as not all of the classes are implented in a thread-safe manner. The approach taken by CL-NLP
which extensively utilizes CLOS capabilities tries to solve these problems while maintaining the
extensible nature of object-oriented programs.

2. Main modules
2.1. Util

The nlp.util package defines the basic set of utilities to handle individual characters, words, text
strings, files, trees of symbols, perform common mathematical operations and some supplementary
utilities. The package nlp.util provides specific procedures to run unit tests and test algorithms with
various corpora.

2.2. Core

The nlp.core package defines the basic data sctructures and algorithms used in other CL-NLP
modules. They are also intended for stand-alone usage. These include:

• the basic token data-structure and tokenization generic function with several basic
tokenization algorithms for splitting text chunks, words and sentences;

• language modelling with ngrams, implemented with the following classes:

◦ ngrams is a low level class which wraps access to an underlying storage of ngrams (an in-

66 ELS 2013

memory hash-table, a database etc.) It supports such functions as getting ngram frequency
individually or in batchs (freq and freqs), approximated probability (prob, probs) and log
of probability (logprob, logprobs), and conditional probabilites (cond-prob, cond-probs,
cond-logprob, cond-logprobs). The default ngrams implementation is the table-ngrams
class that stores them in a hash-table.

◦ language-model is a more high-level interface that incapsulates access to a group of
ngrams of different orders to provide smoothing capabilities for the methods freqs, probs,
logprobs and cond-logprobs. Two implementations are provided: plain-lm without any
smoothing and stupid-backoff-lm which implements the Stupid Backoff smoothing
algorithm [LargeLMinMT]. Additionally, in cl-nlp-contrib the implementation of access
to Microsoft Web N-gram Services [MSWebNgrams]. More language models should be
added in the future to support other smoothing language models [SmoothingLMs], as well
as adapter for external language modelling software, such as BerkeleyLM [BerkeleyLM].

2.3. Corpora

The nlp.corpora package implements functions to load and access commonly used lingusitic corpora,
such the Brown corpus [BrownCorpus] or Penn Treebank [PennTreebank]. The basic data-structures
for corpus management are:

• text which holds an individual unit of the corpus' text data in the raw, clean-up and tokenized
forms;

• corpus which holds a collection of texts with possible various groupings of them (for example
by-category, by-author etc).

2.3. Syntax

The nlp.syntax package provides the generic functions tag, parse, and parse-n (which returns the
N most likely parses of the sentence). The implementations of taggers include an hmm-tagger and a
glm-tagger. And for parsing a common PCFG-based algorithm is implemented with the lazy
algorithm for finding N best parses [kBestParsing].

2.5. Wordnet

The nlp.contrib.wordnet package implements the interface to Wordnet lexical database of English
[Wordnet]. There are at least two other libraries which provide access to Wordnet from Common Lisp
that were mentioned previously. This libraries were not used as a basis for the implementation of
Wordnet interface in CL-NLP. The reason for that was that is that they both interface (directly or
indirectly) with the custom Wordnet file format. There are many alternative Wordnet storage formats,
including a relational database ones [WordNetSQL]. The advantages of SQL-based representation are:

• it is standard so there may be multiple ways to interact with it, including the stock SQL clients;

• SQL interaction is well-supported in client libraries;

• it is transparent;

• it is distributed as a single file;

• it is rather fast and may be optimized if necessary.

That is why Wordnet interaction in CL-NLP was implemented using SQL Wordnet representation,
specifically, an sqlite database. CLSQL [CLSQL] was chosen as the client library, because it supports

ELS 2013 67

many SQL databases and so allows to change SQL backend in the future if necessary.

The other benefit of implementing Wordnet support this way is that it provides another alternative
solution for Lisp-Wordnet interface in addition to the existing ones.

2.6. Other modules

Other modules are for such functionality as phonetics, morphology, text generation, text classification
and clustering, semantic analysis etc. are under development.

3. Implementation notes
3.1. Trade-offs

There are several qualities of code for which CL-NLP can be optimized. They include:

• simplicity – how simple is the implementation of the functionality;

• performance – how effective and optimized are the library's algorithms;

• extensibility – how easy it is to add new functionality;

• uniformity – how much does the code follow a single set of standards and conventions.

Extensibility and uniformity receive top priority in the implementation of CL-NLP. As for performance,
the algorithms are made as efficient as possible without compromising the aforementioned qualities.
The reasons for that are:

• in many use cases optimal performance is not required;

• when optimal performance is required, it is possible to create a custom optimized
implementation of the algorithm. At the same time, supporting and extending a lot of custom
implementations not following a set of unifying principles is an unnecessary burden.

As for simplicity, sometimes the implementation is made more general to allow for different use cases
and provide several extension points. This, in effect, adds some complexity comapred to te most
straightforward solution, but the complexity is justified by the overall preference to extensibility.

3.2. Stylistic issues

As in most programming language communities, there are many debates about good and bad style of
Common Lisp programs. In general, CL-NLP follows the Google Common Lisp Styleguide
[GoogleCLStyleguide]. Besides, the following stylistic principl apply:

1. Using the whole language.

Some people suggest to exclude some Common Lisp functions/macros from the program
lexicon on the basis that there are better alternative versions in the standard. The classic
example of this is do and loop macros that both allow to express arbitrary iteration algorithms,
but in substantially different manners. So the proposal is to choose one of the two and use it
consistently. The approach taken in CL-NLP is the opposite: to use the construct that allows to
express the computation in the most concise and clear way regardless of the constructs used in
other parts of the system. This approach is also taken in anticipation of the need to integrate
many algorithms coming from different people and sources, which may rely on different coding
standards.

68 ELS 2013

2. Extending the language to achieve more declarative and concise code.

The “Growing a Language” [GrowingALang] approach is characteristic to Lisp systems, but at
the same time it is often proposed not to use utility extensions to the language that merely
change the surface syntax, but do not add anything to the semantics. CL-NLP is built on a
different premise – that overlooking syntactic convenience is detrimental to the code clarity. It
uses the reasonable-utilities library [rutils] which provides a lot of extensions to the Common
Lisp standard library to improve the usability of handling strings, hash-tables, files, sequences
etc.

3. Providing multiple choice to the user.

There is a broad range of use cases for CL-NLP: from experimental work to production usage.
To support different usage scenarios and in effect a different interaction model with the library
clients, the library should provide different interfaces. For instance, for interactive use it is
convenient to have all the functions immediately available, to operate with short operation
names, to have sensible defaults. The requirements for production systems are more in the areas
of possibility to granuarily control the used operations, to optimize their performance and
resource requirements and to maintain the resulting code. CL-NLP's development goal is to
support all these modes of operations by providing many alternative usage paths with the help
of packaging, aliases, default implementations and pre-configured classes and other means.

4. References
[AIProg] Eugene Charniak, Christopher K. Riesbeck, Drew V. McDermott, James R. Meehan, 1987,
“Artificial Intelligence Programming”

[BasicEngGrammar] http://www.cliki.net/Basic-English-Grammar

[BerkeleyLM] https://code.google.com/p/berkeleylm/

[BrownCorpus] W. N. Francis, H. Kucera, 1979, “A Standard Corpus of Present-Day Edited American
English, for use with Digital Computers, Revised and Amplified”

[cffiWordnet] https://github.com/kraison/cffi-wordnet[Kakkonen] Tuomo Kakkonen, 2007,
"Framework and Resources for Natural Language Parser Evaluation"

[CLEarly] http://www.cliki.net/CL-EARLEY-PARSER

[CLSQL] http://clsql.b9.com/

[CLWordnet] https://github.com/TheDarkTrumpet/cl-wordnet

[CMUAI] http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/0.html

[CoreNLP] Stanford Core NLP, http://www-nlp.stanford.edu/software/corenlp.shtml

[GoogleCLStyleguide] Robert Brown, François-René Rideau, “Google Common Lisp Style Guide”,
http://google-styleguide.googlecode.com/svn/trunk/lispguide.xml

[GrowingALang] Guy L. Steele Jr., 1999, “Growing a Language”

[kBestParsing] Liang Huang, David Chiang, 2005, “Better k-best Parsing”

[langutils] Ian Eslick, Hugo Liu, 2005, "Langutils: A Natural Language Toolkit for Common Lisp"

[LargeLMinMT] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean, “Large

ELS 2013 69

Language Models in Machine Translation”

[Lexiparse] Drew Mcdermott, 2005, “Lexiparse: A Lexicon-based Parser for Lisp Applications”

[MSWebNgrams] http://web-ngram.research.microsoft.com/

[NLPinLisp] Gerald Gazdar, Chris Mellish, “Natural Language Processing in Lisp/Prolog/Pop11”,
source code available from: https://bitbucket.org/msorc/nlp-in-lisp

[NLTK] NLTK, http://nltk.org/

[NLU] James Allen, 1994, “Natural Language Understanding (2nd Edition)”

[OpenNLP] Apache OpenNLP, http://opennlp.apache.org/

[PAIP] Peter Norvig, 1992, “Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp”

[PennTreebank] http://www.cis.upenn.edu/~treebank/

[rutils] https://github.com/vseloved/rutils

[SmoothingLMs] Gina-Anne Levow, “Smoothing N-gram Language Models”

[Soundex] http://www.cliki.net/Soundex

[sparser] https://code.google.com/p/sparser

[Wordnet] http://wordnet.princeton.edu/

[WordNetSQL] http://sourceforge.net/projects/wnsql/

70 ELS 2013

