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Message from the Programme Chair

Welcome to the 8th edition of the European Lisp Symposium!
We have a delightfully broad range of topics in the papers selected this year from systems, through domain-specific and

visual languages to a wide variety of novel applications. This variety is also reflected in the invited talks, with an exploration
of embedding a declarative computational model in Lisp, how to build (and maintain!) feature-rich Lisp systems and two
talks focussing on the ever-present challenges arising from memory management.

My thanks to the programme committee not only for the detailed reviews, but their responsiveness and timeliness in
handling the workload. I am particularly grateful to the local organizers – Christophe and Didier – for their guidance and
support at every stage in the process, from planning the timeline, to distributing calls and providing organizational memory.
Previous programme chairs, most especially Kent Pitman of ELS 2014, also provided helpful advice along the way. Finally,
thanks to the authors, to all those that submitted contributions, and to you the participants for reminding us of the vibrancy
of the community and keeping the Lisp flame alive.

Julian Padget, Bath, April 2015
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Message from the Organizing Chair

Welcome to Goldsmiths!
Goldsmiths is situated in New Cross, Deptford in South-East London, which is perhaps historically most notorious for

being where the playwright (and spy?) Christopher Marlowe met his end in a drunken dispute (or was it an assassination?).
Goldsmiths was founded as a Technical and Recreative Institute in 1891, becoming part of the University of London in 1904
and receiving a Royal Charter in 1990. Today, Goldsmiths through its reaching and research serves London – fostering
local artists and entrepreneurs – and the world – sharing the insights of research, working with businesses, charities, arts
organizations and government.

Organizing a symposium is a substantial undertaking: too substantial for one person. I would like to thank our external
sponsors for their generous support: Clozure Associates, EPITA, Franz Inc., Google and Lispworks Ltd. all help make an
event like this possible. Julian Padget gamely accepted the challenge of organizing the programme, which he proceeded to
accomplish in a marvellously unflappable way. Didier Verna handled the website, mass announcements, and payments; his
voice of experience was soothing at stressful times. Shivi Hotwani and the Conference Services team at Goldsmiths were
most helpful, coming up with ideas to fulfil our hosting duties, and modifying them to meet new constraints. Thanks also to
the symposium’s steering committee, who provided advice when it was needed, and encouraged me to offer Goldsmiths as
the location for this year’s event: I hope that their trust placed in me is vindicated, and that that you enjoy your time at the
8th European Lisp Symposium.

Christophe Rhodes, London, April 2015
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Quicklisp
On Beyond Beta

Zach Beane
Clozure Associates

http://clozure.com/

Quicklisp was released in 2010 as a public beta. Five years later, it’s still in beta. How has Quicklisp (and Common Lisp)
evolved in the past five years? What will it take for Quicklisp to go on beyond beta?
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µKanren: Running the Little Things Backwards

Bodil Stokke
http://bodil.org/

Relational programming, or logic programming, is a programming paradigm that exhibits remarkable and powerful proper-
ties, to the extent that its implementation seems frightfully daunting to the layman. µKanren is a minimal relational language
that seeks to strip the paradigm down to its core, leaving us with a succinct, elegant and above all simple set of primitives on
top of which we can rebuild even the most powerful relational constructs.

In this talk, we will explore the µKanren language by implementing it from first principles in a simple functional pro-
gramming language, going on to demonstrate how you can assemble these simple building blocks into a semblance of its
richer parent, miniKanren, and maybe solve a logic puzzle or two to make sure it’s working as advertised.

The µKanren paper, and the original µKanren implementation, were authored by Jason Hemann and Daniel P. Friedman.
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Escaping the Heap

Ahmon Dancy
Franz Inc.

http://www.franz.com/

Common Lisp implementations provide great automatic memory management of data structures. These data structures are
allocated from a memory area called the “heap”. However, there are times when heap allocation is inadequate to satisfy
the needs of the application. For example, sometimes data structures need to be persistent or shareable amongst separate
processes. In these cases, alternatives to using the heap must be considered.

In this talk we will explore the motivations for out-of-heap data structures. We will discuss some of the out-of-heap data
structures that we’ve created in the course of developing our database product, such as lists, hash tables, and arrays. We will
describe the tools and mechanisms that we used to implement them, including memory-mapped files, foreign structs, aligned
pointers and direct memory accesses. Finally we will discuss the downsides of out-of-heap data structures and the constant
struggle between abstractions and performance.
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Unwanted Memory Retention

Martin Cracauer
Google, Inc.

http://www.google.com/

This talk goes over numerous oddities in a Lisp-based system which led to unwanted heap memory retention and to constant
resident memory growth over the uptime of the system. Issues covered include a mostly conservative but also paged garbage
collector, the difficulty of clearing out data structures that are retainted as an optimization but that might hold on to large
amounts of heap (and how that happens in C++, too) and how large intercollected and theoretically uprooted “clouds of heap
debris” interact with stale pointers out of same. The most delicious pieces center around pointer staleness out of the saved
(on-disk, but read-write mapped) part of the heap, which is not garbage collected, into anonymous memory backed heap and
how you can create rootless but uncollected and “untraceable” object circles. Untraceable until you hack up the GC to help
you…
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Efficient Applicative Programming Environments for
Computer Vision Applications

Integration and Use of the VIGRA Library in Racket

Benjamin Seppke
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
seppke@informatik.uni-hamburg.de

Leonie Dreschler-Fischer
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
dreschler@informatik.uni-hamburg.de

ABSTRACT
Modern software development approaches, like agile soft-
ware engineering, require adequate tools and languages to
support the development in a clearly structured way. At
best, they shall provide a steep learning curve as well as
interactive development environments. In the field of com-
puter vision, there is a major interest for both, general re-
search and education e.g. of undergraduate students. Here,
one often has to choose between understandable but compa-
rably slow applicative programming languages, like Racket
and fast but unintuitive imperative languages, like C/C++.
In this paper we present a system, which combines the best
of each approaches with respect to common tasks in com-
puter vision, the applicative language Racket and the VI-
GRA C++ library. This approach is based on a similar
Common Lisp module and has already proven to be ade-
quate for research andr education purposes [12]. Moreover,
it provides the basis for many further interesting applica-
tions. For this paper we demonstrate the use in one research
and one educational case study. We also make suggestions
with respect to the design and the needs of such a module,
which may be helpful for the generic extension of applicative
programming languages into other research areas as well.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming—Allegro Common Lisp, SBCL, Racket ;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces, software libraries;
I.4.8 [Image Processing and computer vision]: Scene
Analysis

General Terms
Applicative Programming, Racket, Language Interoperabil-
ity, Computer Vision, Image Processing

1. INTRODUCTION
Although applicative programming languages have a long
tradition, they still do not belong to the scrap heap. In-
stead, they have proven to support state-of-the-art devel-
opment approaches by means of an interactive development
cycle, genericity and simplicity. The influence of applicative
programming paradigms is even observable in modern lan-
guages, like Python, Dart and Go. However, there are some
research areas, which are computationally of high costs and
are thus currently less supported by applicative program-
ming languages.

In this paper, we select the research field of computer vision
and show how to connect applicative languages to a generic
C++ computer vision library called VIGRA [5]. The inter-
operability is achieved by two similar modules, VIGRACL
for Allegro and SBCL Common Lisp and VIGRACKET for
Racket. Both are using a multi-layer architecture with a
common C wrapper library. In contrast to [12], where we
describe the architecture on the C/C++ and the Common
Lisp side in more detail, we focus on the Racket extension in
this paper. We also present useful applicative programming
language additions for a seamless Racket integration.

Although C++ can lead to very efficient implementations,
it is not capable of interactive modeling. Applicative pro-
gramming languages like Lisp and derivatives on the other
hand support symbolic processing and thus symbolic rea-
soning at a higher abstraction levels than typical imperative
languages. Common Lisp has e.g. proven to be adequate for
solving AI problems since decades. There are extensions for
Lisp like e.g. description logics, which support the processes
of computer vision and image understanding. Thus, the inte-
gration of computer vision algorithms has the potential to re-
sult in a homogenous applicative programming environment.
Besides research tasks, the steep learning curve makes ap-
plicative programming languages interesting for educational
purpose. To demonstrate this, we present two case stud-
ies for the application of the VIGRACKET module. The
research case study shows the implementation of a state-of-
the-art image processing algorithm. The other case study
shows the use in an educational context by means of in-
terpreting a board game from its image. The second case
study has been performed with undergraduate students of
computer science at the University of Hamburg.
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2. RELATED WORK
The name VIGRA stands for “Vision with Generic Algo-
rithms”. Its main emphasis is on customizable generic algo-
rithms and data structures (see [6], [7]). This allows an easy
adaption of any VIGRA component to the special needs of
computer vision developers without losing speed efficiency
(see [5]). The VIGRA library was invented and firstly im-
plemented by Dr. Ullrich Köthe as a part of his PhD the-
sis. Meanwhile, many people are involved to improve and
extend the library. Moreover, the library is currently be-
ing used for various educational and research tasks in Ger-
man Universities (e.g. Hamburg and Heidelberg) and has
proven to be a reliable testbed for low-level computer vi-
sion tasks. The VIGRA library follows a current trend in
computer vision. Instead of providing large (overloaded)
libraries, smaller, generic and theoretically founded build-
ing blocks are defined and provided. These building blocks
may then be connected, combined, extended and applied for
each unique low-level computer vision problem. To demon-
strate the need of an interactive and dynamic way of using
this building block metaphor, VIGRA comes with (highly
specialized) interactive Python-bindings. Other computer
vision software assist the user by visualizing the building
blocks metaphor and really let the user stack components
together visually, e.g. MEVISLab [8].

Despite this trending topic, there are currently no compet-
itive computer vision libraries for interactive development
with Racket. For Common Lisp, few systems are still exist-
ing, but most of them are no longer maintained. Referring
to the survey of Common Lisp computer vision systems in
[12], beside VIGRACL [10] currently only one system “op-
ticl” (the successor of ch-image) is still maintained [4]. In
contrast to other systems, our proposed module is generic,
light-weight, and offers advanced functionality like image
segmentation or sub-pixel based image analysis.

Our aim is a generic interface to the VIGRA library, that
allows the use of many other languages and programming
styles. This generic approach is reflected in the program-
ming languages (Racket, SBCL and Allegro Common Lisp)
as well as in the platform availability (Windows, Linux or
Mac). The only requirement on the ”high-level” program-
ming language is, that a foreign function interface needs to
be existent. The interface has to support shared memory
access of C-pointers and value passing. These interfaces,
Common Lisp UFFI or Racket FFI, in conjunction with a C
wrapper library called VIGRA C [11], yield computationally
demanding tasks to the compiled wrapper library. Figure 1
illustrates the scheme of each applicative library. Besides the
Common Lisp and Racket bindings, we provide bindings for
other interactive development environments, too.

3. DESIGN OF VIGRACKET
We will now present the embedding of the VIGRA algo-
rithms into Racket. In contrast to [12], we will not discuss
the multi-layer design of the extension, but focus on the
specific extensions, which are needed for Racket and the use
of the module in this language. Since Racket already has
extended capabilities in visualizing and displaying graphics,
we will also give an overview of the seamless integration of
VIGRACKET [9] into Racket’s GUI.

C++

Applicative
languages

C

Foreign function interface

Figure 1: Schematic view of the connection between
applicative languages and C++ by using FFI and a
common C-library as applicative abstraction layer.

3.1 Data Structures for Images
At the lower layer of the VIGRACKET library, we need to
select an appropriate data type for images. Since we assume
digital images to be two-dimensional grid-aligned data, a
two-dimensional array data structure is the first choice. Ad-
ditionally, the array type needs to have access to a shared
C-ordered memory space, where the computations of the im-
age processing algorithms are carried out by means of the
VIGRA C wrapper library. Unlike Common Lisp, where the
built-in 2d arrays are mostly capable of using a shared ad-
dress space (cf. [12]), Racket provides only 1d arrays with
shared memory: cvector. Thus, in a first step, we extend
these cvectors to n dimensions, and rename this newly de-
fined type carray. We also provide fast copying operations
for carrays, constructors, accessors and a list conversion.

Since the VIGRACKET should be able to analyze multi-
band color images, we construct an image based on the in-
troduced data type as carrays of type float:

• For single-band (gray value) images:
(list gray_carray)

• For multi-band images images:
(list ch1_carray ch2_carray ... chN_carray)

This implementation favors genericity by means of a fast
single-band access, but may yield in slower simultaneous ac-
cess of one pixel’s band values. For RGB-images, we get:

’(RED_carray GREEN_carray BLUE_carray)

The interface functions use the FFI included in Racket to
pass the arguments as well as the carray’s pointers to the
VIGRA C library. The C wrapper mostly implements band-
wise operations, which can be identified by the suffix -band.
To work on images of any number of bands, most image
processing functions use the map function to apply a band-
defined operation on each band of an image. For instance,
the gaussian smoothing of an image is defined of the gaussian
smoothing of all the image’s bands:

(define (gsmooth image sigma)
(map (curryr gsmooth-band sigma) image))

B. Seppke & L. Dreshler-Fischer Environments for Computer Vision Applications
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3.2 Applicative Extensions
Besides the new data types and the interaction of the li-
brary with the VIGRA C library through the Racket FFI,
we provide a set of generic and flexible high order functions,
which assist in the practical development of computer vi-
sion algorithms. These functions refer to both images and
image bands. They can be seen as extensions to the well-
known high-order functions, but tailored to the data types
of images and image bands.

The first set of functions corresponds to the map function
for lists. We define array-map, array-map!, image-map and
image-map! for this purpose. These functions may be used to
apply a function to one or more images (bands) to generate
a result image. The functions with a bang at the end of
the function name override the first given image instead of
allocating new memory for the resulting image. Although
this saves memory, it introduces side-effects and should only
be used carefully. An an example for the applicative variants
without side-effects, the absolute difference of two images
may be computed by:

(image-map (compose abs -) img1 img2)

We also define folding operations for bands and images:
array-reduce and image-reduce. These functions can be used
to derive single values from bands or a list of values for im-
ages, like the maximum intensity of an image:

(apply max (image-reduce max 0 img))

Here, the inner term derives the band-wise maximum by
applying the maximum function to each band array. Since
the result is a list of maximal values, we get the overall
maximum by applying the max function to the result.

Further, we introduce image traversal functions, which fur-
ther support the development of own algorithms:

• array-for-each-index,

• image-for-each-index and

• image-for-each-pixel.

These functions call any given function of correct signature
at at position of the array or image. The signature is specific
for each function. Examples of the use of these functions are
given in the second case study.

3.3 Racket-specific Extensions
Unlike other applicative languages, Racket was designed to
be an easy to learn beginner’s language. One way to support
the learning of a language is to learn programming by design
(see [3]). To support the drawing and other GUI function-
ality, Racket offers a variety of different packages. However,
the main package for the applicative programming of shapes,
image creation and drawing is still 2hdtp/image.

Since the VIGRACKET should benefit from the existing
drawing capabilities, we provide conversion functions for the
different formats of the 2hdtp/image module (for 1-band gray-
and 3-band RGB-images).

These conversion functions are defined as:

• image->racket-image

for the conversion from shared memory to 2hdtp/image,

• racket-image->image

for the conversion from 2hdtp/image to shared memory.

This conversion is often necessary, since it allows to present
the (processed) image without saving it to disk. However,
Racket’s native interface only allows to read from or to write
to a device context. This interface results in very slow con-
versions for moderate and large image sizes. In order to
enhance the execution speed, we re-implemented this con-
version at machine level on the shared memory VIGRA C
side. Instead of drawing onto a device context, we rearrange
the list of carrays for display purpose to the byte pattern,
which is needed for construction of an object of class %bitmap

(ARGB order). Compiled in machine-code, this is performed
within milliseconds. This allows us to switch from one side
to the other whenever needed without notable delays.

3.4 Preliminaries and Automatic Installation
To make the VIGRACKET accessible to a wide range of re-
searchers as well as teachers and (undergraduate) students,
only few preliminaries exist. The Racket module has already
proven to run stable on Windows, Linux and Mac OS under
32- and 64-bits, depending on the Racket version installed.

Since Windows is missing a powerful package manager, the
necessary binaries are bundled inside the installation pack-
age, and thus no further preliminaries exist. Although this
is a very efficient and simple approach, it is not favored
for Mac OS and Linux, since they provide powerful package
managers, like dpkg, rpm or macports [13]. Thus, under
Mac OS and Linux, you need to have a C++ compiler in-
stalled as well as a current version of the VIGRA library.
Note, that the Racket installation must be of the same ar-
chitecture as the VIGRA installation (32bit or 64bit). After
checking this, the only preliminary is, that the“vigra-config”
script must be accessible from within your shell.

If all preliminaries are met, the VIGRACKET installation
package needs to be unzipped and the “install.rkt” needs to
be executed. This calls the automatic installation routine
of the VIGRACKET module. This routine looks up the
OS and the environment and builds the VIGRA C wrapper
library for Mac OS and Linux or copies the correct binaries
for Windows. A typical output is:

Searching for vigra using ’vigra-config ...
-------------- BUILDING VIGRA-C-WRAPPER ...
cd bin && gcc -I/src ‘vigra-config --cpp ...
gcc ‘vigra-config --libs ‘ ‘vigra-config ...

Afterwards, all needed files and the created or copied shared
object or dynamic linked library of the VIGRA C wrapper
are copied into the user’s collects directory. It may then be
used like any other Racket module by calling:

(require vigracket)

The provided demos in “examples.rkt” may help in getting
a first impression of this module.

B. Seppke & L. Dreshler-Fischer Environments for Computer Vision Applications
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Figure 2: Resulting images of the coherence enhancing shock filter using the parameters: σ = 6, ρ = 2, h = 0.3.
From left to lower right: original image, result after 5, 10, and 20 iterations.

4. CASE STUDIES
To demonstrate the use of the VIGRACKET module, we
choose two different scenarios: the first case study describes
the use by means of implementing a state-of-the-art algo-
rithm for anisotropic image diffusion. The second case study
is an example of an undergraduate task during a Bachelor
practice at the University of Hamburg.

4.1 Coherence Enhancing Shock Filter
In [14], Weickert et al. describe a coherence enhancing shock
filters. Shock filters are a special class of diffusion filters,
which correspond to morphological operations on images.
They apply either a dilation or an erosion, depending on
the local gray value configurations. Weickert et al. refer to
these configurations as “influence zones”, which either corre-
spond to a minimum or a maximum of the image function.
The aim of the filter is to create a sharp boundary (shock)
between these influence zones. The main idea of [14] is to use
the Structure Tensor approach [1] for determining the ori-
entation of this flow field instead of the explicitly modeling
the partial differential equations of the diffusion equation.
The Structure Tensor at scale σ of an image is defined by:

STσ(I) = Gσ ∗
(

I2x IxIy
IxIy I2y

)
(1)

where I is the image function and Ix and Iy are the partial
derivatives in x- and y-direction. Gσ is a Gaussian at scale
σ and ∗ is the convolution operation. To derive the main
direction, in which the filter should act, the eigenvalues and
eigenvectors of the Structure Tensor need to be computed.
Additionally the Hessian matrix of the second partial deriva-
tives of the image needs to be computed:

H(I) =

(
Ixx Ixy
Ixy Iyy

)
(2)

According to [14], the following equation indicates whether
a pixel will be eroded or dilated:

D = c2Ixx + 2csIxy + s2Iyy (3)

where w = (c, s)T denotes the normalized dominant eigen-
vector of the Structure Tensor of I. The sign of D(I) is
then been used in a morphological upwinding scheme to de-
termine if an erosion or a dilation has to be performed. This
approach is designed in an iterative way. Fortunately, many
of the mathematical operations are already included in the
VIGRA and in the VIGRACKET module.

Besides the parameter σ, we need an additional parameter
ρ to define the inner derivative of the Structure Tensor as
well as a parameter h, which controls the intensity of the
morphological operations. Thus, the implementation of the
shock filter begins with:

(define (shock-image image sigma rho h iter)
(if (= iter 0)

image

This ensures that the image is given back after the last iter-
ation. Otherwise the filtering needs to be performed. Thus,
the following lines mainly show a straight-forward applica-
tion of the former equations:

(let*
((st (structuretensor image sigma rho))
(te (tensoreigenrepresentation st))
(hm (hessianmatrixofgaussian image sigma))
(ev_x (image-map cos (third img_st_te )))
(ev_y (image-map sin (third img_st_te )))

Note that the third element of the tensoreigenrepresentation

function is the angle of the largest eigenvector. To derive the
image D of Eq. 3, we use the image-map function:

(d (image-map (lambda (c s I_xx I_xy I_yy)
(+ (* c c I_xx)

(* 2 c s I_xy)
(* s s I_yy )))

ev_x ; <= c
ev_y ; <= s
(first hm) ; <= I_xx
(second hm) ; <= I_xy
(third hm)))) ; <= I_yy

The resulting image D can now be used as the sign image
in the unwinding morphological operation. Since this oper-
ation was not originally included in the VIGRA, it has been
implemented by means of the VIGRA C wrapper library
and a corresponding Racket function was implemented, too.
Thus, we end up with the recursive scheme for the last func-
tion call:

(shock-image (upwindimage image d h)
sigma rho h (- iter 1)))))

The results of the application of this filter to the famous
Lenna image are shown in Fig. 2.

B. Seppke & L. Dreshler-Fischer Environments for Computer Vision Applications
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Figure 3: Detection of the game board from the image (left). Upper row, from left to right: thresholding
results for t = 25, t = 50 and t = 100. Lower row, from left to right: results for the Canny algorithm at scale
σ = 3 with (edge) thresholds t = 0, t = 1 and t = 2.

4.2 Board Game: Reversi
For the second case study, we selected the task of an under-
graduate student practice. The results were achieved by a
team of students during one term (13×4 hrs) in a Bachelor
practice. The participants had few experience in applicative
programming an no knowledge in image processing or com-
puter vision. However, the aim of this practice is to teach
both, applicative programming as well as computer vision
at once. After the first two weeks, where the students par-
ticipate in guided exercises, they select a board game. The
selected game will be photographed at some states for each
team. To pass the practice, the students have to perform
the following tasks using DrRacket and VIGRACKET:

1. Retrieve the game state from the image,

2. Write a GUI to visualize the game state,

3. Implement the game logic and

4. Extend the GUI to continue the game.

Since we focus on the VIGRACKET integration in this pa-
per, we present the retrieval of a game state from the image.
The game is Reversi (also known as Othello), which can be
considered as a prototypical example for this task. The re-
trieval may further be divided into the separation of the
board from the background and the derivation of the game
state from the sub-image.

Figure 3 (left) shows a typical image of the initial state.
The board is slightly rotated and comparably brighter than
the dark background. To determine the bounding box (Fig.
4, left) of the board, the boundaries between board and
background need to be estimated.

One naive approach is to classify each pixel by its gray value
(intensity), e.g. at the red band. This thresholding may be
expressed by the following function:

(define (threshold v t)
(if (< v t) 0.0 255.0))

To apply the threshold for t = 50 to the red band of img, we
can use the image-map function:

(define img_gray (image- >red img))

(define thresh_img50
(image-map (curryr threshold 50)

img_gray ))

The application of different thresholds yields different re-
sults, which are shown in Fig. 3 (upper row). Note that
the missing of the green game token does not influence the
detection of the outer boundaries of the game board.

Another possibility is to use edge detection, since the strongest
edges in the image may correspond to the boundaries of the
game board. Here, we decided to use the Canny edge detec-
tor [2] at a scale of σ = 3 using various thresholds. To apply
the detector for t = 2 to the red band of img and mark each
edge pixel by 255.0, we can call the Canny implementation
of the VIGRA directly:

(define canny_img2
(cannyedgeimage img_gray 3.0 2.0 255.0)

The application of the Canny algorithm at different thresh-
olds yields different results, which are shown in Fig. 3 (lower
row). At low thresholds many edges are detected due to the
image noise but vanish at a threshold of t = 2.

B. Seppke & L. Dreshler-Fischer Environments for Computer Vision Applications
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Figure 4: Extraction of the game board from the image. From left to right: estimated bounding box (green),
cropped image, rotation corrected image, cropped rotation corrected image.

The next step is to derive the bounding box of the game
board from either the threshold or the canny resulting image.
We first define a bounding box as a four element vector (left,
upper, right, and lower position). Then the derivation of the
box at an image position ca be expressed as:

(define (findBBox x y col bbox)
(when (> (car col) 0.0)

(begin
(when (> x (vector-ref bbox 2))

(vector-set! bbox 2 x))
(when (< x (vector-ref bbox 0))

(vector-set! bbox 0 x))
(when (> y (vector-ref bbox 3))

(vector-set! bbox 3 y))
(when (< y (vector-ref bbox 1))

(vector-set! bbox 1 y)))))

The initial state of the box depends on the update scheme
of the above function and is given by:

(define bbox
(vector (image-width img) (image-height img)

0 0))

We can now use the iteration/traversal framework of the
VIGRACKET to iterate over each pixel of the canny image
and call the findBBox function at each coordinate x, y with
the color list col at that position:

(image-for-each-pixel
(curryr findBBox bbox)
canny_img2)

This updates the bounding box to contain the minimal and
maximal coordinates. For this example, we use the results
of the canny approach to proceed with the next steps. Fig.
4 (left) shows the procedure after the determination of the
first bounding box.

The next step it to crop, the image according to the bound-
ing box bbox. Since VIGRACKET does not provide such
a functionality, we use the Racket interface and import the
2htp/image module. However, to resolve name conflicts, we
have to restrict the require command by:

(require
(rename-in 2htdp/image

(save-image save-plt-image)
(image-width plt-image-width)
(image-height plt-image-height )))

After importing this module, we use the Racket’s crop func-
tion to perform the cropping:

(define (cropimage img ul_x ul_y lr_x lr_y)
(let ((w (- lr_x ul_x))

(h (- lr_y ul_y )))
(racket-image- >image

(crop ul_x ul_y w h
(image- >racket-image img )))))

(define cropped_img
(cropimage img

(vector-ref bbox 0)
(vector-ref bbox 1)
(vector-ref bbox 2)
(vector-ref bbox 3)))

The cropped image is shown in Fig. 4 (second image). One
can observe that the image is still not adequately cropped,
since it is rotated around the new image center. To esti-
mate this rotation, we search for the position of leftmost
and rightmost marked pixel at the first line of the box of
the edge image using a helper function:

(define (findFirstPixelInRow img x1 x2 row)
(let (( intensity

(apply max (image-ref img x1 row ))))
(if (= intensity 0)

(if (= x1 x2)
#f
(findFirstPixelInRow

img
(+ x1 (sgn (- x2 x1))) x2 row))

x1)))

To get the leftmost position relative to the beginning of the
bounding box, we call the function and pass the extracted
positions as parameters:

(define canny_left
(- (findFirstPixelInRow canny_img2

(vector-ref bbox 0)
(vector-ref bbox 2)
(vector-ref bbox 1))

(vector-ref bbox 0)))

To find the rightmost marked pixel, the second and third
parameter of the findFirstPixelInRow need to be swapped.
Both positions are then used to compute the arithmetic
mean position on the first line.
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Finally, due to the rounded borders of the game board, a
constant correction factor is added. Let pos be the corrected
position, bbox_width be the width of the bounding box. Then
the rotation angle can be derived as:

(define angle
(/ (* (atan (- bbox-width pos) pos) 180)

pi))

To correct the rotation of the cropped image, we use the
rotation function provided by the VIGRACKET module.
Its arguments are the angle (in degrees) and the degree of
the interpolation function used (here: bilinear):

(define croped-rotated
(rotateimage cropped_img (- angle) 1))

The result of this rotation correction is shown in Fig. 4
(third image). To crop this image, to get the final result,
we repeat the former steps. Thus the edge image has to be
cropped and rotated in the same manner as the image of the
game board:

(define cropped_canny2
(cropimage canny_img2

(vector-ref bbox 0)
(vector-ref bbox 1)
(vector-ref bbox 2)
(vector-ref bbox 3)))

(define cropped-rotated_canny2
(rotateimage cropped_canny2 angle 1))

After these operations, the bounding box has to estimated
again to crop the rotated image. This may be written as:

(define bbox2
(vector (image-width cropped-rotated_canny2)

(image-height cropped-rotated_canny2)
0 0))

(image-for-each-pixel (curryr findBBox bbox2)
cropped-rotated_canny2)

(define cropped_img2
(cropimage cropped-rotated

(vector-ref bbox2 0)
(vector-ref bbox2 1)
(vector-ref bbox2 2)
(vector-ref bbox2 3)))

The result of this application, the image cropped_img2, is
shown in the rightmost image of Fig. 4. It does only contain
the game board. The next step is to extract the game state
from this cropped image. This is done by sampling the image
at the center positions of every possible token location. Since
there are 8×8 fields, the extraction of a color value for a place
x, y ∈ {0, 1...7} is performed by:

(define dx (/ (image-width cropped_img2) 8))
(define dy (/ (image-height cropped_img2) 8))

(define (board_pos- >color image x y)
(image-ref image

(inexact- >exact
(round (+ (/ dx 2) (* x dx))))

(inexact- >exact
(round (+ (/ dy 2) (* y dy ))))))

'((empty empty empty empty empty empty empty empty)

  (empty empty empty empty empty empty empty empty)

  (empty empty empty empty empty empty empty empty)

  (empty empty empty  red  green empty empty empty)

  (empty empty empty green  red  empty empty empty)

  (empty empty empty empty empty empty empty empty)

  (empty empty empty empty empty empty empty empty)

  (empty empty empty empty empty empty empty empty))

Figure 5: Sampling of the cropped image using an
equally spaced rectangular grid. Left: grid super-
imposed to the cropped image, right: the resulting
symbolic representation superimposed on the grid.

The sampling scheme is depicted in Fig. 5 (left). Depending
on the extracted color, a classification to the tokens red,
green or empty has to be made. If we assume, that red
dominates the intensity for a red token, green dominates
the intensity for green tokens but is comparably darker, we
may express this as:

(define (classify-color col)
(let* ((val (/ (apply + col) (length col ))))

(if (> (first col) (* 2 val))
’red
(if (> (second col) (* 1.5 val))

’green
’empty ))))

Using these functions, we can now retrieve a list of lists to
represent the game state from the image using two nested
recursions, one for the rows and one for the columns of the
locations of the tokens:

(define (board_rows image x y)
(if (> y 7) ’()

(cons (board_cols image x y)
(board_rows image x (add1 y)))))

(define (board_cols image x y)
(if (> x 7) ’()

(cons (classify-color
(board_pos- >item image x y))

(board_cols image (add1 x) y))))

(define state (board_rows cropped_img2 0 0))

Since we have 8 positions per row and 8 rows, we end up with
a list of 64 items in total. The resulting list is shown in Fig.
5 (right). Note that this is only one possible way of classi-
fication. Alternatively, one could switch from RGB into a
HSV (hue, saturation, value) colorspace for classification.

Based on the extracted game state, the team members im-
plemented a graphical user interface using the world frame-
work, which is part of Racket’s 2htdp/universe module and
wrote the game logic. As a result, they are able to continue
the game, which was captured in the picture. Although this
requires the knowledge of modeling graphical user interfaces
and game logics, it can be implemented without using the
VIGRACKET module.
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5. CONCLUSIONS
We have motivated the need for interactive development
methods in the field of computer vision w.r.t. research and
education purposes. For many years, applicative program-
ming has been used to solve higher AI tasks. But with a
computer vision extension of such languages like Racket or
Common Lisp, we are now able to offer a homogeneous, gen-
eral, and highly interactive environment.

As a demonstration, we presented some of some functionali-
ties of the VIGRACKET module in research and educational
contexts. Since the extension uses a multi-layer architecture
to grant access to the computer vision algorithms that are
provided by the VIGRA library, a corresponding VIGRACL
module (tested with Allegro Common Lisp and SBCL) is
also available. We demonstrated the efficiency of the mod-
ule in different aspects:

• An intuitive interface to images using shared memory,

• Generic approaches of the VIGRA, which provide great
fundamental building blocks,

• High-order functions which support the development
of own algorithms and

• A seamless integration into Racket by means of the
built-in GUI and data types.

We have shown that the integrated high-order functions
for images are really helpful in practice, since they provide
wrappers for common tasks, like mapping a function on a
complete image or traversing over an image in a clearly de-
fined way. These functions in conjunction with the generic
approach of the VIGRA and the easy automated installation
routine make the VIGRACKET a valuable tool, not just for
researchers but for teachers, too.

At the University of Hamburg, we use the VIGRACKET
module as well as the VIGRACL module for research to
experiment with low-level image processing tasks that have
to be performed before the symbolic interpretation of the
image’s content.

The VIGRACKET module is also used and improved on
a regular basis for a Bachelor practice at the University
of Hamburg. Here, the steep learning curve and interac-
tive experience with images and algorithms helps the un-
dergraduate students to learn applicative programming in
conjunction with computer vision during a single term. In
the educational context, we found that the use of applica-
tive programming encourages the students to understand
the underlying algorithms better when compared with typ-
ical imperative low-level languages like C. This yields to an
increased overall interest in computer vision.

This interest gaining of students has already resulted in
many excellent Bachelor theses. In the last four years, a to-
tal of over 100 students successfully passed the practice and
rated it A+. The only drawback, which has been mentioned
by the students, is the limited performance of computer vi-
sion algorithms written in pure Racket.

It needs to be mentioned that, although the examples in
chapter 4 where realistic, this paper cannot be more than
an introduction into the interesting field of computer vision.
Additionally, only a very small subset of the functionality
of VIGRACKET module has been shown here. However,
the examples clearly demonstrate how easy the functions of
the VIGRA can be used within Racket or Common Lisp by
means of the generic common VIGRA C interface.
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ABSTRACT
Full Metal Jacket is a general-purpose, homoiconic, strongly-
typed, pure visual dataflow language, in which functions are
represented as directed acyclic graphs. It is implemented in
Emblem, a bytecode-interpreted dialect of Lisp similar to,
but simpler than, Common Lisp. Functions in Full Metal
Jacket can call functions in Emblem, and vice-versa. After
a brief language description, this paper describes the inter-
preter in detail, how iteration is handled, how the editor
handles type checking interactively, and how it detects race
conditions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Data-flow languages

General Terms
Languages

Keywords
Language design, dataflow, visual programming, Lisp

1. INTRODUCTION
In recent years, many new programming languages (e.g.
GoLang, Swift, Rust, Hack, etc.) have been released. As
none of these represents a radical departure from already
existing languages, it is understandable that the announce-
ment of the development of yet another programming lan-
guage might be greeted with a degree of skepticism.

However, Full Metal Jacket is fundamentally different from
any mainstream programming language (including Lisp), in
both its outward appearance and its internal computational
model. Instead of being expressed in text, its programs are
directed acyclic graphs drawn on a two-dimensional canvas,
and computations are run, whenever possible, in parallel,
with no central flow control. It is strongly typed yet it does
not have any variables, and has iteration but does not have
any loops. Programmers do not have to learn “yet another
syntax”: its syntax is not much more complex than Lisp’s,
and it has an integrated editor which not only is simple
to use, but also prevents syntax and type errors. Editing
is mostly done with the mouse, by dragging and dropping
program elements, and then joining them up. Early work
on Full Metal Jacket is described in [5].

Work on Full Metal Jacket only recently resumed after a
long break. In the meantime, the underlying Lisp dialect,

Emblem, has, however, undergone substantial improvements
which have made Full Metal Jacket implementation more
straightforward. These include better event handling, X11
graphics programming, and object orientation. Changes to
Emblem since [5] have, in general, moved it closer to Com-
mon Lisp, except that the object system has been simplified.

At present, Full Metal Jacket is interpreted. Ideally, it would
compile onto a dataflow machine if a suitable one existed.
(A prototype was built at the University of Manchester [6].
Others were designed by Kableshkov [9] and Papadopoulos
[12].) Alternatively, it could be compiled onto a more con-
ventional architecture, such as X86 or X86-64. Full Metal
Jacket does go one step further than Lisp in facilitating com-
pilation: not only is the parsing step trivial, optimizations
based upon dataflow are also made more straightforward.

When a program runs, values can be thought of as flowing
downwards along the edges which connect vertices, where
they are transformed. Some vertices contain nested enclo-
sures, in which data flows from ingates, down through ver-
tices, towards outgates.

The intention is for the language to interoperate with Lisp,
rather than to replace it. There is some evidence [8] that,
although dataflow excels at coarse-grained parallelism, its
high overhead makes it less suitable for parallelism at the
instruction level.

In this article, following some examples of simple programs,
the interpreter is described in some detail. Iteration, type
inference, and race condition detection are also covered.

2. RELATED WORK
Full Metal Jacket is not the only visual dataflow language.
Three others have been developed which have seen widespread
use, namely Prograph [2] which is general-purpose, MAX/MSP
[3] [4], which is designed for music and multimedia, and Lab-
VIEW [10] which is designed for programming instruments
and devices. Another system, Plumber [1], has been imple-
mented in Lisp. [8] contains a recent survey of many such
languages.

There are significant differences between Prograph and Full
Metal Jacket: in Prograph, type checking is not done un-
til run time; Prograph places more emphasis on object ori-
entation; then and else clauses (and cases) are in separate
windows; there is a ‘syncro’ edge which enforces execution

15



order; and garbage collection is by reference counting.

LabVIEW uses two separate windows: a front panel for user
interface objects (these are equivalent to Full Metal Jacket’s
constants), and a block diagram for code. It also requires
extra constructs for iteration and conditional code.

Max/MSP differs from Full Metal Jacket in that it is ex-
plicitly object-oriented (with dataflow as message passing);
allows feedback; does not comfortably support recursion; ex-
ecution order is sensitive to program layout; and triggers are
sometimes needed to guarantee execution order. Of these
three systems, Max/MSP is the least similar to Full Metal
Jacket.

3. A BRIEF DESCRIPTION OF THE LAN-
GUAGE

The simplest program, shown in Figure 1, displays the con-
stant ”Hello, world!” in a dialog box.

Figure 1: Hello, world!

In the program shown in Figure 2, 2.5sin(0.6) + 5.4 is cal-
culated.

Figure 2: A simple calculation

The dark blue square indicates that the result of + should
be output to a dialog box. Vertex inputs are shown as cir-
cles and are usually red, and vertex outputs are are shown
as squares and are usually green. The edge colors are config-
urable, and give some indication of type. Here, cyan ≡ Real.

The third inputs of * and + are called extra inputs. An extra
input allows additional arguments to be added by clicking on
it, and can also be used like Common Lisp’s &rest argument,
in which case it will be the head of an edge.

Figure 3 shows the code for myAppend, the canonical recur-
sive append. The surrounding square is an enclosure. In-
gates are at the top and outgates are at the bottom.

Figure 3: Recursive append.

when* outputs its second argument if its first is T, other-
wise it does not output anything. unless* does the oppo-
site. So, if myAppend’s first argument is NIL, when* outputs
myAppend’s second argument. Otherwise, unless* outputs
myAppend’s first argument, and decons splits it into its car

and cdr. The cdr and myAppend’s second argument then be-
come the inputs to myAppend, which is called recursively.
The car and the result of the recursive call are then consed
and returned.

Figure 4: Use of a constant enclosure.

Figure 4 shows the code for foo, and is the equivalent of the
Lisp

(defun foo (x y) (mapcar (lambda (z) (cons z x)) y))

The inner enclosure is a constant of the first argument of
mapcar, and is called as often as the length of foo’s (and

D. Fisk Visual Dataflow Implemented in Lisp
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mapcar’s) second argument, yet it captures foo’s first argu-
ment precisely once. To make it available for more than one
call, it has been made sticky, which is why, like inputs with
constants, it is shown in black. Sticky values behave like
constants, but change when a new value reaches their input.

4. THE INTERPRETER
A simplified version of the interpreter code, written in Em-
blem, follows.

4.1 Interpreter Data Structures
Full Metal Jacket has four fundamental classes of objects:
Vertex, Constant, Edge, and Enclosure. three other classes:
Input, Output, and Gate, are used in constructing them.

A vertex has inputs, a function, and outputs. When a vertex
has values with the same tag1 on all of its inputs, it applies
its function to those values. The values returned by the
function are then sent with the same tag from the outputs.

(defclass Vertex (Any)
(function type Fun accessor functionOfVertex)
(inputs type List accessor inputsOfVertex)
(outputs type List accessor outputsOfVertex))

(defclass Socket (Any)
(edges type List accessor edgesOfSocket initForm ’()))

An input usually has a queue of tagged values, but may
instead have a sticky value, which is not consumed when
the vertex’s function is called, but changes when a different
value is received, unless it is a constant.

(defclass Input (Socket)
(vertexOrGate type Any accessor vertexOrGateOfInput)
(taggedValueQueue type Queue accessor taggedValueQueueOfInput)
(stickyValue type Any accessor stickyValueOfInput)
(hasStickyValue type Bool accessor inputHasStickyValueP

initForm NIL))

(defclass Output (Socket))

A constant is a value attached to an vertex’s input, which
does not change between function calls.

(defclass Constant (Any)
(input type Input accessor inputOfConstant))

An edge connects an output (its tail) to an input (its head).
Values notionally flow along edges from output to input.

(defclass Edge (Any)
(output type Output accessor outputOfEdge)
(input type Input accessor inputOfEdge))

Enclosures, which are an exact analogue of Lisp’s lambdas,
are used in defining new functions, and also used within

1Tags, which are used to distinguish different computations
which share the same vertex, are explained in detail in Sub-
section 4.2.

functions, to provide local scope. Each enclosure has ingates
and outgates. Within an enclosure, the outputs of ingates
are connected to inputs of vertices, and outputs of vertices
are connected to the inputs of other vertices, or the inputs
of outgates.

(defclass Enclosure (Any)
(ingates type List accessor ingatesOfEnclosure

initForm ’())
(outgates type List accessor outgatesOfEnclosure

initForm ’())
(tag type Int accessor tagOfEnclosure initForm 0))

Ingates and outgates are gates.

(defclass Gate (Any)
(enclosure type Enclosure accessor enclosureOfGate)
(input type Input accessor inputOfGate)
(output type Output accessor outputOfGate))

4.2 Interpreter Code
Vertices are executed asynchronously.

As soon as a vertex is ready to be executed by executeVertex,
it is added to the task queue. In the current system, tasks
are run by runNextTask in the order they appear on it.

(setf TASK_QUEUE (new Queue))

(defmacro makeTask (vertex tag args) ‘(list ,vertex ,tag ,args))

(alias vertexOfTask car)
(alias tagOfTask cadr)
(alias argsOfTask caddr)

(defun runNextTask ()
(let ((task (takeOffQueue TASK_QUEUE)))

(if task
(executeVertex (vertexOfTask task)

(tagOfTask task)
(argsOfTask task))

(write "TASK_QUEUE is empty!" $))))

(defun executeVertex (vertex tag argList)
(do ((args (mvList (apply (functionOfVertex vertex)

argList))
(cdr args))

(outputs (outputsOfVertex vertex) (cdr outputs)))
((null outputs))
(do ((edges (edgesOfSocket (car outputs))

(cdr edges)))
((null edges))
(sendValueToInput (inputOfEdge (car edges))

tag
(car args)))))

Values must be tagged.

Values intended as arguments of a vertex’s function are sent
to its inputs asynchronously, and possibly out of order, by
sendValueToInput, so it is essential to distinguish which
values belong to which invocation of the function. This is
achieved by accompanying each value intended for the same
invocation with the same unique tag, which can be an inte-
ger. Because tagged values have to be queued at the input if

D. Fisk Visual Dataflow Implemented in Lisp
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the vertex is not ready to receive them, each input requires
a queue for holding them. When every input is found by
everyInputHasAValueP to have a value with the same tag,
the vertex is ready to be executed. Then extractValues-

FromInputs gets the input values, and putOnQueue adds a
task to the task queue.

(defun sendValueToInput (inputOfDest tag value)
;; If the destination input has a sticky value, change it
;; to the new value.
(if (inputHasStickyValueP inputOfDest)

(setf (stickyValueOfInput inputOfDest) value)
;; Otherwise, tag the value and add it to end of
;; the input’s tagged value queue.
(putOnQueue (taggedValueQueueOfInput inputOfDest)

(cons tag value)))
;; If the destination input belongs to a vertex,
;; rather than a gate, and it has values for all inputs
;; with the tag, schedule the vertex to be run
;; with those inputs.
(let ((dest (vertexOrGateOfInput inputOfDest)))

(when (and (instanceOf dest Vertex)
(everyInputHasAValueP (inputsOfVertex dest)

tag))
(putOnQueue TASK_QUEUE

(makeTask dest
tag
(extractValuesFromInputs
(inputsOfVertex dest)
tag))))))

(defun everyInputHasAValueP (inputs tag)
(every (lambda (input)

(or (and (eq (classOf input) ExtraInput)
(null (edgesOfSocket input)))

(inputHasStickyValueP input)
(assoc tag

(elemsOfQueue (taggedValueQueueOfInput
input)))))

inputs))

;;; This should only be called after verifying
;;; that the values are actually present. The use of mapcan
;;; permits the use of an extra arg.
(defun extractValuesFromInputs (inputs tag)
(mapcan (lambda (input)

(if (inputHasStickyValueP input)
(list (stickyValueOfInput input))

(let ((taggedValue
(assoc tag (taggedValueQueueOfInput input))))

(cond (taggedValue
(deleteFromQueue (taggedValueQueueOfInput

input)
taggedValue)

(list (cdr taggedValue)))
;; If there is no tagged or sticky value,
;; no value should be extracted.
(T NIL)))))

inputs))

Arguments must be imported into enclosures synchronously.

It might be thought that, if a vertex’s function is defined as
an enclosure, it would be possible to import individual input
values into the enclosure through their corresponding ingate
as soon as they arrive at the calling vertex, without waiting
for the other argument values to arrive. However, in general,
it is not possible, as when the function is recursively defined,
such a value could be transmitted immediately to a vertex
with the same enclosure as its definition. This value would
then be imported into the enclosure via the same ingate and
arrive at the vertex again, and again, and again. For ex-
ample, this would occur in myAppend (Figure 3). Therefore,
it is necessary to wait until all the arguments for a given

invocation, and therefore with the same tag, are available
before startng the enclosure call, although this might delay
execution at a few vertices. As it also has to be done when
vertex’s function is encoded in Lisp, the same mechanism
can be used in both cases.

(defun importArgsIntoEnclosure (enclosure tag args)
(mapc (lambda (arg ingate)

(do ((edges (edgesOfSocket (outputOfGate ingate))
(cdr edges)))

((null edges))
(sendValueToInput (inputOfEdge (car edges))

tag
arg)))

args
(ingatesOfEnclosure enclosure)))

The tags used in an enclosure are a property of the enclosure

and are unique to the enclosure’s invocation.

An invocation results in data flowing through an enclosure,
or outside any enclosure in the case of top-level computa-
tions (i.e. those taking place in the sandbox, Full Metal
Jacket’s equivalent of Lisp’s read-eval-print loop.) Each
invocation has its own tag for use in that enclosure (or sand-
box), supplied on entry.

While values are flowing through an enclosure during a par-
ticular invocation, they must all have the same tag, unique
to the invocation, in order for the vertices they encounter to
execute each time with the correct input data.

During an invocation, the same function might be called
from different vertices, each resulting in a different invoca-
tion of the same enclosure. In order to keep the compu-
tations for the different invocations separate, their values
must be provided with different tags when the enclosure is
entered, for use during their time in the enclosure. When the
enclosure is exited and the value(s) returned to the calling
vertex, the original tag on the data received by the vertex’s
inputs is restored.

As computations within different enclosures are physically
separate, there is no problem if they occasionally have the
same tag provided that tags are properties of their enclosure.

In applyEnclosure, each argument is given a new tag, unique
to the invocation, then transmitted along each edge leading
from its corresponding ingate.

applyEnclosure then waits until a value with the same tag
appears at each outgate, before returning those values.

The values returned are then transmitted along each edge
leading from the corresponding vertex output.

(defun applyEnclosure (enclosure args)
(let ((newTag (incf (tagOfEnclosure enclosure))))

(importArgsIntoEnclosure enclosure newTag args)
;; Wait for the values to appear at each outgate.
(do ((inputs (mapcar inputOfGate

(outgatesOfEnclosure enclosure))))
((everyInputHasAValueP inputs newTag)
(valuesList (extractValuesFromInputs inputs

newTag)))
;; Not there? Find something else to do.
(runNextTask))))
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Functions defined as enclosures in Full Metal Jacket can be

called from Lisp.

When a tagged value is sent to a vertex’s input, it is put on
its tagged value queue. Then, if all the inputs either have an
attached constant, or a value in their queue with the same
tag, those values are removed from their respective queues
to comprise, along with any constants, the argument list.
The vertex’s function is then applied to the argument list,
by calling apply if the function was written in Lisp.

If the function was implemented as an enclosure, applyEn-
closure, Full Metal Jacket’s analogue of apply, is called
instead. The arguments to applyEnclosure are the enclo-
sure and the enclosure’s inputs.

For example, the definition in Emblem of myAppend, gener-
ated automatically when the enclosure is saved, is

(defun myAppend (x y)
(applyEnclosure (get ’myAppend ’enclosure) (list x y)))

5. ITERATION
when* and unless* are unusual because, unlike functions,
they do not always output a value exactly once when in-
voked. This suggests that the function concept might be
generalized to include, in addition to ordinary functions,
not only boolean operators like when* and unless*, but also
emitters, which can output more than once per invocation,
and collectors, which can accept inputs more than once be-
fore outputting.

Figure 5 illustrates the function iterReverse, which re-
verses its first argument onto its second. If its inputs are
’(a b c) and NIL, the values at various stages of the com-
putation are shown in Table 1.

Output 2nd Input 3rd Input Accumulator Output
of strip* of collectUntil*
(a b c) a NIL NIL

(a)

(b c) b NIL (b a)

(c) c T (c b a) (c b a)

Table 1: Iteration in iterReverse

Emitters and collectors typically work in tandem, with emit-
ters sending values and collectors receiving those values, or
data computed from them, and accumulating them in some
manner, until a boolean input changes value, at which point
they output their result. Here, strip* repeatedly sends a
list, stripping off one element at a time, and, after initializ-
ing its accumulator to NIL, collectUntil* receives the car

of each of these lists, and conses it onto its accumulator
(a local storage area), outputting its value after strip* has
sent all its outputs.

As tagged values are queued, when an emitter is connected
to a collector, the collector will process values in the order
they were sent by the emitter. This ensures that there is no
problem in the collector repeatedly receiving values with the
same tag, provided care is taken that it receives the same

number of values on its other inputs, except when they are
sticky.

The emitters and collectors available to the programmer are
still, at present, not settled, and it will require further ex-
perimentation before a final selection can be made. One
option is to make them compatible with Waters’s Series or
Curtis’s Generators and Gatherers [13], to which they bear
some similarity.

Figure 5: Iterative Reverse.

6. TYPES AND TYPE INFERENCE
Like ML and Haskell, Full Metal Jacket has a Hindley-Milner
type system [7] [11], but types are inferred incrementally,
and entirely interactively, when edges and constants are
added or deleted in the editor, in the course of function
definition.

At present (but see subsection 8.1), types in Full Metal
Jacket must be defined in Emblem, and are not yet fully
integrated into Emblem’s object system. Arguments and
return values of functions in Emblem, and therefore inputs
and outputs of vertices in Full Metal Jacket, are typed.

Composite types can be parameterized, allowing their ele-
ment types to be specified or inferred, e.g. a list of unknown
items can be declared as (List ?x) and a list of integers as
(List Int).

Examples of type definitions are:

(deftype (List ?x) (or NIL (Pair ?x (List ?x))))
(deftype (AList ?x ?y) (List (Pair ?x ?y)))
(deftype (Bag ?x) (AList ?x Int))
(deftype (TaggedValueQueue ?x) (Queue (Pair Int ?x)))

The types of inputs and outputs are displayed in Full Metal
Jacket’s editor when the pointer is placed over them. When-
ever an attempt is made to connect an output, or add a
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constant, to an input, the types are checked, and unless the
output’s type matches the input’s type, the programmer is
prevented from making the connexion or adding the con-
stant. Successful matches can result in type variables being
bound (by means of a process similar to Prolog’s unifica-
tion), or types made more specific. Type matching and in-
ference occur while the program is being edited, every time
an edge is added, and also when one is deleted, in which case
the type variable might again become undetermined.

6.1 Type Matching Algorithm
The basic type-matching algorithm matches an edge’s out-
put type to its input type, resulting in either a list of bind-
ings for the variables contained in the types if the match is
successful, or the symbol FAIL.

The cases are:

A. Match of two type constants. This results in either suc-
cess (NIL) if the output type is equal to or a subtype of
the input type, or failure (FAIL) otherwise.

B. Match with a type variable. The match results in a new
binding unless the match is with the same variable, in
which case NIL is returned.

C. Match of two function types. The match is then applied
to the argument and return types.

D. Match with the same parameterized type. The parame-
ters are matched recursively.

E. Match with a different parameterized type. If one is
a subtype of the other, the match is repeated using the
more specific type’s definition, after the appropriate vari-
able substitutions. Otherwise, the match fails.

Case Output type Input type Bindings
A List Str FAIL

A Str Str NIL

B Str ?x ?x → Str

B (List ?x) ?y ?y → (List ?x)

B ?x ?x NIL

B ?x ?y ?y → ?x

D (List Int) (List ?x) ?x → Int

E (Bag Sym) (List ?x → Int

(Pair ?y ?x)) ?y → Sym

Table 2: Type matching examples

The output of the matcher is the list of bindings for the type
variables of the edge’s output and input. (See Table 2.)

6.2 Type Inference
Type inference is performed whenever an edge or constant
is connected to an output, as follows:

A. If there are any type variables shared between an edge’s
output and input, unique variables are substituted for
them before matching. For example, if output type (Bag
?x) and input type (List (Pair ?y ?x)) are matched,

the type variables are renamed, giving (e.g.) (Bag ?17)

and (List (Pair ?18 ?19)).

B. Matching is then performed. The bindings returned by
the match algorithm described above are ?19 → Int, ?18
→ ?17.

C. The bindings for the output and input types are then
separately extracted, giving NIL and ?19 → Int, ?18 →

?17 respectively.

D. Finally, the original names replace the substitute names,
giving NIL and ?x → Int, ?y → ?x respectively.

E. Type variables are shared among a vertex’s input and
output types, so if one becomes bound to a particular
value on an input or output, it also becomes bound to
the same value on all other inputs and outputs on the
same vertex.

F. When the type of an input or output changes, type in-
ference is applied along the edges connected to them.

Figure 6: Code for Pascal’s triangle.

6.3 An Example
pascal, shown in Figure 6, computes Pascal’s triangle. For
example, (pascal 5) returns ((1 4 6 4 1) (1 3 3 1) (1

2 1) (1 1) (1)).

pascal takes an Int as input. Here, the types of the values
are inferred statically.

Given the vertex input and output types shown in Table 3,
the edge types to be matched will be those shown in Table
4. Together with the types of the constants (shown in Table
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5), the types of all the variables can be inferred, and this is
shown in Table 6.

Input Types Function Output Types
Int pascal ?a

(List ?b) car ?b

?c

(List ?c) consa (List ?c)

(List ?d) reverse (List ?d)

(?e ?f) → (?g)

(List ?e) map2 (List ?g)

(List ?f)

?h

(List ?h) consb (List ?h)

Table 3: Vertex types in pascal

Function Output Type Input Type Function
pascal ?a (List ?b) car

car ?b (List ?c) consa
consa (List ?c) (List ?d) reverse

consa (List ?c) (List ?e) map2

reverse (List ?d) (List ?f) map2

map2 (List ?g) ?h consb
pascal ?a (List ?h) consb

Table 4: Edge types in pascal

Value Type Input Type Fn.
0 Int ?c consa
iAdd (Int Int) → (Int) (?e ?f) → (?g) map2

Table 5: Constant types in pascal

Type Variable Type
?a (List (List Int))

?b (List Int)

?c Int

?d Int

?e Int

?f Int

?g Int

?h (List Int)

Table 6: Inferred types in pascal

This, reassuringly, is consistent with the types returned in
the other two paths through the pascal function, which re-
turn NIL and ’((1)).

7. RACE CONDITION DETECTION
Race conditions occur when two or more values are written
to the same memory location. The final value then depends
on the order in which they are written, which is unsatisfac-
tory. In Full Metal Jacket, if more than one edge is con-
nected to the same input, a potential race condition occurs.
Whether it is a true race condition can be detected fairly
straightforwardly.

Data follows one out of one or more mutually exclusive
streams through an enclosure. The stream containing a
given vertex can be found by searching downstream from
it along the edges leaving its outputs, and then back up-
stream at each vertex encountered, along its edges, marking
the vertices as we go. All those vertices, and any edges con-
necting them, are then on the same stream. If data flow
through a vertex, data also must be flowing through other
vertices in the same stream on the same enclosure invoca-
tion. When two or more edges converge on the same input,
and they are from vertices in the same stream, there is a
race condition, and one of the edges should be disallowed.

The stream detection mechanism also solves a well-known
problem with visual programming: how to remove clutter.
Functions do not have to become very large before they be-
come difficult to read, due to many edges crossing each other.
Within the editor, clicking on a particular vertex hides all
the vertices and edges except those in the same stream.

A further use for stream detection is in detecting gaps in
unit test coverage.

8. CONCLUSIONS AND FUTURE WORK
Development of Full Metal Jacket is still incomplete. While
it is already possible to implement and run some small pro-
grams containing nested function calls, others programs have
been found to be difficult to implement without important
features still absent from the language: in particular, the
ability to extend the type system from within the language,
and a more comprehensive set of emitters and collectors.

The ability to take advantage of the language’s homoiconic-
ity should also be added. Other features missing from Full
Metal Jacket’s environment include a compiler (initially, gen-
erating Emblem bytecode, for programmer-selected func-
tions), and interactive debugging capabilities.

Learning to think in a dataflow language should not be con-
sidered a problem, but a worthwhile challenge, also present
in any other programming paradigm switch.

8.1 Type and Class Hierarchy Extension
At present, the Emblem class hierarchy is displayed as a tree
(Emblem has single inheritance), with each class displayed
as a vertex, but this cannot yet be extended from inside Full
Metal Jacket. Types and classes should ideally be merged,
with the system capable of handling the two different ways
of extending them: adding fields to objects, and abstract-
ing and making types more specific. For example, the class
hierarchy contains

Any → Graphical → Shape → Rectangle

Any → Queue

These are defined by adding extra fields. It should also be
possible to define a type hierarchy, which would contain (see
Section 6)

Pair → List → AList → Bag

Queue → TaggedValueQueue

The subtypes above share the underlying data structure of
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their parent types, the cons-cell and Queue respectively, but
a List requires its cdr also to be of type List, an AList

requires all of its elements to be Pairs, and a Bag requires
the cdr of each of its elements to be Int. Similarly, a tagged
value queue is a Queue of Pairs, of which the car is an
Int. (A Queue is an object containing a pointer to a list of
elements, and a pointer to their last cons-cell. Alternatively,
it could have been implemented by subtyping Pair.)

It will be noticed that Emblem’s typedef macro (see Sec-
tion 6) resembles Scheme’s define macro when that is used
to define functions, suggesting that types be defined graphi-
cally in Full Metal Jacket as enclosures, with more primitive
types as vertices and type variables as gates. This hints at
a deep equivalence between code and data.

8.2 Homoiconicity
Until now, Lisp and Prolog, and only those languages, have
been meaningfully homoiconic, i.e. able to treat code writ-
ten in them as data, transform it, and reason about it, and
to treat data as code, and execute it. Lisp macros are the
most widespread use of this, but more generally, code can be
generated on the fly (data becomes code) or reasoned about
(code becomes data).

A Full Metal Jacket program is a directed graph, which is
the most general data structure. The intention is to exploit
this feature, similar to how Lisp uses lists, and Prolog uses
terms, to represent both programs and data. However, it is
less straightforward: directed graph elements have a more
complex structure, and are more specific to code. While
this does not preclude the incorporation of macros into the
language, use of the same structures for data might seem
less natural. Vertices, edges and enclosures can, however,
be generalized to objects without the program-specific fields
(such as tagged value queues and types), and then special-
ized by restricting inputs and outputs each to one. This has
already been done with classes, so the class hierarchy can be
displayed as a tree.
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ABSTRACT
Processing is a programming language and development en-
vironment created to teach programming in a visual context.
In spite of its enormous success, Processing remains a niche
language with limited applicability outside the visual realm.
Moreover, architects that have learnt Processing are unable
to use the language with traditional Computer-Aided Design
(CAD) and Building Information Modelling (BIM) applica-
tions, as none support Processing.

In the last few years, the Rosetta project has implemented
languages and APIs which enable programmers to work with
multiple CAD applications. Rosetta is implemented on top
of Racket and allows programs written in JavaScript, Au-
toLISP, Racket, and Python, to generate designs in differ-
ent CAD applications, such as AutoCAD, Rhinoceros 3D,
or Sketchup. Unfortunately, Rosetta does not support Pro-
cessing and, thus, is not available to the large Processing
community.

In this paper, we present an implementation of Processing
for the Racket platform. Our implementation allows Pro-
cessing to use Rosetta’s APIs and, as a result, architects and
designers can use Processing with their favourite CAD ap-
plication. Our implementation involves compiling Process-
ing code into semantically equivalent Racket source code,
using a compiler pipeline composed of parsing, code anal-
ysis, and code generation phases. Processing’s runtime is
implemented purely in Racket, allowing for greater interop-
erability with Racket code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Languages

Keywords
Processing; Racket; Compilers; Language implementation

1. INTRODUCTION
Many programming languages have been created to solve
specific needs across a wide range of areas of expertise. Pro-
cessing [1] is a programming language and development en-
vironment created to teach programming in a visual context.
The language has grown over the years, creating a commu-
nity where users are encouraged to share their artistic works.

As a result, a wide range of Processing examples are freely
available, making it easier for anyone with little, or even
no programming knowledge, to experiment with Processing.
Among the many benefits that Processing offers, are a wide
range of 2D and 3D drawing primitives, and a simple In-
tegrated development environment (IDE), that provides a
basic development environment to create new designs.

Despite its enormous success, Processing is a niche pro-
gramming language with limited applicability outside the
visual realm. Architects, for instance, depend on traditional
heavyweight CAD and BIM applications (i.g. AutoCAD,
Rhinoceros 3D, Revit, etc), which provide APIs that are
tailored for that specific CAD. Unfortunately, no CAD ap-
plication allows users to write scripts in Processing. There-
fore, architects that have learnt Processing cannot use their
programming knowledge or any of the publicly available ex-
amples to program for their favourite CAD tool.

On the other hand, Racket is a descendent of Scheme, that
has a wide range of applications, such as teaching newcom-
ers how to program, developing web applications, or creating
new languages. Racket encourages developers to tailor their
environment to project-specific needs, by offering an ecosys-
tem that allows for the creation of new languages, having
direct interoperability with DrRacket and existing Racket’s
libraries. For instance, Rosetta [2], is Generative Design
tool built on top of Racket, that encompasses Racket’s phi-
losophy of using different languages to solve specific issues.
Rosetta allows programmers to generate 2D and 3D geom-
etry in a variety of CAD applications, namely AutoCAD,
Rhinoceros3D, Sketchup, and Revit, using several program-
ming languages, such as JavaScript, AutoLISP, Racket, and
Python.

Our implementation enables Processing to use Rosetta, there-
fore allowing architects to prototype designs in their favourite
CAD application, using Processing. Our implementation in-
volves compiling Processing code to semantically equivalent
Racket source code, using Rosetta’s modelling primitives
and abstractions. Furthermore, Racket allows us to take ad-
vantage of language creation mechanisms [3], that simplify
the language development process and its integration with
DrRacket. Also, as Racket is our target language, Process-
ing developers gain access to Racket libraries and vice versa.
Lastly, as Racket encourages developers to use different lan-
guages within the Racket ecosystem, Processing developers
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could potentially combine their scripts with other languages,
such as Python [4].

The following sections describe in greater detail the Process-
ing language and other language implementations that are
relevant to our work. Additionally, we describe the main de-
sign decisions that were taken for our implementation and a
sample of the results obtained so far.

2. PROCESSING
Processing was developed at MIT media labs and was heav-
ily inspired by the Design by Numbers [5] project, with
the goal to teach computer science to artists and designers
with no previous programming experience. The language
has grown over the years with the support of an academic
community, which has written several educational materials,
demonstrating how programming can be used in the visual
arts. Also, an online community1 has been created around
the language, allowing users to share and discuss their works.
The existence of an online community, good documentation,
and a wide range of publicly available examples, has been a
positive factor for the language’s growth over the years.

The Processing language is built on Java. It is statically
typed sharing Java’s C-style syntax and implements a wide
range of Java’s features. The decision of developing Pro-
cessing as a Java ”preprocessor”, was due to Java being a
mainstream language, used by a large community of pro-
grammers. Moreover, Java has a more forgiving develop-
ment environment for beginners when comparing with other
languages used in computer graphics such as C++.

As Processing is meant for beginners, several features were
introduced to simplify Java, and consequently, allow users
to quickly test their design ideas. In Java, developers have
to implement a set of language constructs to develop a sim-
ple example, namely a public class that implements pub-
lic methods and a static main method. These constructs
only bring verbosity and complexity to the program. As
a result, Processing simplifies this by removing the these
requirements, allowing users to write scripts (i.e. simple se-
quences of statements) that produce designs.

Processing also introduces the notion of a sketch, a com-
mon metaphor in the visual arts, acting as a sort of project
that artists can use to organize their source code. Within a
sketch, artists can develop their designs in several Process-
ing source files, but that are viewed as a single compilation
unit. A sketch can operate in one of two distinct modes:
Static or Active mode. Static mode supports simple Pro-
cessing scripts, such as simple statements and expressions.
However, the majority of Processing programs are in Ac-
tive mode, which allow users to implement their sketches
using more advanced features of the language. Essentially,
if a function or method definition is present, the sketch is
considered to be in Active mode. Within each sketch, Pro-
cessing users can define two functions to aid their design
process: the setup() and draw() functions. On one hand,
the setup() function is called once when the program starts.
Here the user can define the initial environment properties
and execute initialization routines that are required to cre-

1http://openprocessing.org/

Figure 1: Processing Development Environment

ate the design. On the other hand, the draw() function runs
after the setup() and executes the code that draws the de-
sign. The control flow is simple, first setup() is executed,
setting-up the environment; followed by draw() called in
loop, continually rendering the sketch until stopped by the
user.

Furthermore, Processing offers users a set of design and
drawing tools that are specially tailored for visual artists,
providing 2D and 3D drawing primitives along with differ-
ent 2D and 3D rendering environments. Also, a set of built-
in classes are provided, specifically tailored to help artists
create their designs. For instance, the PShape class serves
as a data type that enables users to easily create, manipu-
late, and reuse custom created design shapes throughout his
sketches.

On top of being a programming language, Processing offers
its users a development environment (presented in Fig 1)
called PDE (Processing Development Environment). Users
can develop their programs using this simple and straightfor-
ward environment, which is equipped with a tabbed editor
and IDE services such as syntax highlighting and code for-
matting. Moreover, Processing users can create custom li-
braries and tools that extend the PDE with additional func-
tionality, such as, Networking, PDF rendering support, color
pickers, sketch archivers, etc.

3. RELATED WORK
Several different language implementations were analysed to
guide our development. Our focus was on different imple-
mentations for the Processing environment, namely Process-
ing.js, Ruby-processing, and Processing.py. Additionally, we
analysed ProfessorJ due to the similarities that Java shares
with Processing, and that Scheme shares with Racket.

3.1 Processing.js
Processing.js [6] is a JavaScript implementation of Process-
ing for the web that enables developers to create scripts in
Processing or JavaScript. Using Processing.js, developers
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can use Processing’s approach to design 2D and 3D geom-
etry in a HTML5 compatible browser. Processing.js uses
a custom-purpose JavaScript parser, that parses both Pro-
cessing and JavaScript code, translating Processing code to
JavaScript while leaving JavaScript code unmodified.

Moreover, Processing.js implements Processing drawing prim-
itives and built-in classes directly in JavaScript. Therefore,
greater interoperability is allowed between both languages,
as Processing code is seamlessly integrated with JavaScript
and Processing’s data types are directly implemented in
JavaScript. To render Processing scripts in a browser, Pro-
cessing.js uses the HTML canvas element to provide 2D ge-
ometry, and WebGL to implement 3D geometry. Process-
ing.js encourages users to develop their scripts in Process-
ing’s development environment, and then render them in a
web browser. Additionally, Sketchpad2 is an alternative on-
line IDE for Processing.js, that allows users to create and
test their design ideas online and share them with the com-
munity.

3.2 Ruby-processing & Processing.Py
Ruby-processing3 and Processing.py4 produce Processing as
target code. Both Ruby and Python have language imple-
mentations for the JVM, allowing them to directly use Pro-
cessing’s drawing primitives. Processing.py takes advantage
of Jython to translate Python code to Java, while Ruby-
processing uses JRuby to provide a Ruby wrapper for Pro-
cessing. Processing.py is fully integrated within Processing’s
development environment as a language mode, and therefore
provides an identical development experience to users. On
the other hand, Ruby-processing is lacking in this aspect,
by not having a custom IDE. However, Ruby-processing of-
fers sketch watching (code is automatically run when new
changes are saved) and live coding, which are functionalities
that are not present in any other implementation.

3.3 ProfessorJ
ProfessorJ [7, 8] was developed to be a language extension
for DrScheme [9], providing a smoother learning curve for
students that are learning Java and offering a set of language
levels that progressively cover more complex notions of the
language.

ProfessorJ implements a traditional compiler pipeline, that
starts with a lex and yacc parsing phase, that produces
an intermediate representation in Scheme. Subsequently,
the translated code is analysed, generating target Scheme
code by using custom defined functions and macro transfor-
mations. ProfessorJ implements several strategies to map
Java code to Scheme. For instance, Java classes are trans-
lated into Scheme classes with certain caveats, such as imple-
menting static methods as Scheme procedures or by chang-
ing Scheme’s object creation to appropriately handle Java
constructors. Also, Java has multiple namespaces while
scheme has a single namespace, therefore name mangling
techniques were implemented to correctly support Java’s
multiple namespaces in Scheme.

2http://sketchpad.cc/
3https://github.com/jashkenas/ruby-processing
4http://py.processing.org/

Moreover, Java’s built-in primitive types and some classes
are directly implemented in Scheme, while remaining classes
are implemented in Java. Classes such as Strings, Arrays,
and Exceptions are mapped directly to Scheme forms. Im-
plementing these classes in Scheme is possible (with some
constraints) due to similarities in both languages which, in
turn, allow for a high level of interoperability between both
languages.

Finally, ProfessorJ is fully integrated with DrScheme, pro-
viding a development environment that offers syntax high-
lighting, syntax checking, and error-highlighting for Java
code. This is possible due to preserved source location in-
formation throughout the compilation pipeline.

4. SOLUTION
Although previously presented implementations are relevant
for our solution, they do not fit entirely in our work’s scope.
Analysing Processing.js and Processing.py, we observe that
having an IDE is a fundamental feature for Processing users.
Also, both Processing.js and ProfessorJ implement their APIs
directly in their target language, permitting greater interop-
erability between the source and target language. However,
Processing.js, Processing.py, and Ruby-processing, do not
allow designs to be visualized in a CAD, and, in spite of
Java and Processing sharing many features, the differences
require a custom tailored solution. Finally, Ruby-processing
presents some relevant features that are useful for designs,
namely live coding. Yet, as both Processing.py and Ruby-
processing translate to the JVM, they are not relevant to
our work.

Our proposed solution was to develop Processing as a new
Racket language module, using Rosetta for Processing’s vi-
sual needs, and integrating Processing with DrRacket’s IDE
services. The following sections explain how our compiler
was developed and structured, presenting the main design
decisions taken.

4.1 Module Decomposition
To better understand the main modules of our compiler,
Fig 2 illustrates the main Racket modules that are used,
as well as the dependencies between them. We divided the
modules in two major groups: the Compiler and Runtime
modules. In the following paragraphs, we provide a detailed
description of the most important modules.

Figure 2: Main module decomposition and depen-
dencies. The arrows indicate a uses relationship be-
tween modules - module A uses (−→) module B
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4.1.1 Compiler Modules

Reader Module. To add Processing as a new language
module [10], a new specifically tailored reader is needed
for Processing. This enables Racket to parse Processing
source code and transform it to target Racket code. The
reader must provide two important functions: read and
read-syntax, and receive an input-port as input, differ-
ing in their return value. The former produces a list of
S-expressions, while the latter generates syntax-objects

(S-expressions with lexical-context and source-location in-
formation). The reader uses functions provided from the
Compile module, to create and analyse an intermediate rep-
resentation of the source Processing code, and to generate
target Racket code.

Compile Module. The Compile module defines an inter-
facing layer of functions that connects the Reader module
with the Parse and AST modules. The main advantage is
to have a set of abstractions that manipulate certain phases
of the compilation process. For instance, the Compile mod-
ule provides functions that parse the source code, create an
AST, check types, and generate Racket code.

Parser & Lexer Modules. The Parse and Lexer modules
contain all the functions that analyse the syntactic and se-
mantic structure of Processing code. To implement the
lexer and parser specifications, we used Racket’s parser-

tools [11], adapting parts of ProfessorJ’s lexer and grammar
according to Processing’s needs. The Lexer uses parser-

tools/lex to split Processing code into tokens. To abstract
generated tokens by the Lexer module, Racket’s position-

tokens are used, as they provide a simple way to save the
code’s original source locations. Processing’s parser defi-
nition is implemented using Racket’s parser-tools/yacc,
which produces a LALR parser.

AST Module. Parsing the code produces a tree of ast-

node%, that abstracts each language construct such as, state-
ments, expressions, etc. These nodes are implemented as a
Racket class, containing the original source locations and a
common interface which allows the analysis and generation
of equivalent Racket code. Each ast-node% provides the
following methods:

• ->check-bindings: traverses the AST populating the
current scope with defined bindings and their type in-
formation;
• ->type-check: checks each AST node for type errors,

promoting types, if necessary;
• ->racket: generates Racket code using custom de-

fined functions and macros, wrapping them within a
syntax-object along with the original source infor-
mation.

Types and Bindings Module. The bindings module pro-
vides auxiliary data structures needed to store and manage
different Processing bindings. We created a binding% class

to abstract binding information (e.g. modifiers, argument
and return types, etc), and a custom scope% class to handle
Processing’s scoping rules. Each scope% has a reference to
its parent scope% and has a hash table that associates iden-
tifiers to binding% representation. The types module has all
the necessary functions to check if two types are compatible
or if they need to be promoted. As many of Processing’s
typing rules are similar to Java’s, we adapted ProfessorJ’s
type-checking functions to work with our compiler.

4.1.2 Runtime Modules
The runtime module provides all the necessary macros, func-
tions, and data types, that are required by generated Racket
code. These functions are provided by the Processing mod-
ule using the Macros and Processing libraries modules. The
former contains necessary source transformations required
to generate equivalent Racket code. The latter provides an
interface that implements Processing’s built-in classes and
drawing primitives, using Rosetta to generate designs in sev-
eral CAD backends.

4.2 Compilation Process
Our Processing implementation follows the traditional com-
piler pipeline approach (illustrated in Fig 3), composed by
three separated phases, namely parsing, code analysis, and
code generation.

Figure 3: Overall compilation process

Parsing. The initial compilation process starts by the pars-
ing phase, which is divided in two main steps. First, Pro-
cessing source code is read from the input-port and trans-
formed into tokens. Secondly, tokens are given to LALR
parser, building an AST of Racket objects, that will be anal-
ysed in subsequent phases.

Code Analysis. Following the parsing phase, a series of
checks must be made to the generated AST. This is due
to some differences between Processing’s and Racket’s lan-
guage definitions. For instance, Processing has static type-
checking and has different namespaces for methods, fields,
and classes, while Racket is dynamically typed and has a
single namespace. As a result, custom tailored mechanisms
were needed to solve compatibility issues, in order to gener-
ate semantically equivalent Racket code.

Initially, the AST is traversed by repeatedly calling ->check-

bindings on child nodes, passing the current scope%. When
a new definition is created, be it a function, variable, or
class, the newly defined binding is added to the current
scope along with its type information. Each time a new
scope is created in Processing code, a new scope% object
is created to represent it, referring to the current scope%

as its parent. These mechanisms are needed to implement
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Processing scoping rules and type-checking rules. For ex-
ample, to type-check a function call, the information of the
return type, arity, and argument types is needed to correctly
type-check the expression.

Secondly, the type-checking procedure runs over the AST by
calling ->type-check on the topmost AST node. As before,
it repeatedly calls ->type-check on child nodes until the
full AST is traversed, using previously saved bindings in
the current scope% to find out the types of each binding.
During the type-checking procedures, each node is tested
for type correctness and in some cases promoting types, if
necessary. In the event that types do not match, a type error
is produced, signalling where the error occurred.

Code Generation. After the AST is fully analysed and
type-checked, semantically equivalent Racket code can be
generated. To achieve this, every AST node implements
->racket, which uses custom defined macros and functions
to produce Racket code. This code is then wrapped in
a syntax-object along with source information saved by
the AST. Subsequently, these syntax-objects will be con-
sumed by read-syntax at the reader level. Afterwards,
Racket will expand the define macros and load the gen-
erated code into Racket’s VM. By using macros, we can
create human-readable boilerplate Racket code that can be
constantly modified and tested.

Racket and Processing follow the same evaluation order on
their programs, thus most of Processing’s statements and ex-
pressions are directly mapped into Racket forms. However,
other statements such as return, break, or continue need a
different handling as they use control flow jumps. To imple-
ment this behaviour we used Racket’s escape continuations,
in the form of let/ec. Furthermore, Processing has multiple
namespaces, which required an additional effort to translate
bindings to Racket’s single namespace. To support multiple
namespaces in Racket, binding names were mangled with
custom tags. For instance, func tag is appended to func-
tions, so function foo() internally would be foo-fn(). The
use of ’-’ as a separator allows us to solve the problem of
name clashing with user defined bindings, as Processing does
not allow ’-’ in names. Also, as we have function overload-
ing in Processing, we append specific tags that represent the
argument’s types to the function’s name. For instance, the
following function definition: float foo(gloat x, float y){

... } would be translated to (define (foo-FF-fn x y)...).

An initial implementation of classes has been developed,
by mapping Processing classes into Racket classes, reusing
some of ProfessorJ’s ideas. Instance methods are translated
directly into Racket methods, therefore instance method
public void foo() is translated to Racket’s public methods,
(define/public (foo-fn)...). On the other hand, static meth-
ods are implemented as a Racket function, by appending
the class name to the function’s name. For example, a
method static void foo() of class Foo will be translated
to (define (Foo.foo-fn)...). Also, there is an issue with
constructors, as Processing can have multiple constructors.
This problem is solved by adapting new to find the appro-
priate constructor to initialize the object.

To correctly support Processing’s distinctions between Ac-
tive and Static mode we used the following strategy. We
added a custom check in the parser that signals if the code
is in Active mode, i.e. if a function or method is defined.
While in active mode, global statements are restricted, thus
when generating code for global statements we check if the
code is in Active mode, signalling an error if true.

4.3 Runtime
Our runtime is implemented directly in Racket, due to the
necessity of integrating our implementation with Rosetta.
Processing offers a set of built-in classes that provide com-
mon design abstractions that aid users during their devel-
opment process. For instance, PVector, abstracts 2 or 3
dimensional vectors, useful to describe positions or veloci-
ties. These will be implemented directly in Racket, allowing
for greater performance and interoperability.

However, this presents some important issues. First, as
Racket is a dynamically typed language, the type-checker,
at compile time, cannot know what are the types of Racket
bindings. To solve this issue we introduced a new type in
the type hierarchy, acting as an opaque super type that the
type-checker ignores when type checking these bindings. On
the other hand, as Processing primitives and built-in classes
are implemented in Racket, we also have the problem of as-
sociating type information for these bindings. To solve this
issue, we created a simple macro (Fig 4), that allows us to
associate type information to Racket definitions, by adding
them to the global environment, thus the type-checker can
correctly verify if types are compatible. Alternatively, in-
stead of using a custom macro, we could of written Pro-
cessing’s APIs in typed/racket, as types can be associated
to Racket definitions. Yet, this alternative was not used
due to possible type incompatibilities with Processing’s and
Racket’s type hierarchy. Secondly, because the gain of using
typed/racket [12] would not be significant due to Rosetta
and the compiler being written in untyped racket.

(define-syntax-rule
(define-types (id [type arg] ... -> rtype)

body ...)
(begin

(add-binding! rtype ’id (type ...))
(define (id arg ...) body ...)))

Figure 4: Macro that associates Processing types to
a definition

Processing’s drawing paradigm closely resembles OpenGL’s
traditional push/pop-matrix style. To provide rendering
capabilities in our system, we use Rosetta, as it provides
design abstractions that not only lets us generate designs
in an OpenGL render, but also gives us access to several
CAD back-ends. Custom interface adjustments are needed
to implement Processing’s drawing primitives in Racket, as
not every Processing primitive maps directly into Rosetta’s.
Furthermore, Rosetta also enables us to supply Processing
developers with different drawing primitives unavailable in
Processing’s core environment. Therefore we are able to aug-
ment Processing’s core capabilities with additional drawing
primitives and design approaches, that empower users to
explore different designs.
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4.4 Interoperability
Mapping Processing constructs directly into Racket’s allows
for greater interoperability between both languages. At the
moment, each Processing module is translated to a Racket
module. As a result, to use Racket code within a Process-
ing module, a custom import mechanism was created. A
require statement was introduced that maps into Racket’s
require, allowing Racket modules (or any other language of
the Racket ecosystem) to be referenced within a Processing
module. Nonetheless, this decision has a major issue in re-
gard to Processing’s identifiers, as they are not compatible
with Racket’s. Racket allows for identifiers to be composed
of characters such as ’?’, ’-’, or ’+’, yet Processing does
not. As result, we are unable to use these bindings in our
Processing scripts. This issue can be solved by using two
different approaches.

The first approach is to automatically rename all of provided
bindings of the required module, by using a custom set of
name renaming rules. For instance, Racket bindings sepa-
rated with ’-’ characters are translated to camel case, i.e.
foo-bar is converted to fooBar. The second approach is to
force the developer to create his custom name mappings by
creating a Racket module that does the name conversion.
Clearly, the first approach provides a clearer and quicker
way of using a Racket module. However, as renaming rules
applied are debatable, the developer is free to create his cus-
tom mapping from our initial transformation.

On the other hand, we want to be able to use a Processing
module in other languages of the Racket ecosystem. To cor-
rectly implement these mechanisms, Processing’s modifiers
(i.e. public, private, etc.) are used to provide bindings to
other modules, mapping them into Racket’s provide.

4.5 Integration with DrRacket
Processing developers are familiar with an IDE (the PDE)
that offers them a set of common IDE tools, such as syntax
highlighting or code formatting. DrRacket as a pedagogical
IDE, shares some of the PDE’s features, providing a similar
development environment to Processing developers and al-
lowing them to easily make the transition to our system. Dr-
Racket’s IDE services use source locations to operate, there-
fore by saving this information and passing it along through
the compilation process, we can easily integrate our Process-
ing implementation with DrRacket’s features (ilustrated in
Fig 5).

A relevant feature that Racket offers is a REPL, which is
common in many Lisp descendants. However, currently no
Processing implementation provides a REPL to its users.
Therefore, having a REPL would be a major advantage to
the PDE environment, as it would provide users a mecha-
nism to test specific parts of their code, being a good mech-
anism for beginners to learn and immediately experiment
new ideas.

Due to Racket’s language development capabilities, this fea-
ture was easily implemented by creating a custom function
to compile REPL interactions for Processing. However, as
Processing is a statement based language, REPL interac-
tions will not produce expressions. So we created a new
parser rule to implement REPL interactions, adding it to the

Figure 5: Processing in DrRacket

parser generator’s start symbols. This way Racket’s parser-
tools produces different parsing procedures for each start
symbol, which we can use according to the type of interac-
tion we are manipulating. The interactions shown in Fig 5
shows how we can use the REPL for Processing. For exam-
ple, note that println(factorial(5)); returns the result
of factorial of 5 by producing a print side-effect, while in
factorial(5) + 100 the returned result is the actual ex-
pression that is produced by the add operator.

5. EXAMPLE
In this section, we illustrate an example of code that gener-
ates a double helix (Fig 6) using our system. Our current
implementation is still a work in progress, hence the compi-
lation results are subject to change. The code illustrated in
Fig 7 shows a Processing example that generates the helix
illustrated in Fig 6.

The double helix is drawn by using a recursive function that
repeatedly renders a pair of spheres connected by a cylinder,
along a rotating axis. This example is a case of an Active
mode sketch, as function definitions are present. Also, Pro-
cessing’s design flow is demonstrated by the use of setup()
and draw(). In setup(), we use the backend function (pro-
vided by Rosetta) to define the rendering backend to use,
which in this case is AutoCAD. On the other hand, draw()
executes helix() to produce the design in AutoCAD. Fig 8
presents the Racket code that is produced by our compiler.

The first point worth mentioning is that function identifiers
are renamed to support multiple namespaces. We can see
that helix identifier is translated to helix-FF-fn. The F
is to indicate that the function has 2 arguments that are of
type float. Also, we can see that setup() and draw() are
mangled as well, by appending fn to their name. Functions
and macros such as p-mul, p-sub, or p-call, are defined in
the runtime modules, implementing Processing’s semantics.
Variable definitions are translated by using p-declaration,
which is a macro that generates a Racket define-values

form, using a sequence of identifier and value pairs. To
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Figure 6: Double helix generated from Processing
code using AutoCAD

declare variables (i.e. float x,y;), the value is stored us-
ing Racket’s undefined. Mathematical operators (p-mul,
p-add) are implemented as Racket functions, yet, do not
overflow as Processing. On the other hand, the sphere and
cylinder drawing primitives, are specially tailored to map
into Rosetta’s operators. For instance, cylinder is a good
example of an operator that Rosetta provides, but that is
not available in the current Processing environment.

At the moment, we observe that all function definitions have
their body wrapped in a let/ec form. This is injected to
support return statements within functions. Although per-
formance will be limited by the chosen connection interface
and rendering backend, the usage of let/ec is a clear ex-
ample that brings additional performance overhead with no
possible gains, as the return type is void. Thus an opti-
mization is required to remove let/ec, for cases that jump
statements are not present or when the last statement is a
return.

float r = 15, height = 2;

void helix(float z, float ang) {
float x1 = r*cos(ang), y1 = r*sin(ang);
float x2 = r*cos(PI+ang), y2 = r*sin(PI+ang);

sphere(x1, y1, z, 2);
cylinder(x1, y1, z, 0.5, x2, y2, z);
sphere(x2, y2, z, 2);

if(ang > 0) helix(z + height , ang - PI/8);
}
void setup() { backend(autocad); }
void draw() { helix(0, 4 * PI); }

Figure 7: Processing code example of the Double
Helix

(p-declaration (r 15.0) (height 2.0))

(define (helix-FF-fn z ang)
(let/ec return
(p-block
(p-declaration

(x1 (p-mul r (p-call cos-F-fn ang)))
(y1 (p-mul r (p-call sin-F-fn ang))))

(p-declaration
(x2 (p-mul r (p-call cos-F-fn

(p-add PI ang))))
(y2 (p-mul r (p-call sin-F-fn

(p-add PI ang)))))
(p-call sphere-FFFI-fn x1 y1 z 2)
(p-call cylinder-FFFFFFF-fn

x1 y1 z 0.5 x2 y2 z)
(p-call sphere-FFFI-fn x2 y2 z 2)
(when (p-gt ang 0)
(p-call helix-FF-fn

(p-add z height)
(p-sub ang (p-div PI 8.0)))))))

(define (setup-fn)
(let/ec return
(p-block (p-call backend-O-fn autocad))))

(define (draw-fn)
(let/ec return
(p-block (p-call helix-FF-fn 0 (p-mul 4.0 PI)

))))

(p-initialize))

Figure 8: Generated Racket code

Finally, a p-initialize macro is added to implement Pro-
cessing’s workflow semantics. This macro is responsible of
ensuring that the setup() and draw() functions are called,
if defined by the user. p-initialize is implemented by us-
ing Racket’s identifier-binding to check if the setup-fn

and draw-fn are bound in the current environment.

6. CONCLUSION
Implementing Processing for Racket benefits architects and
designers, by allowing them to develop with Processing in
a CAD environment. Also, the ability to provide new de-
sign paradigms offered by Rosetta is a strong reason for the
architecture community to use our solution. The implemen-
tation follows the common compiler pipeline architecture,
generating semantically equivalent Racket code and loading
it into Racket’s VM. Our strategy was to implement Process-
ing’s primitives directly in Racket to easily access Rosetta’s
features and allow a greater interoperability with Racket.
Also, we have developed mechanisms to access Processing
code from Racket and vice versa.

Currently, our development approach was to first fulfil the
most basic needs of Processing users (the ability to write
simple scripts) and present visual results in a CAD appli-
cation. Afterwards, our goal is to build-upon our existing
work, and progressively introduce more advanced mecha-
nisms, such as implementing inheritance and interfaces in
classes, support live coding, or adapt Processing’s exception
system to Racket. To provide a better environment for Pro-
cessing developers, we plan to further adapt DrRacket by
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creating an editor mode with better syntax highlighting for
Processing. Also, adding visual support to REPL interac-
tions would be a huge advantage to our implementation, as it
would allow users to immediately visualize geometric shapes
in the IDE without loading up the rendering backend. Fi-
nally, optimizations can be made to generated Racket code
to improve the quality and performance of the generated
Racket code.
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ABSTRACT
Writing a platform for reactive applications which enforces
operational constraints is difficult, and has been approached
in various ways. In this experience report, we detail an ap-
proach using an embedded DSL which can be used to specify
the structure and permissions of a program in a given ap-
plication domain. Once the developer has specified which
components an application will consist of, and which per-
missions each one needs, the specification itself evaluates to
a new, tailored, language. The final implementation of the
application is then written in this specialised environment
where precisely the API calls associated with the permissions
which have been granted, are made available.

Our prototype platform targets the domain of mobile com-
puting, and is implemented using Racket. It demonstrates
resource access control (e.g., camera, address book, etc.) and
tries to prevent leaking of private data. Racket is shown to be
an extremely effective platform for designing new program-
ming languages and their run-time libraries. We demonstrate
that this approach allows reuse of an inter-component com-
munication layer, is convenient for the application developer
because it provides high-level building blocks to structure the
application, and provides increased control to the platform
owner, preventing certain classes of errors by the developer.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
domain-specific architectures, languages, patterns

General Terms
Languages, Security

Keywords
Programming frameworks, functional programming, embed-
ded domain-specific languages, sports equipment

1. INTRODUCTION
Among programming frameworks intended to be used by
third party developers, we see a trend towards including
mechanisms restricting access to certain features, or other-
wise constraining behaviour of the application [4,17]. In the
case of platforms like Android [16], the aim is usually to
protect the user’s sensitive data (e.g., contact list, physical
location) from undesired use, while still giving applications
access to the resources, whether hardware or data, needed
to function correctly. For example, an email application

legitimately requires access to the Internet, but for a calcu-
lator application this should raise suspicion. In the case of
Android, these restrictions are enforced via run-time checks
against a permissions file called the Manifest, which the user
accepts at install-time. Other frameworks are also adopting
such declarations, in various forms [3, 8].

1.1 Declaration-driven frameworks
Generally speaking, we identify a class of programming fra-
meworks in widespread use, which we call declaration-driven
frameworks. These frameworks are different to traditional
static programming frameworks in that they have some form
of declarations as input. Examples abound, including the
Android SDK with its Manifest file, or the Facebook plugin
SDK, both of which require permissions to be granted a pri-
ori. The declarations vary greatly in expressiveness, on a
spectrum from simple resource permissions, e.g., access to
list of friends and the camera, to very expressive, e.g., rules
for the control flow of the application, a list of components to
be implemented, etc. An example of the latter is DiaSuite [2],
where the individual components of the application, as well
as their subscription relations, are laid out in the declara-
tions. Access to resources is also granted on a component
level. These rich declarations encourage separation of com-
ponents, and provide relative clarity for the user regarding
potential information flow, when compared to a simpler list
of permissions. Diagrams with potential information flow
can be extracted from the specifications, and presented in
graphical format, for example.

1.2 Problem
We identify a number of shortcomings with the systems
mentioned above. Most frequently, the declarations are no
more than a list of permissions checked at run-time, leaving
the user guessing about the actual behaviour of the applica-
tion [23]. The fact that these checks are dynamic also leads
to the application halting on Android if a developer tries to
access a forbidden resource. Existing static approaches that
exist, on the other hand, generally try to solve different prob-
lems than resource access control, for example just checking
that all required components are implemented [17].

These shortcomings are addressed by DiaSuite’s approach al-
lowing static checks on resource access, which is based on an
external DSL. However, the current implementation of Dia-
Suite generates Java boilerplate code from the declarations,
tailored to the specific application. With this generative ap-
proach, extending the declaration language would involve
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modifying the standalone compiler, and in general, gener-
ated code tends to be difficult to debug and inconvenient to
work with.

On the other hand, the language building platform provided
by Racket allows simple implementation of an embedded
DSL, with all the features of Racket potentially available to
the application developer. Providing expressive constructs
for specification and implementation of an application raises
the level of abstraction, and allows us to implement static
guarantees of resource access equivalent to DiaSuite. Further-
more, we need not maintain parser and compiler machinery
in parallel with the framework infrastructure.

In this report we demonstrate the use of Racket’s language
extension system [21] allowing us to easily derive tailored pro-
gramming environments from application declarations. This
decreases effort for the application developer and gives more
control to platform owners. To the best of our knowledge
this is the first implementation of an EDSL which itself gives
rise to a tailored EDSL in Racket. The code presented in this
report is available from http://people.bordeaux.inria.fr
/pwalt.

Outline. After giving a brief overview of related work in
Sec. 2, we introduce the platform we have chosen as the
basis of our prototype, as well as the example application to
be implemented in Sec. 3. In Sec. 4 we show how a devel-
oper using our system would write the example application.
Sec. 5 goes into detail about how the declarations unfold
into a language extension, and finally in Sec. 6 we discuss
strengths and weaknesses of the approach using Racket. Our
conclusions are presented in Sec. 7.

2. RELATED WORK
The work most closely resembling ours is DiaSuite [1], since it
is the inspiration for our approach. The relative advantages
and disadvantages are thoroughly dealt with in Sec. 3.

Other than that, it seems there is not much literature on the
generation of frameworks, although to varying degrees frame-
works which depend on declarations are becoming ever more
widely adopted [3,16]. These generally address demonstrated
threats to user safety [6, 13,15,18,22].

Many approaches have been proposed to address these leaks,
such as parallel remote execution on a remote VM where a
dynamic taint analysis is running [7]. This naturally incurs
its own privacy concerns, as well as dependence on a connec-
tion to the VM. Another approach which bears similarity to
our aim, is the work by Xiao et al. [23], which restrains devel-
opers of mobile applications to a limited external DSL based
on TouchDevelop [14], from which they extract information
flow via static analysis. This information is then presented
to the user, to decide if the resource usage seems reasonable.
This is a powerful and promising approach, but we believe
that it is preferable to declare information flow paths a priori
and constrain the developer, than having to do a heavy static
analysis to extract that same information – especially since
it means a developer cannot use a general-purpose language
they are already familiar with, but must learn a DSL which
is used for every aspect of the implementation.

Figure 1: The Sense/Compute/Control paradigm. Il-
lustration adapted from [2].

1 Declaration -> Resource | Context | Controller
2 Type -> Bool | Int | String | ...
3 Resource -> (source srcName | action actName) as Type
4 Context -> context ctxName as Type CtxtInteract
5 CtxtInteract -> when ( required GetData?
6 | provided (srcName | ctxName)
7 GetData? PublishSpec)
8 GetData -> get (srcName | ctxName)
9 PublishSpec -> (always | maybe) publish

10 Controller -> controller ctrName ContrInteract
11 ContrInteract -> when provided ctxName do actName

Figure 2: Declaration grammar. Keywords are in
bold, terminals in italic, and rules in normal font.

Compared to these alternatives, providing a “tower of lang-
uages”-style solution [11] seems be a good trade-off between
restrictions on the developer and versatility of the implemen-
tation.

3. CASE STUDY
DiaSuite, the model for our prototype, is a declaration-driven
framework which is dedicated to the Sense/Compute/Con-
trol architectural style described by Taylor et al. [19]. This
pattern ideally fits applications that interact with an external
environment. SCC applications are typical of domains such
as building automation, robotics, avionics and automotive
applications, but this model also fits mobile computing.

3.1 The Sense-Compute-Control model
As depicted in Fig. 1, this architectural pattern consists of
three types of components: (1) entities correspond to man-
aged1 resources, whether hardware or virtual, supplying data;
(2) context components process (filter, aggregate and inter-
pret) data; (3) controller components use this information
to control the environment by triggering actions on entities.
Furthermore, all components are reactive. This decompo-
sition of applications into processing blocks and data flow
makes data reachability explicit, and isolation more natural.
It is therefore well-suited to the domain of mobile computing,
where users are entrusting their sensitive data to applications
of dubious trustworthiness.

3.2 Declaration language
The minimal declaration language associated with DiaSuite
is presented in Fig. 2. It is adapted from [2], keeping only
essential constructs. An application specification is a list of

1Managed resources are those which are not available to
arbitrary parts of the application, in contrast to basic system
calls such as querying the current date.
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Declarations. Resources (such as camera, GPS, etc.) are
defined and implemented by the platform: they are inherent
to the application domain. Context and controller declara-
tions include interaction contracts [1], which prescribe how
they interact. A context can be activated by either another
component requesting its value (when required) or a publi-
cation of a value by another component (i.e., when provided
component). When activated, a context component may be
allowed to pull data (denoted by the optional get). Note
that contexts which may be pulled from must have a when
required contract. Finally, a context might be required to
publish when triggered (defined by PublishSpec). Note that
when required contexts have no publish specification, since
they are only activated by pulling, and hence return their
values directly to the component which polled them. When
activated, controller components can send orders, using the
actuating interfaces of components they have access to (i.e.,
do actName), for example printing text to the screen or send-
ing an email.

DiaSuite compiles the declarations, written in an external
DSL, into a set of Java abstract classes, one for each declared
component, plus an execution environment to be used with
the classes which extend them. The abstract classes contain
method headers which are derived from the interaction con-
tracts, and constrain the input and output of the developer’s
implementation of each component. Additionally, access to
resources is passed in as arguments to these methods, so
that the only way a developer may use a resource is via the
capability passing method from the framework.

This approach allows advantages such as static checks by
the Java compiler that the application conforms to the dec-
larations. From these declarations it directly follows which
sensitive resources components should have access to, giv-
ing the application developer a much more concise API to
work with. For example, if a component only has access to
the network, it need not have the API for dealing with the
camera in scope. This is in contrast to Android, where all
system API calls are always available, increasing the amount
of information the developer must keep in mind. The disad-
vantage is that this is an external DSL, and thus requires
a separate compiler to be maintained. It also implies less
versatility, having to re-invent the wheel, and a symbolic
barrier, as argued by Fowler [12].

3.3 Example application
As our running example, we use a prototype mobile applica-
tion. We pretend that it is distributed for free, supported
by advertisements. It allows the user to capture pictures
and then view them with a colourful filter (see Fig. 3). An
advertisement will be downloaded from the Internet, but we
would like to prevent the developer from being able to leak
the picture (which is private) to the outside world, whether
intentionally or by using a malicious advertisement provider.
It has been shown that this is in fact a threat: frequently,
included third party advertisement libraries try to exfiltrate
any private data to which they are able to get access [18].

From the specification it follows that it should be impos-
sible for the picture to leak to the Web, since the bitmap
processing component is separate from the advertisement
component.

Process
Picture

MakeAd

Camera

Compose
Display

IP

Screen

Picture

Picture

Picture String

String

Figure 3: Simplified schematic of example applica-
tion’s design. We do not want the picture to be able
to leak to the WWW. Note that pull requests (the
curved arrows) are not parameterised, and are only
used to return values.

expands to
(define-context ProcPic ... )
...

uses language               

(implement ProcPic (lambda ...))    
...

webcamspec.rkt

webcamimpl.rkt

(provide module-begin
         implement
         run)
...

[webcamspec.rkt]

#lang s-exp "diaspec.rkt"

Declarations

Macro expansion

Developer's code

#lang s-exp "webcamspec.rkt"

Figure 4: The prototype’s architecture. Provided
declarations are transformed into a tailored langu-
age for the implementation. The implement macro
gets cases for each declared component.

4. IMPLEMENTATION OF EXAMPLE
Inspired by the DiaSuite approach, where a framework is
generated from the specifications, the first step in our im-
plementation is to provide an embedded DSL for writing
specifications. It should include constructs for defining con-
texts and controllers, according to the grammar in Sec. 3.
As illustrated in Fig. 4, when the specifications are evalu-
ated, they in turn form a language extension which should
be used to implement the application. The programming en-
vironment that is thus created provides the developer with
tailored constructs for the application that is to be built,
including an API precisely matched to what each component
may do. In our prototype, we consider the advert developer
and application developer as potentially the same, since we
expect the advertisement library to provided in the form of
a snippet of code that will be included along with the rest
of the implementation code. This way, the advertisement
code does need to be specially analysed, but is subject to
the same constraints as any other code provided by the de-
veloper. That is, it can only access entities specified in the
declarations.

4.1 Example specifications
The specifications as rendered in Racket, for our example
application, are shown in Fig. 5. The syntax closely matches
the DiaSuite declaration language previously introduced, and
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1 ;;; Specifications file, webcamspec.rkt
2 #lang s-exp "diaspec.rkt"
3 (define-context MakeAd String [when-required get IP])
4 (define-context ProcessPicture Picture
5 [when-provided Camera always_publish])
6 (define-context ComposeDisplay Picture
7 [when-provided ProcessPicture get MakeAd
8 maybe_publish])
9 (define-controller Display

10 [when-provided ComposeDisplay do Screen])

Figure 5: Complete declarations of the example ap-
plication, in Racket prototype.

reflects the graphical representation of the application in
Fig. 3.

4.2 Semantics of declarations
In this section, we explain the semantics of each term, from
the point of view of the application developer.

The keywords define-context and define-controller are
available for specifying the application, and upon evalua-
tion, will result in a macro implement, for binding the im-
plementations of components to their identifiers. For the
developer this is convenient, since they only need to pro-
vide implementation terms while the framework takes care
of inter-component communication as specified in the dec-
larations. From the point of view of the framework, it pro-
vides more control over the implementation: before execution
static checks can be done to determine if the terms provided
by the application developer conform to the specifications.

Declaring a component C adds a case to the implement macro.
Now, a developer can use the form (implement C f) to bind
a lambda function f as the implementation of C. How-
ever, not just any f may be provided, as the arguments
to implement are subject to a Racket function contract [5].
Unfortunately there is a name conflict between interaction
contracts for components (as in DiaSuite) and function con-
tracts in Racket, which are not the same thing. Function
contracts in Racket are flexible annotations on definitions
and module exports, which perform arbitrary tests at run-
time on the input and output of functions. For example, a
function can be annotated with a contract ensuring it maps
integers to integers. If the function receives or produces a
non-integer, the contract will trigger an error. The contract
on f is derived from the interaction contracts of Fig. 5 as
follows.

Activation conditions. These define the first argument to
the function f .

when-provided x. First argument gets type of x. For Com-
poseDisplay, the contract starts with (-> bitmap%? ...),2

since it is activated by ProcessPicture publishing a bitmap
image.

when-required. No argument added – the context was acti-

2In reality, bitmap%? is shorthand for (is-a?/c bitmap%), the
contract builder which checks that a value is an object of
type bitmap%.

1 ;;; Implementation file, webcamimpl.rkt
2 #lang s-exp "webcamspec.rkt"
3 (implement ComposeDisplay
4 (lambda (pic getAdTxt publish nopublish)
5 (let* ([canvas (make-bitmap pic ..)]
6 [adTxt (getAdTxt)])
7 (cond [(string=? "" adTxt) (nopublish)])
8 ; ... do magic, overlay adTxt on pic
9 (publish canvas))))

10 ... ; the remaining implement-terms

Figure 6: The implementation of the ComposeDisplay
context.

vated by pull.

Data sources and actions. These determine the (optional)
next argument to the developer’s function. This is a closure
providing proxied (that is, surrounded by a run-time guard)
access to the resource. This makes it convenient for a devel-
oper to query a resource, and allows the framework to enforce
permissions. Actions for controllers are provided using the
same mechanism.

get x. The contract of the closure becomes (-> t?) where t
is the output type of x. Note that there is no parameter, just
a return value. This means that a component requesting a
value from another cannot exfiltrate data this way. The full
contract so far is therefore (-> ... (-> t?) ...).

do x. The contract of the closure becomes (-> t? void?)
where t is the input type of x. The full contract is therefore
(-> ... (-> t? void?) void?). The final void? reflects that
controllers do not return values.

Publication requirements. These determine the last argu-
ments to the function contract of a context, corresponding to
the output type of the context. Publishing is handled using
continuations, to give us flexibility in the number of “return”
statements provided.

always_publish. One continuation function corresponding
to publication: the final contract becomes (-> ... (-> t?
void?) none/c), with t the expected return type.

maybe_publish. Two continuations to f , for publish and no-
publish. The first has the contract (-> t? void?) with t the
output type. The second continuation simply returns control
to the framework. If the developer chooses not to publish,
they use the second, no-publish continuation. The contract
is therefore (-> ... (-> t? void?) (-> void?) none/c).

The none/c contract accepts no values: this causes a run-
time error if the developer does not use one of the provided
continuations.

4.3 The implementation of the application
In Fig. 6, we show a developer’s possible implementation
of the context ComposeDisplay, which composes the modi-
fied image with the advertisement text. Essentially, a de-
veloper uses implement to bind their implementation to the
identifier introduced in the specifications, c.f. Fig. 5. Their

P. van der Walt Constraining application behaviour by generating languages

34



webcamimpl.rkt

#lang "webcamspec.rkt"
(implement C f)
(implement D g)
...

[webcamimpl.rkt]

(module C-module 
  (define C-impl f)
  (provide C-impl))
(module D-module
  (define D-impl g)
  (provide D-impl))
...

{evaluated}

Figure 7: Separation of components using modules.
The developer’s code (left), and its expanded form
(right). f in C cannot access D or g, because of lexical
scoping.

1 (module webcamimpl "webcamspec.rkt"
2 (module ComposeDisplay-module racket/gui
3 (define/contract ComposeDisplay-impl
4 (-> bitmap%? (-> string?) (-> bitmap%? void?)
5 (-> void?) none/c)
6 (lambda (pic getAdTxt publish nopublish)
7 (let* ([canvas (make-bitmap pic ..)]
8 [adTxt (getAdTxt)])
9 (cond [(string=? "" adTxt) (nopublish)])

10 ; .. do magic, overlay adTxt on pic
11 (publish canvas))))
12 (provide ComposeDisplay-impl))
13 ...)

Figure 8: The developer’s code snippet is trans-
formed into a submodule, as a result of evaluating
Fig. 6. The shaded code is simply the term the de-
veloper provided in Fig. 6.

implementation should be a lambda term which obeys the
contract resulting from the specification. For example, the
ComposeDisplay context has the contract (-> bitmap%? (->
string?) (-> bitmap%? void?) (-> void?) none/c). This
is because it is activated by ProcessPicture publishing an
image, it has get-access to the MakeAd component which re-
turns a string, and it may optionally publish an image on
account of its maybe_publish specification. The last two ar-
guments correspond to publishing (-> bitmap%? void?) and
not publishing (-> void?) continuations. The lambda func-
tion provided by the developer in Fig. 6 conforms to this
contract. We see that if the advertisement component re-
turns an empty string (line 7) the developer decides not to
publish, but otherwise the string is overlaid on the picture
and the developer publishes the composite image (line 9).

To prevent implementations of different components commu-
nicating outside of the condoned pathways, the implement
macro wraps each f in its own submodule. As illustrated
in Fig. 7, due to lexical scoping these do not have access to
surrounding terms, but merely export the implementation
for use in the top-level module. The result of this wrapping
is shown in Fig. 8. The code in grey is precisely the term
provided in Fig. 6, but it is now isolated from the implemen-
tations of the other components, preventing the developer
from accessing them, which would constitute a leak.

Note that alongside this snippet, the rest of the implemen-
tations of the declared components must be provided in one
module. This module must be implemented using the new
webcamspec.rkt language – the one arising from the speci-
fications we have written. The implementation module is

checked before run-time to contain exactly one (implement
C ...) term for each declared C. However, we focus on this
single context implementation to illustrate what transforma-
tions are done on the developer’s code.

When the developer has provided implementations for each of
the declared components, they can use the (run) convenience
function which is also exported by the module resulting from
the specifications. In the next section, we illustrate how these
macros function.

5. THE FRAMEWORK AND RUN-TIME
Now that we have seen the user interface (i.e., that which
the application developer deals with) for our framework, we
elucidate how the framework is implemented. This is broken
down into a number of main parts: (1) the operation of the
define-context and define-controller macros, (2) the ex-
pansion of the implement macro, and (3) how the run-time
support libraries tie the implementations together to provide
a coherent system. These mechanisms are explained globally
here, though certain implementation details are elided. No-
tably, getting all the needed identifiers we had introduced
to be available in the right transformer phases and module
scopes was complicated. We invite the reader to experiment
with the prototype code – the functionality for (1) and (2)
is in the diaspec.rkt module, the run-time library can be
found in the fwexec.rkt module.

5.1 What happens with the declarations?
Previously we saw that the first step for a developer is to
declare the components of their application using the define-
context and define-controller keywords. The specification
should be provided in a file which starts with a #lang s-exp
"diaspec.rkt" stanza, which causes the entire syntax tree of
the specification to be passed to the function exported from
diaspec.rkt as #%module-begin. This function does pattern
matching on the specifications, and passes all occurrences
of define- keywords to two handlers: (1) to compute and
store the associated contracts, and (2) to instantiate a struct
which will later store the implementation. The introduced
identifiers are also stored as a list in the syntax transformer
environment, c.f. the “Persistent effects” system presented
in [20]. This compile-time storage will later be used to check
implementation modules: have all components been imple-
mented, and are all the identifiers used in the implementation
declared in the specification?

To illustrate, Fig. 9 shows the expansion of the ComposeDis-
play declaration, from line 6 of Fig. 5. Simplifications have
been made, and module imports etc. have been omitted for
brevity. Some elements which are not specific to this decla-
ration term have been elided, namely a helper macro which
transforms (implement x ..) terms into (implement-x ..),
to correspond with the generated macro in line 17, and a
function which checks that all declared components have a
corresponding implement term. Finally, we also omit the
generated syntax for module-begin-inner from the specifica-
tions, since it is not particularly instructive. Note that it is
this definition which allows the implementation module to
use the specification module as its language, with the #lang
s-exp "webcamspec.rkt" directive.

Line 1 marks the start of the implementation module, called
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1 (module webcamspec "diaspec.rkt"
2 (define ComposeDisplay
3 (context ’ComposeDisplay
4 (interactioncontract ProcessPicture MakeAd
5 ’maybePublish) ’pic))
6 (provide ComposeDisplay)
7 (module+ contracts
8 (define ComposeDisplay-contract
9 (-> bitmap%? (-> string?)

10 (-> bitmap%? void?) (-> void?) none/c))
11 (provide ComposeDisplay-contract))
12 (define-struct/contract ComposeDisplay-struct
13 ([spec (or/c context? controller?)]
14 [implem (-> . . .)])) ; contract from line 9
15 (provide ComposeDisplay-struct
16 implement-ComposeDisplay)
17 (define-syntax (implement-ComposeDisplay stx)
18 (syntax-case stx (implement-ComposeDisplay)
19 [(_ f)
20 #’(begin
21 (module ComposeDisplay-submodule racket/gui
22 (require (submod "webcamspec.rkt" contracts))
23 (provide ComposeDisplay-impl)
24 (define/contract ComposeDisplay-impl
25 ComposeDisplay-contract f))
26 (require (submod "." ComposeDisplay-submodule))
27 (set-impl ’ComposeDisplay ; add to hashmap
28 (ComposeDisplay-struct ComposeDisplay
29 ComposeDisplay-impl)))]))
30

31 (provide run (rename-out
32 (module-begin-inner #%module-begin)))
33 (define-syntax (module-begin-inner stx2)
34 . . . )) ;; omitted

Figure 9: The simplified expansion of the specifi-
cations, concentrating on ComposeDisplay from Fig 5.
This code corresponds to the blue box in Fig. 4.

webcamspec. It still references "diaspec.rkt", which is the
language the specification was written in, c.f. Fig. 5. This
leaves us with the code resulting from the ComposeDisplay
context. In line 2, we see that a binding is introduced, using
the name the developer chose for the component. Its value is
a representation of the declaration, and is used to derive the
contract. In line 7, a submodule is appended with the Racket
contract the implementation is expected to adhere to. The
module+ keyword adds terms to a named submodule, creating
the submodule if necessary [10]. Line 12 defines a tailored
struct: it will hold the implementation of ComposeDisplay, in
the field tagged with the corresponding contract. It becomes
more interesting in line 17, where we see that the implement
keyword wraps the developer’s implementation in an indepen-
dent submodule, as explained previously. This submodule
will not have access to the surrounding scope, hence the need
for the contracts submodule, which we import in line 22. As
an aside, the #’ form is shorthand for syntax, which is sim-
ilar to quote, but produces a syntax object decorated with
lexical information and source-location information that was
attached to its argument at expansion time. Crucially, it also
substitutes f, the pattern variable bound by syntax-case in
line 19, with the pattern variable’s match result, in this
case the developer’s implementation term. Next, in line 26,
we have left the scope of the submodule. We require the
submodule, bringing ComposeDisplay-impl into scope, which
we add to a hash map (line 27). This hash map associates
names of components to their implementations. Note how
we are using the previously-defined struct, which forces the
implementation term to adhere to its contract.

As a side-effect, run is only available to the developer if they
manage to evaluate the implementation module without com-
pile errors, which implies that only valid specifications and
implementations allow the developer to execute the frame-
work. Since the implementation of the framework run-time
library is mundane, we do not discuss it here. To run this
code, racket-mode3 or DrRacket4 [9] can be used. Simply
load the webcamimpl.rkt file, and when it is loaded, evaluate
(run) in the REPL.

6. EVALUATION AND DISCUSSION
In the end, the application developer is presented with a
reasonably polished and coherent system for implementing an
application in two stages, which allows the platform to give
the user more insight into what mischief an application could
potentially get up to. This assumes that the specifications
are distributed with the application, and presented to the
user (optionally formatted like Fig. 3), and that the software
is compiled locally, or on a server that the user trusts. This
would ensure that the implementation does indeed conform
to the specifications.

We observe that going beyond Racket the functional pro-
gramming language, and using it as a language-building
platform, is where it really shines. We can mix, match and
create languages as best fits the niche, then glue modules to-
gether via the common run-time library provided by Racket.
This allows great flexibility and control, since with Racket’s

3Tested using MELPA version 20150330.1125 of Greg Hen-
dershott’s wonderful Racket mode for Emacs.
4Tested using DrRacket v6.1.1.
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#lang mechanism, we can precisely dictate the syntax and
semantics of our new languages. These two aspects there-
fore give Racket a lot of potential in the emerging domain
of declaration-driven frameworks.

6.1 Limitations
Unfortunately, there are issues that would need to be re-
solved before the proposed approach would be feasible in the
real world. One of the trickiest parts of ensuring no commu-
nication between components is that consequently we cannot
allow a developer to use any external modules in their code.
This is because if a developer could require any module,
they could in effect execute arbitrary code. It could also be
used as a communication channel, since modules have muta-
ble state. Therefore, in the prototype, we chose not to allow
any importing of modules, but for a realistic application this
would probably not be acceptable – we could imagine need-
ing to use a library for parsing JSON, or processing images,
or any number of benign tasks. Perhaps this would be a
decision for the platform provider to make: is a particular
library “safe” and could it be white-listed?

Another potential leak could be the eval form. Using it, a
developer could easily obfuscate any behaviour desired. In
fact, arbitrary imports and calls would be possible that way.
We therefore inspect a developer’s implementation for such
things as the use of eval, and reject them syntactically, but
since the binding might be hidden or renamed, this approach
is not necessarily robust. This highlights a need in Racket:
allowing components or functions to be pure would solve this
vulnerability. Perhaps Typed Racket [20] will offer a solution
in the future – purity analysis is on the project to-do list.5

It was also rather finicky to implement all the macros as
described above. Although conceptually simple, it turns out
to be pretty difficult in practice to get all the identifiers to be
available in the right syntax transformer phases. The macro
debugger in DrRacket is quite powerful, but unfortunately
still leaves a lot to be desired. For example, we failed to get
it to show the completely expanded implementation module
as it is presented in Fig. 9 – that code is largely worked
out by hand. Finer control over the macro unfolding would
therefore be beneficial.

The end result is not at all pessimistic, in spite of these short-
comings and difficulties. The prototype does demonstrate
the power of a language such as Racket, which gives a pro-
grammer the capability to easily modify syntax and provide
custom interpretations. This prototype also demonstrates
that it is possible to cleanly separate concerns and enforce a
certain structure on the final implementation.

6.2 Future work
There are a number of clear avenues for improving this work.
Firstly, we note that the chosen platform and model are
merely examples, it should be easy to build similar “active”
specification DSLs for other domains. This modular ap-
proach is also very flexible: we could choose to use any
Racket extension as the implementation language for the
developer to use, whether it be FRTime or Typed Racket

5The page“Typed Racket Plans”at https://github.com/plt
/racket/wiki/Typed-Racket-plans gives us hope.

or any other of the many libraries. We could even decide
to provide different languages for different modules – the
changes would be minor. If for example Typed Racket were
to support purity analysis in the future, this would be a
very attractive option, allowing us to be confident that no
unwanted communication between components is possible.
As stated, though, before this approach could be introduced
into the wild, a safe module importing mechanism should be
devised.

Another aspect to be dealt with is a very practical one: how
to integrate this approach into an application store, where
users could download applications for use on their local plat-
forms. As it stands, the developer would have to submit
their specification and implementation modules as source
code, and the application store would need to compile them
together, to ensure that the contracts and modules have not
been tampered with. The application store – which the user
would have to trust – could then distribute compiled ver-
sions of the application which would be compatible with the
run-time library locally available on users’ devices. Clearly,
this is not be desirable in all situations: most commercial
application developers submit compiled versions of their soft-
ware, which in our case could allow them to e.g., modify the
contracts, rendering the applications unsafe.

7. CONCLUSION
In conclusion, we have tried to address the problem of re-
source access control to protect privacy of end users’ sensi-
tive data. Taking inspiration from the DiaSuite approach,
we demonstrate an embedded DSL for specifying applica-
tions, which itself unfolds to a programming environment,
placing restrictions on the application developer. While the
prototype is not a perfect solution to the problem, it does
demonstrate a novel approach to resource control which is
very versatile, by nature of being entirely composed of em-
bedded DSLs. It also offers users more insight into what
sensitive resources are used for, compared to currently wide-
spread mobile platforms.

In the future, it would be interesting to explore the use of
other Racket libraries, particularly Typed Racket, in the
hope that we can achieve more reliable restrictions than
currently possible. This might be an avenue to pursue in
response to the vulnerability that the current prototype has,
arising from evaluation of dynamically constructed expres-
sions or allowing module importing.

Acknowledgements
Special thanks go to Ludovic Courtès, Camille Mañano,
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ABSTRACT
The Common Lisp sequence functions and some other func-
tions such as reduce accept a keyword parameter called
from-end. In the case of count and reduce, when the value
of that parameter is true, it is required that the elements are
processed in reverse order. Some implementations, in par-
ticular SBCL, CCL, and LispWorks, implement the reverse-
order traversal of a list by non-destructively reversing the
list and then traversing the reversed version instead. This
technique requires O(n) additional heap space (where n is
the length of the list), and increases the amount of work
required by the garbage collector.

In this paper, we present a technique that only uses addi-
tional stack space. To avoid stack overflow, our technique
traverses parts of the list multiple times when the list has
more elements than the available stack space can handle. We
show that our technique is fast, in particular for lists with a
large number of elements, which is also the case where it is
the most important to avoid allocating heap space.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Run-time environments

General Terms
Algorithms, Languages

Keywords
Common Lisp, List processing

1. INTRODUCTION
The Common Lisp sequence functions are defined to work
on lists as well as vectors. Furthermore, many of these se-
quence functions accept a keyword argument from-end that
alters the behavior, in that elements toward the end of the
sequence are favored over elements toward the beginning of
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sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
ELS ’15, April 20 - 21 2015, London, UK Copyright is held by the authors.

the sequence. Other functions, in particular reduce, also
accept this keyword argument.

Most sequence functions are not required to process the el-
ements from the end of the sequence even though the value
of the from-end keyword argument is true. For example, it
is allowed for find to compare elements from the beginning
of the sequence and return the last element that satisfies the
test1 even if the test has side effects. There is one exception,
however: The count function is required by the standard to
test the elements from the end of the sequence.2 In addi-
tion to the function count, the function reduce also requires
processing from the end of the list when from-end is true.

Processing list elements from the beginning to the end could,
however, have a significant additional cost associated with it
when processing from the end would require fewer executions
of the test function, and the additional cost increases with
the complexity of the test.

In this paper, we will concentrate on the functions that are
required by the standard to process list elements from the
end, and we will use only the function count in our test
cases.

There are of course some very simple techniques for pro-
cessing elements from the end of a list. One such technique
would be to start by reversing the list3 and processing the
elements from the beginning in the reversed list. This tech-
nique is used by several implementations, including SBCL,
CCL, and LispWorks. A major disadvantage of this tech-
nique is that it requires O(n) additional heap space, and
that it requires additional execution time by the memory
allocator and the garbage collector.

Another simple technique would be to traverse the list re-
cursively and testing the elements during the backtracking

1The phrase satisfy the test has a precise meaning in the
Common Lisp standard as shown in section 17.2 in that
document.
2Though if the test has no side effects and cannot fail, as
is the case of functions such as eq or eql, testing from the
beginning is arguably conforming behavior.
3By reversing the list we do not mean modifying the list
as nreverse would do, but creating a new list with the el-
ements in reverse order as reverse would do. The reason
for excluding modifications to the list is that doing so might
influence the semantics of other functions, including perhaps
the test function or the view of the list by other threads.
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phase of the recursion.4 Again, O(n) extra space is required,
even though this time it is stack space rather than heap
space, so that the memory allocator and the garbage col-
lector are not solicited, at least in most implementations.
Worse, many implementations have a fairly small call stack,
in particular in multi-threaded implementations where each
thread must have a dedicated stack. Aside from these disad-
vantages, this technique is however fairly efficient in terms of
execution time, because a simple function call is quite fast
on most modern processors. For that reason, we will use
recursion as the basis of the technique described in this pa-
per, but with fairly few recursive calls so that the additional
extra space is modest.

Throughout this paper, we assume that the lists to be pro-
cessed have a large number of elements, for several reasons:

• We do not want the list to be small enough to fit in the
cache, because cache performance depends on other
workload as well.

• For short lists, performance may be dominated by the
overhead of calling a few functions, or by loop pro-
logues and epilogues. By using long lists, we make
sure that performance is dominated by traversing the
list and computing the test.

• If the list is too short, it can be processed by a simple
recursive technique. In order to avoid this possibility,
we want the lists to have orders of magnitude more
elements than the size of the stack.

Furthermore, throughout this paper, we will assume that
the test to be performed on the elements of the list is the
function eq. By making this assumption, we expose the
worst case for our technique, because the execution time
will then be dominated by the overhead of traversing the
list, as opposed to by executing the test function.

It should be noted that the difficulty of processing list ele-
ments in reverse order is due to the way Common Lisp prac-
tically imposes the representations of such lists. Other rep-
resentations are, of course, possible. For instance, Hughes
[2] suggested a representation of lists as first-class functions.
Similarly, in his talk on parallelism in 2009,5 Guy Steele pro-
posed a representation of lists for parallel processing, based
on using the four operations item, split, list, and conc.
Clearly, such alternative representations could be devised
that facilitate processing elements in reverse order.

In this paper, we use the international convention [1] for
writing logarithms. Hence, we write lbn for the logarithm
in base 2. We use log only when the base is unimportant.
Given a real number n, the notation bnc represents the floor
of n and dne cieling. For example, b1.5c = 1 and d1.5e = 2.

4Despite considerable research, we have not been able to
find any original reference to this technique, and it seems
to trivial for standard text books to even discuss. We must
conclude that this technique must be so obvious that it was
probably discovered independenlty by several people.
5http://groups.csail.mit.edu/mac/users/gjs/
6.945/readings/MITApril2009Steele.pdf

2. PREVIOUS WORK
We will frequently refer to techniques used by SBCL be-
cause of its reputation as a high-performance implementa-
tion. We will however also use other high-performance im-
plementations for comparison when we have information on
the techniques used by those implementations, or when we
can reasonably guess these techniques from other evidence.

For its implementation of find, SBCL takes advantage of
the freedom given by the standard, by processing elements
from the beginning, and remembering the last element that
satisfies the test. For implementations where the technique
is unknown, it suffices to write a test function that counts
the number of times it is invoked and run it on a list where
only the last element satisfies the test.

For its implementation of count, SBCL uses the simple tech-
nique of reversing the list first and then processing the ele-
ments of the reversed list from the beginning.

As we already mentioned, we use recursion as the basis of our
technique, because it is quite fast. We devised the following
test to verify this hypothesis:

(defun recursive-count (x list)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(if (endp list)

0
(+ (recursive-count x (cdr list))

(if (eq (car list) x) 1 0))))

On SBCL executing this function on a list with 50000 ele-
ments where no element satisfies the test takes around 4ns
per element compared to around 1.5ns for an explicit loop
from the beginning of the list, and around twice as fast as
calling count. This result indicates that we should use recur-
sion whenever the size of the stack allows it, though there is
of course no portable way of testing how much stack space
is available. However, each implementation might have a
specific way, which would then be good enough.

3. OUR TECHNIQUE
3.1 Basic technique
To illustrate our technique, we first show a very simple ver-
sion of it in the form of the following code:6

(defun count-from-end (x list)
(labels ((aux (x list n)

(cond ((= n 0) 0)
((= n 1)
(if (eq x (car list)) 1 0))
(t (let* ((n/2 (ash n -1))

(half (nthcdr n/2 list)))
(+ (aux x half (- n n/2))

(aux x list n/2)))))))
(aux x list (length list))))))

This function starts by computing the length of the list and
then calling the auxiliary function with the original argu-
ments and the length. The auxiliary function calls nthcdr

6Throughout this paper, we rely on the left-to-right evalua-
tion order mandated by the Common Lisp standard.
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in order to get a reference to about half the list it was passed.
Then it makes two recursive calls, first with the second half
of the list and then with the first half of the list. The re-
cursion terminates when the list has a single element or no
element in it. When it has no element in it, clearly the count
is 0. When it has a single element in it, the element is com-
pared to the argument x and if they are the same, the value
1 is returned, otherwise 0 is returned.

The main feature of our technique is that it trades fewer
recursive calls for multiple traversals of the list. The maxi-
mum number of simultaneous active invocations of this sim-
ple function is around lbn, where n is the length of the list.
The maximum value of this number is quite modest. On
a 64-bit processor, it can never exceed 60 and it is signif-
icantly smaller in practice of course. The number of cdr

operations can be approximately expressed as n (1 + 1
2
lbn).

In Section 3.3 we analyze this result in greater depth.

The best case for this function is very efficient indeed. The
worst case is unacceptably slow. Even for a list of some
reasonable length such as a million elements, the execution
time is a factor 6 slower than for the best case.

The remainder of this section is dedicated to ways of im-
proving on the performance of the basic technique.

3.2 Using more stack space
By far the most important improvement to the basic tech-
nique is to take advantage of the available stack space to
decrease the number of multiple list traversals required by
the basic technique.

The following example illustrates this technique by using
the simple recursive traversal if there are fewer than 10000
elements in the list.7 If there are more elements, then it
divides the list in two, just like the basic technique shown
in Section 3.1.

(defun count-from-end-2 (x list)
(labels ((recursive (x list n)

(if (zerop n)
0
(+ (recursive x (cdr list) (1- n))

(if (eq x (car list)) 1 0))))
(aux (x list n)
(if (<= n 10000)

(recursive x list n)
(let* ((n/2 (ash n -1))

(half (nthcdr n/2 list)))
(+
(aux x half (- n n/2))
(aux x list n/2))))))

(aux x list (length list))))

With this improvement, the number of cdr operations re-

7The number 10000 was chosen to be a significant part of a
typical per-thread default stack while still leaving room for
stack space required by callers and callees of this function.
In a real production implementation, the number would be
chosen based on the remaining space left on the stack when
the function is called.

quired can now be expressed as approximately

n (1 +
1

2
lb

n

10000
)

which is significantly better than the corresponding value
for the basic technique.

However, there is no particular reason to divide the list into
2 equal-sized parts when there are too many elements for
the basic technique. Section 4 gives a more complete expla-
nation of the parameters involved and how they influence
the execution time of the resulting code.

3.3 Analyses
In this section we give approximate formulas for the perfor-
mance of our technique. The basic measure we are interested
in is the number of cdr operations that must be performed
as a function of the number of elements of the list. We will
denote the number of elements of the list by N and the num-
ber of cdr operations required by F (N). Since our technique
always starts by traversing the entire list in order to com-
pute N , we can always write F (N) as N + f(N), were f(N)
is the number of cdr operations required in the subsequent
step.

For the basic technique where the list is divided into two
equal-size sublists, we obtain the following recursive relation:

f(N) =

{
0 if N = 1⌊
N
2

⌋
+ f(

⌊
N
2

⌋
) + f(

⌈
N
2

⌉
) otherwise

In order to obtain an approximate solution to this relation,
we can solve for N being a power of 2, i.e., N = 2n. In that
case, for N > 1 we obtain:

f(N) =
N

2
+ 2f(

N

2
)

The details of the approximate resolution of this recursive
equation is given in the appendix. This solution yields

f(N) =
N

2
lb N + Nf(1) =

N

2
lb N

Including the traversal to compute the number of elements
of the list, we obtain:

F (N) =
N

2
lb N + N = N(1 +

1

2
lb N)

which is clearly O(N log N). More importantly, for a list
with around 16 million elements (which fills the default heap
of most implementations we have tested), we have N ≈ 224

which gives F (N) ≈ 13N which is probably unacceptably
slow.

Let us now consider what happens when we are able to han-
dle more than a single element with the basic recursive tech-
nique, as shown in Section 3.2. We denote the number of
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elements that the basic recursive technique can handle by
K, and again, in order to simplify the analysis, we assume
that both N and K are powers of 2, i.e., N = 2n K = 2k,
and also that N ≥ K. The recursion relation now looks as
follows:

f(N) =

{
N − 1 if N ≤ K
N
2

+ 2f(N
2

) otherwise

The resolution of this equation is given in the appendix (Part
B). It yields:

f(N) ≈ N(1 +
1

2
lb

N

K
)

With the best portable version of our technique and a typical
stack being able to handle K = 214 we are now looking at
a performance for N = 224 of F (N) ≈ 6N . Comparing this
result to the technique of reversing the list, it is fair to say
that the overhead of allocating and subsequently garbage-
collecting a cons cell can very well be comparable to 6 times
the time taken by the cdr operation. In other words, the
performance of our portable version is already comparable
to an implementation based on first creating a reversed copy
of the list and then traversing that reversed copy.

Finally, instead of using more stack space for the base case,
let us analyze what happens if we divide the original list into
more than two parts. For this analysis, let us assume that
we divide the list into M equal parts, and that M also is a
power of 2 so that M = 2m. We then obtain the following
relation:

f(N) =

{
0 if N = 1
N − N

M
+ Mf( N

M
) otherwise

The resolution of this equation is given in the appendix (Part
C). It yields:

F (N) ≈ N(1 +
lb N

lb M
)

While it may appear that we can get very good performance
when M is chosen to be large, in practice, using large values
of M introduces a different kind of overhead, namely large
stack frames, making the gain less than what the formula
suggests.

3.4 Implementation-specific solutions
So far, we have explored techniques that can mostly be im-
plemented in portable Common Lisp. In this section, we
explore a variation on our technique that requires access to
the control stack of the implementation.

Recall that at the lowest level of our technique, there is a
recursive function that is used for traversing the list when

the number of elements is small compared to the stack size.
At each invocation, this function does very little work.

With direct access to the control stack, we can convert the
recursive function to an iterative function that pushes the
elements of the list on the control stack, and then processes
them in reverse order. This technique has several advan-
tages:

• A single word is used for each element, whereas the re-
cursive function requires space for a return address, a
frame pointer, saved registers, etc. As a result, this
technique can be used for lists with more elements
than would be possible with the recursive technique,
thereby further decreasing the number of times a list
is traversed.

• There is no function-call overhead involved. The only
processing that is needed for an element is to store it
on the stack and then comparing it to the item.

We illustrate this technique in a notation similar to Common
Lisp:

(defun low-level-reverse-count (item list length)
(loop for rest = list then (cdr rest)

repeat length
do (push-on-stack (car rest)))

(loop repeat length
count (eq item (pop-from-stack))))

We implemented this technique in SBCL. In order not to
have to recompile SBCL with our additional function, we
used the implementation-specific foreign-function interface
and wrote the function using the language C. Rather than
pushing and popping the control stack, we used the built-in
C function alloca to allocate a one-dimensional C array on
the control stack to hold the list elements.

In SBCL, the default stack size is 2MBytes, or around 250k
words on a 64-bit processor. We tested our technique using
100000 words on the stack. The result is that for a list
with 10 million elements, our technique processes the list in
reverse order as fast as an ordinary loop from the beginning
of the list.

This surprising result can be explained by a few factors:

• Presumably in order to speed up the functions car

and cdr, SBCL uses the same tag for cons cells and
for the symbol nil. As a result, in order to traverse
a list, SBCL must make two tests for each element,
namely one to check whether the putative list is some-
thing other than a list altogether, and another to check
whether it is a cons cell. When our technique traverses
a list for which the number of elements is known, there
is no need to make any additional tests, simply because
when the length of the list is positive, the first element
must be a cons cell.
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• The SBCL compiler can not determine that the return
value of count must always be a fixnum.8 When the
function is implemented in C, this problem disappears.

If we put this technique in the perspective of the analyses in
Section 3.3, we can also see that the number of cdr opera-
tions remains quite modest, even for lists with a very large
number of elements.

There are several variations on this implementation-specific
technique. Some implementations might allocate a vector
or a list declared to be dynamic-extent on the stack, thus
giving essentially the same advantage as the version we im-
plemented in C. However, such a technique would still be
implementation specific, given that it is permitted for the
compiler to ignore dynamic-extent declarations. In the case
of SBCL, using such a declaration, we were able to obtain
performance almost as good as our C version. However,
as it turns out, SBCL only allocates a vector on the stack
under certain circumstances thereby making this technique
impossible to apply in general.

4. BENCHMARKS
We implemented ten different versions of reverse-count, a
function that counts elements of a list from the end. The
difference between these versions can be expressed in terms
of two different numeric parameters, namely:

1. the minimum number of elements for which we apply
the logarithmic method, consisting of dividing the list
into two equal-size halves, and

2. into how many chunks do we cut the list when the
number of elements is smaller than the first parameter,
but larger than the number of elements that can be
handled by the simple recursive technique.

In all of our versions, when the number of elements is less
than 10000, we process the elements using the purely recur-
sive technique where the element is processed in the back-
tracking phase.

For the purpose of this article, we have retained the one with
the best experimental behavior (v7) and compared it to two
more traditional versions (v0 and v1).

These three versions can be characterized as follows:

0. Version v0 uses the native count function called with
the from-end keyword argument set to t,

;; standard version

(defun reverse-count-0 (x list)

(count x list :from-end t :test #’eq))

8On a byte-addressed processor where n word-aligned bytes
are needed to represent a cons cell, the number of elements
in a list can be at most N/n where N is the maximum
number of possible addresses. In a system that uses at most
lb n tag bits for a fixnum, the value that count returns must
be a fixnum. While some systems might use 8 tag bits, SBCL
on a 64-bit platform uses a single tag bit for fixnums. As a
consequence, count must then return a fixnum.

1. Version v1 is the naive version consisting in revers-
ing the list before counting; this version uses the heap
space and no stack space.

(defun reverse-count-1 (x list)

(declare (optimize

(speed 3) (debug 0) (safety 0)

(compilation-speed 0)))

(loop for e in (reverse list)

count (eq x e)))

7. Version v7 divides the list in 2 parts if it has more
than one hundred million elements. Otherwise, if it
has more than 10000 elements, it divides it into chunks
that have 10000 elements each. Finally, if it has no
more than 10000 elements, then it uses the standard
recursive method.

We think this method is faster than the others, at least
for lengths no more than one hundred million elements,
because then it is guaranteed to traverse the list at
most 3 times + 1 time for computing the length. It
could be improved for lengths greater than one hun-
dred million by using a better division than 2 in this
case, but we have not attempted that improvement.
The code is given below.

(defun count-from-end-with-length-7 (x list length)

(declare (optimize (speed 3) (safety 0) (debug 0)

(compilation-speed 0)))

(declare (type fixnum length))

(labels (;; AUX1 is the recursive traversal

;; by CDR.

(aux1 (x list length)

(declare (type fixnum length))

(if (zerop length)

0

(+ (aux1 x (cdr list) (1- length))

(if (eq x (car list))

1

0))))

;; AUX2 recursive traversal

;; by (NTHCDR 10000 ...).

;; used when the length of the list is

;; less than 100000000.

(aux2 (x list length)

(declare (type fixnum length))

(if (<= length 10000)

(aux1 x list length)

(+ (aux2 x

(nthcdr 10000 list)

(- length 10000))

(aux1 x list 10000))))

;; AUX3 recursive traversal

;; by half the size of the list.

;; used for lists that have more than

;; 100000000 elements.

(aux3 (x list length)

(declare (type fixnum length))

(if (< length 100000000)

(aux2 x list length)

(let* ((n (ash length -1))

(middle (nthcdr n list)))
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(+ (aux3 x middle (- length n))

(aux3 x list n))))))

(aux3 x list length)))

(defun reverse-count-7 (x list)

(count-from-end-with-length-7

x list (length list)))

Thanks to the help of the Lisp community, we could test
the behavior of these three versions on several implemen-
tations and architectures. In Figure 1, we summarize the
results of tests that worked for a list of size up to 107. In
many cases, the details of the implementation are unknown
or not shown. However, the purpose of the Figure 1 is not
to compare performance between different systems, but to
compare the performance of different versions of count on
each system. For that reason, the exact details of the sys-
tem are unimportant; we are only interested in whether v7

compares favorably to the other versions on most systems.
Furthermore, for some implementations, we had to change
the optimize settings and some other parameters in order
to get our code to work.9 For that reason, it is not possible
to compare the performance on different implementations in
Figure 1, even when the processor and the clock frequency
are the same.

To get a better idea of the difference in performance be-
tween the three versions of the count function, we selected
the table entry corresponding to the non-commercial im-
plementation that resulted in the greatest advantage of our
v7 compared to the other versions (Clozure CL 1.10-dev),
and we rendered the performance in the form of a graph.
The result is shown in Figure 2.

As Figure 2 shows, the performance of v7 is significantly
better than that of the other versions. Furthermore, the
fact that the curve for v7 is smoother than the curves for
other versions indicates that the performance of v7 is more
predictable. We attribute this behavior to the garbage col-
lector, which occasionally has to run when heap allocation
is required. Since v7 does not require any heap allocation,
the garbage collector is not solicited.

5. CONCLUSIONS AND FUTURE WORK
We have presented a general technique for processing el-
ements of a list from the last element to the first. The
implementation-specific version of our technique is compa-
rable in speed to traversing the list from the first to the last
element for all reasonably-sized lists. For very long lists, the
performance of our technique degrades modestly and grace-
fully.

Even the implementation-independent version of our tech-
nique performs well enough that it is preferable to the ex-

9In particular, LispWorks has a much smaller default stack
than for instance SBCL (16k words, compared to 250k
words) resulting in stack overflow of our benchmark with
default parameters. For that reason, we ran the LispWorks
benchmark with a smaller stack and with a higher value of
safety. The combination of these factors is the likely ex-
planation to the absence of performance improvement for
LispWorks. However, we are told that on 32-bit LispWorks
our technique gives a factor 10 improvement.

isting technique of reversing the list that is used in some
implementations.

We have presented our technique in the context of the func-
tion count because, together with reduce, processing the el-
ements from the end is required by the HyperSpec, whereas,
for other functions accepting the keyword argument
from-end, it is explicitly allowed to process the elements
from the beginning to the end.

However, our technique is potentially even more interest-
ing to use with functions such as find and position for
which it is not required to process the elements from the
end to the beginning. The reason is that when elements are
processed form the beginning to the end in these functions,
all elements must be tested. When the combination of the
test and the key functions has non-trivial computational
cost, a significant amount of work may be wasted. However,
when elements are processed in reverse order, a result can
be returned when the test is satisfied the first time, thereby
avoiding such wasted work.

Since the performance of our technique is not significantly
worse than processing from the beginning to the end, it is
very likely that our technique will be faster in almost all
cases. Only when the last element of the list to satisfy the
test is close to the beginning of the list will our technique
apply the test as many times as when processing is done
from the beginning to the end. We conjecture that, on the
average, our technique will be faster whenever the cost of
applying the test is at least that of a function call. If so, our
technique should be used in all cases except for those using
a very inexpensive test functions such as eq, and when the
implementation then uses a special version of the sequence
function where this test is inlined, so as to avoid a function
call.

Further research is required in order to verify our conjec-
ture. In order to determine the result with some accuracy,
additional parameters have to be taken into account. In par-
ticular, the position of the last element in the list to satisfy
the test must be taken into account, as well as the cost of
calling the test function. As usual, benchmarks will have to
be performed on a variety of implementations and proces-
sors, further complicating the verification of our conjecture.
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System characteristics Time in seconds
Implementation Version Processor Frequency v0 v1 v7

LispWorks 6.1.1 Intel Core ? 0.20 0.18 0.14
Clozure CL 1.10 Intel Xeon 3.33GHz 1.93 1.79 0.15
Clozure CL 1.10-dev AMD FX ? 1.77 1.63 0.15

SBCL 1.2.8 Intel Xeon 3.33GHz 0.51 0.27 0.22
ABCL 1.3.1 Intel Xeon 3.33GHz 1.13 0.22 0.34
CLISP 2.49 X86 64 ? 1.15 1.14 0.87
ECL 13.5.1 ? ? 0.69 0.41 0.36

SBCL 1.2.7 Intel Core 2.53GHz 0.36 0.38 0.25

Figure 1: Performances of the three versions on several systems with a list of 107 elements
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Figure 2: Comparison of the behavior of the three versions on a single system

APPENDIX
Part A
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =
N

2
+ 2f(

N

2
)

Developing the second term of this equation one step, we
obtain:

f(N) =
N

2
+ 2f(

N

2
) =

=
N

2
+ 2(

N

4
+ 2f(

N

4
)) =

=
N

2
+

N

2
+ 4f(

N

4
) =

= 2
N

2
+ 4f(

N

4
)

Developing the second term of this equation one more step,
we obtain:

f(N) = 2
N

2
+ 4f(

N

4
) =

= 2
N

2
+ 4(

N

8
+ 2f(

N

8
)) =

= 2
N

2
+

N

2
+ 8f(

N

8
) =

= 3
N

2
+ 8f(

N

8
)

After developing the second term p− 1 times, we obtain:

f(N) = p
N

2
+ 2pf(

N

2p
)

When p = n = lb N , this equation turns into:

f(N) =
N

2
lb N + Nf(1) =

N

2
lb N
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Part B
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =

{
N − 1 if N ≤ K
N
2

+ 2f(N
2

) otherwise

Since the second equation is the same as for the basic tech-
nique, developing the second equation p− 1 times, we again
obtain:

f(N) = p
N

2
+ 2pf(

2n

2p
)

When p = n− k = lb N
K

we get:

f(N) =
N

2
lb

N

K
+

N

K
f(K)

Substituting K−1 for f(K) and factoring out N , we obtain:

f(N) = N(
1

2
lb

N

K
+

K − 1

K
)

Or:

f(N) = N(1− 1

K
+

1

2
lb

N

K
)

Clearly, the term 1
K

can be ignored, giving:

f(N) ≈ N(1 +
1

2
lb

N

K
)

Part C
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =

{
0 if N = 1
N − N

M
+ Mf( N

M
) otherwise

Solving as before, after developing the last term once, we
obtain:

f(N) = N − N

M
+ Mf(

N

M
) =

= N − N

M
+ M(

N

M
− N

M2
+ Mf(

N

M2
)) =

= N − N

M
+ N − N

M
+ M2f(

N

M2
) =

= 2(N − N

M
) + M2f(

N

M2
)

Developing the last term a second time, we obtain:

f(N) = 2(N − N

M
) + M2f(

N

M2
) =

= 2(N − N

M
) + M2(

N

M2
− N

M3
+ Mf(

N

M3
)) =

= 2(N − N

M
) + N − N

M
+ M3f(

N

M3
) =

= 3(N − N

M
) + M3f(

N

M3
)

After developing the last term p− 1 times, we obtain:

f(N) = p(N − N

M
) + Mpf(

N

Mp
) =

Setting p = n
m

= lb N
lb M

so that Mp = N , we get:

f(N) =
lb N

lb M
(N − N

M
) + Nf(1) =

lb N

lb M
(N − N

M
)

Factoring out N , we obtain:

f(N) = N(1− 1

M
)
lb N

lb M

and thus:

F (N) = N(1 + (1− 1

M
)
lb N

lb M
)

and again:

F (N) ≈ N(1 +
lb N

lb M
)
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ABSTRACT
Algorithms are written in pseudocode. However the imple-
mentation of an algorithm in a conventional, imperative pro-
gramming language can often be scattered over hundreds of
lines of code thus obscuring its essence. This can lead to dif-
ficulties in understanding or verifying the code. Adapting
or varying the original algorithm can be laborious.

We present a case study showing the use of Common Lisp
macros to provide an embedded, domain-specific language
for graph algorithms. This allows these algorithms to be
presented in Lisp in a form directly comparable to their pseu-
docode, allowing rapid prototyping at the algorithm level.

As a proof of concept, we implement Brandes’ algorithm
for computing the betweenness centrality of a graph and see
how our implementation compares favourably with state-
of-the-art implementations in imperative programming lan-
guages, not only in terms of clarity and verisimilitude to the
pseudocode, but also execution speed.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; E.1 [Data Struc-
tures]: Graphs and networks; D.3.3 [Language Constructs
and Features]: Patterns; D.2.3 [Coding Tools and Tech-
niques]: Control Structures

General Terms
Algorithms, Design, Languages

Keywords
Graph algorithms, Lisp macros, Pseudocode, Verification

1. INTRODUCTION
Much effort is invested in ensuring that programs faith-

fully implement the algorithms on which they are based.
Test-driven development [7], Software Verification [13] and
a variety of other methodologies have been developed in ef-
forts to achieve this goal.

But what could be better than a computer program that
not only resembles the algorithm upon which it is based so
closely as to inspire confidence in its implementation, but
also runs with an efficiency competitive with more verbose
implementations in lower-level programming languages?

We present a proof of concept of a Common Lisp library
for programming in this manner and argue that it fulfils the
above desiderata as well as having further advantages for
pedagogy and experimentation in the field of algorithms.

Pseudograph is a Common Lisp library which provides
this functionality permitting graph algorithms to be written
in a manner similar to their pseudocode.

2. PSEUDOCODE
The lingua franca for presenting algorithms is pseudocode.

Pseudocode is a jargon intended to be understood by prac-
tising professional programmers and computer scientists but
lacking any formal semantics or standard. Students of data
structures and algorithms learn pseudocode from their text-
books [10]. Computer scientists use it to publish descriptions
of novel algorithms [12].

Pseudocode describes algorithms in a way which is pro-
gramming-language independent. Machine-level implemen-
tation details are omitted, as are any consideration of data
abstraction and error handling.

Although pseudocode is intended to be read by humans,
not by machines, some attempts have been made to de-
sign programming languages which have more of a natural-
language nature [16, 1]. Indeed, the syntax of the Python
programming language [26] has been praised for its clarity
and the natural way in which it can express algorithms [21].

3. LISP APPROACHES
In his book Practical Common Lisp [27, pp. 250–252],

Peter Seibel presents an approach to using Common Lisp’s
tagbody and go special operators to “translate” algorithms
from pseudocode into working Lisp code which is subse-
quently manually refactored into more natural Lisp code.

As an example he translates Donald Knuth’s Algorithm S
from the Art of Computer Programming [19, p. 142].

First the algorithm is translated into Lisp code which al-
though “not the prettiest” is a verifiably “faithful translation
of Knuth’s algorithm”. Subsequently the code is manually
refactored, checking at each step, until it no longer resem-
bles Knuth’s recipe but still gives confidence that it indeed
implements it.

This approach goes against the grain. Lisp is a pro-
grammable programming language that we should be able
to bend to our will, shaping the language from the bottom
up until it can express the problems we are tackling at the
level at which they are expressed [17].

Lisp is the ultimate extensible programming language, de-
riving this power from the Lisp macro. Lisp macros allow us
to create new binding constructs and control constructs, al-
ter evaluation order, define data languages and improve code
readability. Lisp macro programming is the extension of
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Figure 1: An undirected graph

the Lisp language by developing domain-specific languages
(DSL) [15] embedded within Lisp itself.

Here we put macros to work to define such a DSL for ex-
pressing graph algorithms which are written in pseudocode.
Graph algorithms can then be written in the DSL in their
natural form once and for all, not requiring any further
rewriting or refactoring.

4. GRAPH ALGORITHMS
Graph theory is a field of mathematics dealing with rela-

tions between objects [8]. An undirected graph is a set of
nodes (or vertices) together with a set of edges (unordered
pairs) on these nodes. Such a graph is usually depicted as
in Figure 1; nodes as numbered circles and edges as links
joining them.

Many other kinds of graphs can be considered such as di-
rected graphs and graphs with weights or other attributes
associated with their nodes and/or edges but for the pur-
poses of this article we will limit ourselves to undirected
graphs of a simple nature as in Figure 1.

In recent years graph theory has found application as the
underlying model for the study of Complex Networks [23],
such as social, computer and biological networks. With the
recent increase in size of available networks and of the asso-
ciated data sets, much research has been focusing on algo-
rithms for computing properties of graphs.

As a case study, we consider one such graph property. The
betweenness centrality of a node in a graph is a measure of
the network load that passes through that node. It is the
accumulated total number of messages passing through that
node when every pair of nodes sends and receives a single
message along each shortest path connecting the pair. This
notion was first introduced in graph theory by Anthonisse
in 1971 [4] who named it the “rush” of the graph. In the
world of sociology, betweenness centrality was introduced
by Linton Freeman in 1977 [14] and has become an impor-
tant measure of the relative influence of members of social
networks.

A straightforward algorithm based on all-pairs shortest
paths can calculate the betweenness centrality in time O(n3)
where n is the number of nodes in the graph. Several in-
cremental improvements were proposed but a breakthrough
came in 2001 in the form of Brandes’ algorithm [9], which
runs in O(nm), where m is the number of edges in the graph.
Brandes’ algorithm consists of two phases: the computation
of the lengths and numbers of shortest paths between all
pairs; and then, the summing of all pair dependencies. Bran-
des’ innovation was to recognise that the dependencies could
be summed cumulatively by maintaining several attributes
at each node of the graph.

5. EXECUTABLE PSEUDOCODE
In order to express Brandes and similar algorithms, we

employ Common Lisp macros to build a DSL for graph al-
gorithms. This DSL is pseudograph.

Central to pseudograph are two macros, vlet and elet

which allow attributes on vertices and edges, respectively,
to be declared, initialised, assigned and updated. Together
with further macros for iteration over nodes and edges, they
form the core of pseudograph.

In pseudograph the n vertices of a graph are represented
by the consecutive integers [0, n). Its undirected edges are
represented by unordered pairs of vertices. Pseudograph
uses straightforward implementations of queues and stacks.

Brandes’ algorithm as originally presented in his paper [9,
p. 10] is shown in Figure 2. We have highlighted some sec-
tions in colour. These highlighted sections correspond to the
similarly coloured sections in the pseudograph implemen-
tation of the algorithm in Figure 3. An explication of the
usage in the various sections of the implementation follows.

The code sections which are not highlighted are merely
Common Lisp code containing calls to underlying stack and
queue libraries.

The sections highlighted in red make use of pseudograph
macros for iteration over the nodes of a graph (do-nodes)
and over the elements of stacks (do-stack) and queues (do-
queue). Note how do-stack (respectively do-queue) pops an
element from the given stack (queue) and binds a variable
to that element for the body of the macro. This corresponds
directly to Brandes’ pseudocode for

while S not empty do
pop w ← S;
...

end while

The three sections highlighted in blue are the header parts
of uses of pseudograph’s vlet macro (“vertex let”). vlet

takes care of the initialisation of and assignment to the ver-
tex attributes of a graph. Like Common Lisp’s let special
form, vlet binds values to the specified variables in the lex-
ical scope of its body, vlet differing in that it binds a vector
of (copies of) the given value to each variable. The size of
these vectors is given by the first argument to vlet. For
example, the vlet in the second blue block makes three vec-
tors of size n, each element of the first vector containing (a
copy of) an empty queue, each element of the second the
fixnum 0 and each element of the third the value of the vari-
able unfound. These values are then bound in parallel to
the variables pred, sigma and dist, respectively.

As well as binding initial values to its variables, vlet de-
fines a number of macros which have bindings local to the
body of the vlet. These local macros permit operations
assigning values to elements of the locally defined vectors
such as updating, incrementing, enqueueing, etc.. Uses of
these local macros are highlighted in yellow in the figures.
Examples of the behaviour of these local macros appearing
in Brandes’ algorithm are as follows.

• The form (dist v) accesses the vth element of the
vector dist

• The form (sigma start = 1) assigns the value 1 to
the startth element of the vector sigma

• The form (sigma w += (1+ (dist v))) increments the
wth element of the sigma vector by one plus the vth
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Figure 2: Brandes’ algorithm in pseudocode (from [9, p. 10], colouring added).
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Figure 3: Brandes’ algorithm in Common Lisp “executable pseudocode”
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element of the dist vector.

• The form (pred w enqueue v) adds the value v to the
queue in the wth element of pred. vlet allows the
use of other operations similar to enqueue in its place
permitting access and update of other data structures
where required.

• Finally, the form (bc) returns the entire vector bc

5.1 Advantages
The pseudograph DSL provides a number of advantages

over traditional implementations.
The local macros in the vlet body permit the expression

of the operations in the pseudocode of Brandes’ algorithm in
a manner sufficiently similar to the original pseudocode to
allow immediate, at-a-glance comparison. This gives confi-
dence that the program is indeed a faithful implementation
of the algorithm in pseudocode form.

The resulting code is succinct, a mere 30 lines. In fact
the resulting code is almost line-for-line equivalent to the
original pseudocode. As a comparison, the implementation
of Brandes’ algorithm in the Boost Graph Library [28] runs
to over 600 lines of C++. Checking that this code faithfully
implements the pseudocode is not a trivial task and certainly
not as immediate as checking the pseudograph code.

Since the pseudograph code is executable, experimenta-
tion with graph algorithms can be carried out at the pseu-
docode level. A computer scientist wishing to investigate
variants of a graph algorithm can immediately edit, execute
and experiment without having to carry out intricate cod-
ing in a large code base. In this way, Lisp’s advantage as
a vehicle for rapid prototyping [25], with incremental de-
velopment, program introspection and read-eval-print loop
allowing short development cycles can be brought right to
the algorithm level.

The pseudograph DSL provides a concise API surface
area. The correct coding of a variety of graph algorithms on
this DSL gives confidence in the correctness in the underly-
ing Lisp code.
Pseudograph can also be used for educational purposes.

Krishnamurthi points out how “Lisp programmers have long
used macros to extend their language” before continuing to
lament the “paucity of effective pedagogic examples of macro
use” [20]. Since pseudograph has a common vocabulary
with text books on graph algorithms, students can readily
implement and experiment with them at the pseudocode
level leading to better understanding.

And finally, the process can be reversed and pseudocode
in LATEX format can be generated and pretty printed from
the pseudograph implementation of an algorithm allowing
the results of such experimentation to be included in doc-
umentation and reports with the guarantee that no errors
have been introduced during transcription.

One could consider making the syntax available within
vlet even more like the corresponding pseudocode by per-
mitting expressions such as (sigma[s] = 1) for σ[s] = 1.
We choose not to do this for the same reasons that we pre-
fer the syntax of Jonathan Amsterdam’s iterate package
[3] over the syntax of Common Lisp’s loop facility [29].

Where Lisp’s loop facility provides a complete“Pascalish”
sublanguage for carrying out iteration, the iterate package
provides a more naturally Lisp-like syntax which is more eas-
ily embedded, extended and customised. In our view loop

could be seen as iterate taken too far but we acknowledge
this may be a matter of taste. We feel that our executable
pseudocode is similar enough to the original pseudocode for
at-a-glance comparison, while still enjoying all the advan-
tages of Lisp syntax as enumerated by Amsterdam in [2].

5.2 Performance
With all of the advantages listed above, one might be

forgiven for thinking that the resulting pseudograph code
would be unable to compete for speed with carefully coded
implementations in lower level imperative programming lan-
guages. However nothing is further from the truth.

Note, for example, that the initialisation of variables in the
vlet macro also permits any keyword arguments accepted
by make-array [29] such as type declarations, for example:

(vlet n ((cb 0.0 :element-type ’float)

(dist unfound :element-type ’fixnum)

...

These particular declarations allow a Lisp compiler to intro-
duce optimizations for the vertex attributes.

We performed initial comparisons of our pseudograph
code for Brandes with implementations in NetworkX, igraph
and Boost Graph Library.

NetworkX [22] is a Python language software package for
the creation, manipulation, and study of the structure, dy-
namics, and functions of complex networks. It advertises
itself as “high-productivity software” and it lives up to that
billing by allowing the programmer to quickly set up and
experiment with graphs of various sorts. However although
Python shines in ease of use, it sacrifices performance. Com-
parison showed our implementation of Brandes in pseudo-
graph to be between 2 and 3 times faster that the corre-
sponding NetworkX implementation.

igraph [18, 11] is a collection of network analysis tools with
the emphasis on efficiency, portability and ease of use. It has
front ends for Python, C and R. Although the code appears
fast, the igraph implementation of Brandes algorithm fails to
run on graphs with 64 or more nodes due to data structure
limitations. This precluded a meaningful comparison with
pseudograph.

To get an indication of the performance of our pseudo-
graph implementation of Brandes’ algorithm we turned to
the Boost Graph Library [28]. Boost is a collection of C++

libraries that are open source and peer reviewed. Their li-
braries are widely regarded as being efficient and of high
quality. In many areas Boost libraries are de facto stan-
dards and we take them to be the state-of-the-art yardstick
against which we could get a first indication of the speed of
our code.

We generated graphs of various sizes following the Newman-
Watts-Strogatz model [24]. This is a model of so-called
small-world graphs, a type of particular interest since it
frequently occurs in social networks and other complex net-
works. The graphs are generated by connecting the nodes in
a ring, then connecting each node to a number of its nearest
neighbours, then rewiring each edge randomly with a fixed
probability.

The comparison was carried out on a standard Linux 3.19.2
distribution on a 2.9 GHz Intel i7 processor. Pseudograph
ran on Steel Bank Common Lisp version 1.2.8 with compiler
settings (optimize (speed 3) (safety 0)). Boost version
1.57 was compiled on gcc 4.9.2 with the -O3 compiler set-
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Figure 4: Comparison of pseudograph with Boost on small-world graphs.

ting. In both cases, these are the most aggressive compiler
settings. The times shown are net run times after the graphs
have been loaded into the native data structures.

The results are shown in the graph in Figure 4. On the
x-axis is the product (nm) of the number of nodes and the
number of edges of the graph. On the y-axis, the CPU
time in seconds. Since Brandes is O(mn), we expect the
worst-case times on the graph to be roughly linear. Each
data point is a run of either the pseudograph or Boost im-
plementation of the betweenness centrality algorithm on an
instance of a small-world graph generated according to the
Newman-Watts-Strogatz model for n ∈ {10, 20, . . . , 300},
k ∈ {3, 4, . . . , n − 1}, p ∈ {0.1, 0.2, . . . , 0.9}. We make two
observations on the basis of these results.

As can be seen, pseudograph is competitive with Boost,
in some cases slower, in some faster. Linear regression on the
two sets of data points (indicated by the two straight lines
in Figure 4) shows the average pseudograph run time to be
increasing more slowly than that of Boost with a crossover
point at about mn = 1.6e7. This suggests that for larger
graphs, pseudograph will continue to outperform Boost on
average.

Further, it is noticeable that there is a greater variance in
the pseudograph data points than in those of Boost. This
might suggest that the performance of pseudograph is less
predictable than that of Boost.1

In order to find an explanation, we look more closely at

1One might think that garbage collection is respobsible.
However no garbage collection was triggered during the runs.

runs for a fixed number of nodes. Holding n fixed at 600 and
varying only the parameter k, generates graphs with a fixed
number of nodes but a varying number of edges. The run
times of neither implementation was sensitive to the value
of p so it was held fixed at 0.3. These results, shown in
Figure 5, are typical of those for graphs of other sizes.

As we can see, the Boost and pseudograph implemen-
tations have differing performance characteristics for graphs
which are sparse (having relatively few edges) and dense
(having relatively many edges). While the run time of Boost
increases uniformly with the density of edges, pseudograph’s
run time peaks before decreasing for very dense graphs. We
have no explanation for this behaviour but speculate that
it may be a property of bitsets a compact representation
pseudograph uses for subsets of integers in a range [0, n)
[5]. This bears further investigation. In any case, it appears
that this particular performance characteristic leads to the
larger variation of pseudograph run times in Figure 4.

Given the many other advantages of pseudograph stated
above, we regard the result that it can compete with the
Boost C++ library as very encouraging, especially since lit-
tle attempt has been made at optimising the pseudograph
code as yet. Currently, standard, straightforward represen-
tations are used for stacks and queues. The structure of
undirected graphs is represented as adjacency lists of sets
of nodes, which are represented as fixnums. These sets are
represented as bitsets.

We emphasise however that this initial test, while encour-
aging, is by no means conclusive. We plan full tests and
comparisons on other kinds of graphs and larger graphs.
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Figure 5: Comparison of pseudograph with Boost on small-world graphs, n = 600, p = 0.3

6. CONCLUSIONS AND FUTURE WORK
We have shown a proof of concept for our approach to

programming graph algorithms by presenting an implemen-
tation of Brandes’ algorithm which is not only comparable
at a glance to the pseudocode of the original algorithm, but
also competitive in speed with state-of-the-art code for the
algorithm written in optimised C++.

To use the words of Krishnamurthi [20], we feel that this
approach represents ‘...a rare “sweet-spot” in the readability-
performance trade-off.’ Despite the long-standing popular
belief to the contrary, Lisp has been shown to be compet-
itive with lower-level programming languages for scientific
numerical computing [31, 30]. Our results now show that
this competitive performance need not be limited to numer-
ical computing.

The range of graph algorithms which we can express with
the machinery of pseudograph as it stands is surprisingly
large. As we have seen, Brandes’ algorithm requires main-
taining several vertex attributes. Other graph algorithms
such as Floyd-Warshall requires the maintenance of edge at-
tributes. This can be achieved using pseudograph’s elet

macro (edge let). Directed graphs can also be represented.
Moreover, such is the flexibility of the approach that novel
pseudocode constructs can readily be added to pseudo-
graph.

We are continuing to implement other graph algorithms
using this approach and experimenting with optimizations
of the code under the hood. The bottom-up nature of the
pseudograph code with clean interfaces makes it easy to
vary such representations independently of each other.

We plan to release our work under an open-source license
in the form of the Pseudograph library which will also be
packaged and submitted to Quicklisp [6].
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ABSTRACT
A  wiki  is  a  web  application  which  allows  collaborative
modification, extension, or deletion of its content and structure. In
a typical wiki, text is written using a simplified and rather limited
markup syntax intended for an average user. My project was to
build a wiki  equiped with a  true programming language which
could  be  used  in  a  collaborative  mode  by  an  author,  a  web
designer  and a  coder.  The result  is  a  small  Lisp-like language,
λ-talk, built on a regexp based evaluator and embedded in a tiny
wiki, α-wiki, working as a light overlay on any modern browser.

KEYWORDS
Lisp, Scheme, Javascript, Regular Expressions, CMS, Wiki.

INTRODUCTION
Web browsers  parse  data  such  as  HTML code,  CSS rules  and
Javascript  code  stored  on  the  server  side  and  display  rich
multimedia dynamic pages on the client side. Scripting languages
such as PHP and Javascript allow strong interactions with these
data leading to web applications. Hundreds of engines have been
built, managing files on the server side and interfaces on the client
side,  such  as  MediaWiki,  Wordpress,  Drupal.  The  de  facto
standard  Markdown  syntax  is  widely  used  to  simplify  text
markup, but is not intended to be used for an easy styling and
even less  for  scripting.  Works have been done to build unified
syntaxes, for instance: Scribe by Erick Gallesio & Manuel Serrano
[1], Scribble by Matthew Flatt & Eli Barzilay [2], LAML by Kurt
Nørmark [3].

With the plain benefit of existing Scheme implementations, these
projects  make  a  strong  junction  between  markup,  styling  and
programming syntaxes. But these tools are definitively devoted to
coders  and  not  to  web  designers  and  even  less  to  beginners.
α-wiki  and λ-talk  have been conceived to  give  them a  simple
common environment where could be done a collective work.

The name of λ-talk,  comes from the Church's lambda calculus
which inspired the father of Lisp, John McCarthy, and the Apple's
Hypercard/Hypertalk  which  inspired  the  father  of  the  wiki
concept,  Ward Cunningham.  The  following  document  gives  an
introduction to the λ-talk environment, to the evaluation process of
words, to the creation of globals, functions and structures, to the
use of events, scripts and libraries and to some other things.

1......ENVIRONMENT
λ-talk  is  a  small  programming  language  embedded  in  a  wiki,
called α-wiki,  a  small  interactive development tool working on
top of any modern web browser running Javascript, independent
of any external library and easy to install,  (about 100kb),  on a
standard web hosting running PHP. λ-talk  can be used at  three
levels:  1)  with  a  handful  of  commands  any  author  can  easily
create  minimally  structured  documents  made  of  words  and
pictures, 2) any web designer can find a full set of HTML tags and
CSS rules to enrich theses documents, 3) and any coder  can fit
specific  needs  and  make  pages  compositing  more  easy  by
extending  the  language's  built-in  functionalities.  Everybody
sharing a clear, unique and coherent notation allowing to produce
rich and dynamical documents in a true collaborative work.

Here is  a snapshot of the α-wiki  interface with on the left  the
editor frame and on the right the display frame, both in a real-time
interaction:

As it can be seen, there are no "B, I, U" fancy buttons for bold,
italic or underline styles and other tools alike. Every enrichments
are entered as special words, as commands to do something on
other words. Even at the lowest level the user writes code and is
ready to  deal  with  higher  levels.  We are  now going  to  briefly
introduce the code structure and its evaluation process, then the
dictionary and its extension process.

1)  Structure:  In  λ-talk  a  word  is  defined  as  any  sequence  of
characters except spaces and curly braces. The source code is a
flattened tree (actually a forest ...), made of nested forms {first
rest} - called s-expressions - where first is a word belonging
to a dictionary and rest  is any sequence of words recursively
containing, or not, any {first rest} forms.

2)  Evaluation:  Following  a  simple  hack  shared  by  Steven
Levithan [4], the interpreter evaluates the input code in realtime,
in this single loop:
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while (code != (code = 
     code.replace( pattern , evaluate ))) ;
using a pattern built on this single Regular Expression:

/\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g 
This pattern finds terminal forms {first rest} where first
is a primitive (or a user defined) function belonging to a unique
dictionary,  and  rest  is  any  sequence  of  words  without  any
{first rest}  form.  For  each  {first rest}  terminal
form, first is applyed to rest and the result replaces this form
in the code. The loop exits when the initial code doesn't contain
anymore  {first rest}  form.  The  output  is  the  resulting
HTML code sent to the web browser for evaluation and display.
For instance the following code entered in the frame editor:

{b Hello {i brave {u new}} World: 
   √(3{sup 2} +4{sup 2}) = 
   {sqrt {+ {* 3 3} {* 4 4}}}.}
is progressively evaluated in 5 steps, from the leaves to the root:

1: {b Hello {i brave {u new}} World: 
   √(3{sup 2}+4{sup 2}) = 
   {sqrt {+ {* 3 3} {* 4 4}}.}
2: {b Hello {i brave < u>new< /u> World}: 
   √(32 +42) = {sqrt {+ 9 16}}.}
3: {b Hello < i> brave < u>new< /u>< /i> 
World: √(32 +42) = {sqrt 25}.}
4: {b Hello < i> brave < u>new< /u>< /i> 
World:  √(32 +42) = 5.}
5: < b> Hello < i> brave < u>new< /u>< /i> 
World: √(32 +42) = 5.< /b>
The browser's engine evaluates the HTML code and displays:

Hello brave new World: √(32 +42) = 5.

3)  Dictionary:  The  dictionary  contains  a  basic  set  of  words
associated  to  the  Javascript  math  operators  and  functions,
[+,-,*,/,..., sqrt,...],  to  a  wide set  of  HTML tags,
[div,  span,  ...,  input,  script,  style,
canvas, SVG,...]  and  to  some other  ones  specific  to  the
wiki. For instance:

{sqrt {+ 1 1}} -> 1.4142135623730951
{span {@ style="color:red"}I'm red} -> I'am red
{b R{sub µν} - ½.R.g{sub µν} = T{sub µν}} 
-> Rµν - ½.R.gµν = Tµν

4) Extension: the dictionary can be extended beyond the set of
primitive  functions.  User  defined  functions  and  structured  data
can be dynamically built using a minimal set of 3 special forms
[if, lambda, def] processed before the evaluation loop. For
instance we can define two new words:

{def shadow span 
 {@ style="color:black; padding:0 5px;
           box-shadow:0 0 8px black;"}} 
-> shadow 

{def cute_add {lambda {:a :b} 
  Yes mom, :a+:b is equal to {+ :a :b}!}} 
-> cute_add

The  parser  adds  the  associated  user  defined  functions  to  the
dictionary  and  replaces  in  the  input  code  the  previous  {def
...} expressions by the two words, shadow and cute_add.
It's now possible to call these functions like this:

{{shadow}I am on a shadowed box} 
-> I am on a shadowed box
{cute_add 1 1} -> Yes mom, 1+1 is equal to 2!

We will  now analyze more precisely words,  globals,  functions,
structures, events, scripts, libraries, ...

2......WORDS
Words are the fundamental objects of λ-talk. Sequences of words
are  99%  of  the  content  in  a  wiki  context,  they  are  quickly
overflown by the parser, ignored and displayed as such.

1)  Words don't need to be quoted like strings  used in other
languages:

Hello brave new World -> Hello brave new World
{del {i {u Hello {sup World}}}}-> Hello World

λ-talk has a wide set of primitives for handling in a standard and
familiar way HTML tags and all CSS rules, for instance:

{span 
 {@ style="color:white; background:black;"} 
   White on Black} -> White on Black
{a {@ href="http://www.pixar.com/"}PIXAR}
-> PIXAR
{img 
 {@ id="amelie"
    src="data/amelie_sepia.jpg" height="50"
    title="Amélie Poulain"
    style="box-shadow:0 0 8px black;
           border:1px solid white;
           transform:rotate(-5deg);"

}} -> 

λ-talk has a small set of primitives acting on sequences of words
and chars:

{first Hello Brave World} -> Hello
{rest Hello Brave World} -> Brave World
{length Hello Brave World} -> 3
{nth 1 Hello Brave World} -> Brave
{chars Hello Brave World} -> 17
{charAt 6 Hello Brave World} -> B

2) Numbers are words evaluable as integer or real numbers by the
primitives built on browser's Javascript operators and functions.
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-12345 -> -12345
{+ 1.e3 1} -> 1001
{* 2 1e-3} -> 0.002
{- 100} -> -100
{/ 100} -> 0.01
{PI} -> 3.141592653589793

Note that the last exemple shows that PI can be considered as a
pointer to a value. Errors are quietly handled:

{/ 1 0} -> Infinity 
{+ 1 hello} -> NaN // It's Not a Number
{foo bar} -> (foo bar) // simply unevaluated

3) Two words, true and false, are evaluated as booleans by
the primitives built on the browser's Javascript boolean operators:

{not true} -> false
{and true false} -> false
{or true false} -> true
{<  11 12} -> true
{= 1 1.00} -> true // test equality between real numbers

Booleans are used to build control structures via the if  special
form: {if bool_term then t_term else f_term}:

{if {<  1 2} then {+ 1 2} else {/ 1 0}} -> 3

if  is  not  a  primitive function.  In the pre-processing phase the
{if ...}  special  form returns {_if_ bool_term then
't_term  else  'f_term},  where  _if_  is  a  primitive
function and the t_term  and f_term  are  quoted,  ie.  hidden
from  evaluation.  In  the  evaluation  loop  the  _if_  function
evaluates the bool_term, then the corresponding true term and
returns the result.

3......GLOBALS
Globals are user defined words added to the dictionary via the
def special form: {def name body} where name is a word
and body is a sequence of words and s-expressions.

1) Special words or numbers can be given a name:

{def myPI 3.1416} -> myPI
myPI -> myPI
{myPI} -> 3.1416

Note that myPI  is a word and thus unevaluated; {myPI}  is  a
function call returning the associated value 3.1416. This reminds
spreadsheets  in  which  "PI"  is  a  word  displayed  as  it  is  and
"=PI()" is a function call returning 3.141592653589793.

Evaluable expressions can be given a name:

{def PHI {/ {+ 1 {sqrt 5}} 2}} -> PHI
{PHI} -> 1.618033988749895

Sequences of words can be given a name:

{def sentence 12 34 56 Hello World} -> sentence
{sentence} -> 12 34 56 Hello World

Thanks to primitives first, rest, nth, named  sequences
of words can be used as aggregate data structures (arrays, vectors,
polynoms, complex numbers, ...). More in "5. STRUCTURES".

2) Using HTML attributes and CSS rules standard syntax inside a
unique {@ ...} form was a design choice in order to avoid any
pollution in the dictionary and to be easy to use by a web designer.
This is how a global sequences of CSS rules can be defined and
used:

{def georgia span {@ style="font:italic 
1.5em georgia; color:green;"}} -> georgia

{{georgia}I'm Georgia!} -> I'm Georgia!
3) defs can be nested, but inner definitions are not locales (more
in section "4. FUNCTIONS"). A good old  practice is to prefix
inner  defined  names  with  outer  defined  names,  for  instance
following this pattern: outer_name.inner_name:

{def six
 {def six.two {+ 1 1}}
 {def six.three {+ {six.two} 1}}
 {* {six.two} {six.three}}
} -> six
{six} -> 6

λ-talk has no set! special form, globals are immutable.

4......FUNCTIONS
Beyond the set of primitive functions belonging to the dictionary,
new functions can be defined by the user.

1)  Functions  are  created  with  the  lambda  special  form:
{lambda {:args} body}, where :args  is a sequence of
words and body is any sequence of words and s-expressions. For
instance:

{lambda {:a :b} 
  :a+:b equals {+ :a :b}} -> lambda_1

The number postfixing the given name lambda_ is generated by
the parser for each new function and is unknown by the user. Such
an anonymous function should be immediately used like this:

{{lambda {:a :b} 
  :a+:b equals {+ :a :b}} 3 4} -> 3+4 equals 7

In  this  example  the  lambda  replaces  in  the  string  ":a+:b
equals {+ :a :b}" every occurrences of :a and :b by the
two  values  3  and  4  according  to  the  pattern  built  with  the
arguments  listed  in  {:a  :b},  here  the  regular  expressions
/:a/g and /:b/g. And the resulting expression, {+ 3 4}, will
be returned in the evaluation loop.  Here is  an overview of the
replacement process inside the Javascript engine:

":a+:b equals {+ :a :b}"
      .replace( /:a/g, 3 ) -> 3+:b equals {+ 3 :b}
             .replace( /:b/g, 4 ) -> 3+4 equals {+ 3 4}

Note  that,  in  order  to  avoid  conflicts,  arguments  should  be
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prefixed  by  a  distinctive  char,  e.g.  a  colon.  In  this  example  it
obviously prevents the word equals to be replaced by equ3ls.

2)  An anonymous function can be given a name and so added
permanently to the dictionary:

{def add {lambda {:a :b} 
         :a+:b equals {+ :a :b}}} -> add

It's now possible to call this function more than once:

{add 3 4} -> 3+4 equals 7 
{add 1 1} -> 1+1 equals 2

3)  It  is not an error to call a function with a number of values
greater than the function's arity. Extra values are just ignored. It is
not an error to call a function called with a number of values less
then  its  arity.  Given  values  are  stored  and  a  new  function  is
returned waiting for the missings:

{add 3} -> lambda_45    // stores 3 and returns a function 
{{add 3} 4} -> 3+4 equals 7 // waiting for a second value

Here  is  an  overview  of  the  replacement  process  inside  the
Javascript engine. The first call stores the first value in the body:

":a+:b equals {+ :a :b}"
      .replace( /:a/g, 3 ) -> 3+:b equals {+ 3 :b}

Then a new function is created, waiting for the second value:

{lambda {:b} 3+:b equals '{+ 3 :b}} ->lambda_4

Thus,  functions  can  return  functions  and  can  be  passed  as
arguments  to  other  functions.  This  powerful  built-in  capability
will be used to create specialized functions and structured data,
see section "5. STRUCTURES". For instance, it is easy to write
the derivatives of any function, e.g. the function log:

{def D {lambda {:f :x}
  {/ {- {:f {+ :x 0.01}} 
        {:f {- :x 0.01}} } 0.02}}}   -> D
{{D log} 1} -> 1.0000333353334772   // ≠ 1
{{D {D log}} 1} -> -1.0002000533493538  // ≠ -1
{{D {D {D log}}} 1} -> 2.0012007805464416  // ≠ 2

4)  We have seen that defs can be nested but internal defs  are
global constants. Local variables will be created via lambdas. For
instance, the area of any triangle (a,b,c) is given by:

triangle_area = √( s*(s-a)*(s-b)*(s-c) )   where s=(a+b+c)/2

This function can be written like this:

{def triangle {lambda {:a :b :c}
 {{lambda {:a :b :c :s}
 {sqrt {* :s {- :s :a} {- :s :b} {- :s :c}}}
 } :a :b :c {/ {+ :a :b :c} 2}}}} -> triangle
{triangle 3 4 5} -> 6

The inner lambda's :s acts as a local variable avoiding computing
4 times the value {/ {+ :a :b :c} 2}. Note that the inner
function has no access to the arguments of the outer function [:a

:b :c] and must duplicate them. λ-talk doesn't know closures!

5) Functions can be recursive. Writing them tail recursive opens
the way to effective iterative processes:

{def ifac {lambda {:acc :n}
  {if {<  :n 1} then :acc 
   else {ifac {* :acc :n} {- :n 1}}}}} -> ifac
{ifac 1 21} -> 51090942171709440000
{ifac 1 22} -> 1.1240007277776077e+21

Recursive functions can be written without any defs:

{{lambda {:f :n :r} {:f :f :n :r}} 
 {lambda {:f :r :n}
  {if {<  :n 1} then :r 
   else {:f :f {* :n :r} {- :n 1}} 
 }} 1 10} -> 3628800

6) In order to enlight the easy intermixing of words, numbers and
lambdas,  this  is  the  quadratic  equation  f(a,b,c)  =
a.x2+b.x+c = 0, defined with 3 inner nested lambdas. In the
upper  inner  lambda,  three  arguments  [:d,:e,:f]  get  the
discriminant b2-4ac, -b and 2a. In the deeper inner lambdas,
two arguments [:g,:h] get intermediate evaluations:

{def quadratic_equation
 {lambda {:a :b :c} 
  {{lambda {:d :e :f} discriminant is :d, so
   {_if_ {> :d 0} 
    then {{lambda {:g :h} 2 real roots:
    {br} x1 = {+ :g :h} {br} x2 = {- :g :h}
          } {/ :e :f} {/ {sqrt :d} :f}}
    else {_if_ {= :d 0} 
    then {{lambda {:g :h} 1 root: x = :g
          } {/ :e :f} :d}
    else {{lambda {:g :h} 2 complex roots:
    {br} x1 = [:g,:h] {br} x2 = [:g,-:h]
          } {/ :e :f} {/ {sqrt {- :d}} :f}} 
  }}} {- {* :b :b} {* 4 :a :c}} 
      {- :b} {* 2 :a}} }} -> quadratic_equation

Then we call it and get these well formated result:

{quadratic_equation 1 -1 -1} 
-> discriminant is 5, so 2 real roots: 
 x1 = 1.618033988749895 
 x2 = -0.6180339887498949
{quadratic_equation 1 -2 1} 
-> discriminant is 0, so 1 root: x = 1
{quadratic_equation 1 1 1} 
-> discriminant is -3, so 2 complex roots: 
 x1 = [-0.5,0.8660254037844386] 
 x2 = [-0.5,-0.8660254037844386]

7) λ-talk has 3 useful primitive: serie, map and reduce:

{def times {lambda {:a :b} {* :a :b}}} 
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-> times                                          // artity is 2
{map {times 3} {serie 1 9}}   
-> 3 6 9 12 15 18 21 24 27
{reduce times {serie 1 50}} 
-> 3.0414093201713376e+64       // times is made variadic

The  {do something from start to end step}
control structure doesn't exist in λ-talk. Let's define one:

{def do {lambda {:f from :a to :b step :d}
  {map :f {serie :a :b :d}}}} -> do
{do {lambda {:x} {* :x :x}} 
                    from 1 to 15 step 1} 
-> 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225

Note that arguments [from, to, step] are nothing but silent
slots without any occurrences in the function's body.

And a last exemple using map to compute the Euler's number:

{def euler
 {def euler.fac {lambda {:n} 
   {if {<  :n 1} then 1 
    else {* :n {euler.fac {- :n 1}}}}}}
 {lambda {:n} {+ {map {lambda {:n} 
{/ 1 {euler.fac :n}}} {serie 0 :n}}}}} 
-> euler
{euler 17} -> 2.7182818284590455   // ≠ E

8) λ-talk can be used to display mathematical expressions. This is
the Dirac's equation displayed as an image:

We can forget (so does Chrome) the mathML tags, then build with
λ-talk three user functions, [quotient, sigma, paren]:

{def quotient {lambda {:s :num :denom}
{table 
 {@ style="width::spx; display:inline-
block; vertical-align:middle; 
text-align:center;"}
 {tr {td {@ style="border:0 solid; 
  border-bottom:1px solid;"}:num}}
 {tr {td {@ style="border:0 solid;"}:denom}}
}}} -> quotient 
{def sigma {lambda {:s :one :two}
{table 
 {@ style="width::spx; display:inline-
block; 
  vertical-align:middle; 
text-align:center;"}
 {tr {td {@ style="border:0 solid;"}:two}}
 {tr {td {@ style="border:0 solid; 
  font-size:2em; line-height:0.7em;"}Σ}}
 {tr {td {@ style="border:0 solid;"}:one}}
}}} -> sigma

{def paren {lambda {:s :p} 
 {span 
  {@ style="font:normal :sem arial; 
            vertical-align:-0.15em;"}:p}}} 
-> paren

and write:

i{del h}{quotient 40 ∂ψ ∂t}(x,t) = 
{paren 3 (}mc{sup 2}α{sub 0} - i{del h}c 
{sigma 30 j=1 3} α{sub j}
{quotient 40 ∂ ∂x{sub j}}{paren 3 )} ψ(x,t)
to display as rich text, in any browser, the Dirac's equation:

ih∂ψ
∂t

(x,t) = (mc2α0 - ihc 
3

Σ
j=1

 αj
∂
∂xj

) ψ(x,t)

5......STRUCTURES
User structured data can be created in several manners. The well
known cons, car and cdr functions can be used to build useful
structures  like  pairs  and  lists.  Thanks  to  the  fact  that
lambdas  are  first  class  citizens,  cons,  car  and  cdr  were
implemented  in  a  previous  version  of  λ-talk  as  user  defined
functions,  following  "Structure  and  Interpretation  of  Computer
Programs", section "2.1.3 What Is Meant by Data?" [5]:

{def cons {lambda {:a :b :c} 
          {if :c then :a else :b}}}
{def car {lambda {:c} {:c true} }} 
{def cdr {lambda {:c} {:c false} }}
For  obvious  reasons  of  efficiency,  these  functions  have  been
integrated as primitives in the dictionary.

1) A pair is made of 2 elements which are either a word or a
pair.  With  two  additional  utility  functions,  cons?  and
cons_disp we can build, test and display pairs:

{car {cons aa bb}} -> aa
{cdr {cons aa bb}} -> bb
{cons? {cons aa bb}} -> true
{cons? hello} -> false
{cons_disp {cons aa bb}} -> (aa bb)
{cons_disp {cons {cons aa bb} 
                 {cons cc dd}}} 
-> ((aa bb) (cc dd))
{cons_disp 
 {cons {cons {cons a a} {cons b b}} 
       {cons {cons c c} {cons d d}}}} 
-> (((a a) (b b)) ((c c) (d d)))
{cons_disp {cons {cons {cons a a} b} 
           {cons c {cons d d}}}} 
-> (((a a) b) (c (d d)))

Just a first and small step towards tree structures ...
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2) A list is a pair whose car is any word and whose cdr is
a pair or a terminal word arbitrarily chosen, say nil:

{cons 12 {cons 34 {cons 56 {cons 78 nil}}}}
On this definition a first set of user functions can be built to create
and  display  lists  and  play  with  them:  [list_new,
list_disp,  first,  butfirst,  last,  butlast,
length, member?, duplicate, reverse , apply,
insert, sort, ...]. For instance insert & sort:

{def insert {lambda {:x :comp :l}
  {if {equal? :l nil}
   then {cons :x :l}
   else {if {:comp :x {car :l}}
   then {cons :x :l}
   else {cons {car :l} 
        {insert :x :comp {cdr :l}}}}}}}
-> insert
{def sort {lambda {:comp :l}
  {if {equal? :l nil}
   then nil
   else {insert {car :l} 
        :comp {sort :comp {cdr :l}}}}}}
-> sort
LIST: {list_disp {LIST}} -> 
(99 61 22 64 71 75 7 93 32 63 61 67 93 38 88 26 2 90 nil)
{list_disp {sort <  {LIST}}} -> 
(2 7 22 26 32 38 61 61 63 64 67 71 75 88 90 93 93 99 nil)
{list_disp {sort > {LIST}}} -> 
(99 93 93 90 88 75 71 67 64 63 61 61 38 32 26 22 7 2 nil)

3)  Arrays  can  be  built  as  first  class  structures  using  lambdas.
Example with 2DVectors:

{def V.new 
 {lambda {:x :y :f} {if :f then :x else 
:y}}} -> V.new
{def V.x {lambda {:v} {:v true}}} -> V.x
{def V.y {lambda {:v} {:v false}}} -> V.y
{def V.dsp {lambda {:v} [{V.x :v},{V.y 
:v}]}} -> V.dsp
{def V.add
 {lambda {:v1 :v2} 
  {V.new {+ {V.x :v1} {V.x :v2}} 
         {+ {V.y :v1} {V.y :v2}}}}} -> V.add

Note that the add function returns a new vector, it's an internal
operation allowing vector concatenations. Examples:

{V.dsp {V.new 123 456}} -> [123,456]
{V.x {V.new 123 456}} -> 123
{V.y {V.new 123 456}} -> 456
{V.dsp {V.add {V.new 123 456} 
              {V.new 123 456}}} -> [246,912]
{V.dsp {reduce V.add 
  {map {lambda {:z} {V.new 123 456}} 
    {serie 1 100}}}} // reduce make V.add variadic

-> [12300,45600]

4) With the first, rest, nth, length primitives seen in
section "2. WORDS", global defined sequence of words behave
like  arrays.  It  is  a  valuable  alternative  to  define  operations  on
complex numbers, rational numbers, polynomials, 2D/3DVectors.
This is a simple example with 2DVectors:

{def Vx {lambda {:v} {nth 0 {:v}}}} -> Vx
{def Vy {lambda {:v} {nth 1 {:v}}}} -> Vy
{def Vdot {lambda {:v1 :v2}
  {+ {* {Vx :v1} {Vx :v2}} 
     {* {Vy :v1} {Vy :v2}}}}} -> Vdot
{def Vnorm {lambda {:v} 
  {sqrt {Vdot :v :v}}}} -> Vnorm
{def Vslope {lambda {:v}
  {{lambda {:a} {/ {* :a 180} {PI}}} 
   {acos {/ {Vx :v} {Vnorm :v}}}}° }} -> Vslope

which can be simply used like this:

{def U 1.00 1.00} = [{U}] -> U = [1.00 1.00]
{Vnorm U}  -> 1.4142135623730951
{Vslope U} -> 45.00000000000001°

5)  This is  a last  example showing how to draw points along a
Bézier cubic curve [6], and its control points out of any canvas:

With 2 user defined functions calling HTML tags and CSS rules:

{def bez_cubic
 {def bc.interp 
  {lambda {:a0 :a1 :a2 :a3 :t :u}
   {round {+ {* :a0 :u :u :u 1} 
             {* :a1 :u :u :t 3} 
             {* :a2 :u :t :t 3}
             {* :a3 :t :t :t 1}}}}}
 {lambda {:p0 :p1 :p2 :p3 :t}
 {bc.interp {Vx :p0} {Vx :p1} 
           {Vx :p2} {Vx :p3} :t {- 1 :t}} 
 {bc.interp {Vy :p0} {Vy :p1} 
           {Vy :p2} {Vy :p3} :t {- 1 :t}} }}
-> bez_cubic
{def dot
 {lambda {:x :y :r :bord :back} 
  {span {@ style="
   position:absolute;
   left:{- :x {/ :r 2}}px; 
   top:{- :y {/ :r 2}}px;
   width::rpx; height::rpx; 
   border-radius::rpx; 
   border:1px solid :bord; 
   background::back;"}}}} 
-> dot

Used in the following code displaying 2 Bézier cubic curves:

{dot {{def P0 70 90}} 20 black yellow}
{dot {{def P1 250 20}} 20 black yellow} 
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{dot {{def P2 70 320}} 20 black yellow} 
{dot {{def P3 250 350}} 20 black yellow}  
{map {lambda {:t} {dot 
 {bez_cubic P0 P1 P3 P2 :t} 5 black cyan}} 
  {serie -0.3 1.3 0.02}}
{map {lambda {:t} {dot 
 {bez_cubic P0 P1 P2 P3 :t} 5 black red}} 
  {serie -0.3 1.1 0.02}}

6......EVENTS, SCRIPTS & LIBRARIES
λ-talk provides functions to allow interaction with the user, with
the underlying language, Javascript, and to build libraries of user
defined functions and aggregate data.

1) This is a first very basic script interacting with the user via the
{input ...} primitive associated to a keyUp event:

{input 
 {@ id="smart_hello" type = "text" 
    placeholder = "Please, enter your name" 
     onkeyup = 
  "getId('yourName').innerHTML = 'Hello ' 
     + getId('smart_hello').value + ' !'"}} 
{h1 {@ id="yourName"}} 

Entering your name in this text field

John & Ward

will display:

Hello John & Ward !

2)  This  is  another  one  using  the  {script ...}  primitive
containing some Javascript functions:

{div {@ id="output" style="..."}time: }
{input {@ type="submit" value="start" 
onclick="start()"}}
{input {@ type="submit" value="stop" 
onclick="stop()"}}
{script 
 function start() {
  document.chrono = window.setInterval( 
   function() { 
    getId('output').innerHTML = 'time: ' 
       + LAMBDATALK.eval_sexprs('{date}');  
    }, 1000 );}
 function stop() {
  window.clearInterval( document.chrono ) }
}
which displays a digital stopwatch:

time: 2015 04 03 11 46 50
start  stop

3) More complex scripts can be externalized (in a plugin folder)

and called in the same way from any wiki page. The plugin folder
contains  a  few basic  tools  for  painting,  2D/3D/fractal  editing,
spreadsheet,  and  even  a  tiny  but  true  Lisp  console,  α-lisp,
following the Peter Norvig's Lisp interpreter standard structure [7]
and completely integrated in λ-talk via the {lisp ...} form:

{lisp (* 1 2 3 4 5 6 7 8 9 10)} -> 3628800

3)  λ-talk  works  in  a  wiki-context  (α-wiki)  built  as  a  stack  of
pages sharing the same style. A kind of HyperCard/HyperTalk
on  the  web.  Each  page  is  isolated  from  the  others,  but  data
belonging to a page can be included in any other page via the
require  primitive.  For  instance,  we  assume  that  the  page
amelie_lib contains some informations (written as functions)
about the wiki's mascot, Amélie Poulain :

{def name Amélie Poulain}
{def exact_born 1973 9 3 18 28 32}, age,...
These definitions can be called and used in this current page:

{require amelie_lib}
{picture} {name} is born the {nth 1 
{exact_born}}{sup th} month 
of {nth 0 {exact_born}}, 
and so, today, is {age exact_born date}.

Amélie Poulain is born the
9th month of 1973, and so,
today, is 41 years old and 7
months.

8......MISCELLANEOUS

1) discarding multiline comments and displaying code:

ooo multiline comments are discarded ooo 
oo {+ 1 2} {+ 3 4} oo -> {+ 1 2} {+ 3 4}

2) quoting forms:

{q {+ 1 2} {+ 3 4}} -> {+ 1 2} {+ 3 4}
‘{+ 1 2} ‘{+ 3 4} -> {+ 1 2} {+ 3 4}

Note  that  {q  ...}  is  a  fourth  special  form  beside  the
fundamental  set  [if,  lambda,  def]  used  for  quoting
sequences  of  s-expressions,  coming  with  the  quasi-equivalent
'{...}  simplified  notation.  Useful  to  display  unevaluated
s-expressions in a wiki page, they are not mandatory as language
special forms beside [if,lambda,def] and could be forgotten.

3) Remembering that λ-talk must be easy to use by beginners, for
some basic  HTML tags  defining  blocks  (h1..h6, p, ul,
ol)  which  terminate  with  a  carriage  return  (¬),  the  general
{first rest} form can be replaced by an alternate one easier
to write and read:
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{h1 Title level 1} can be replaced by: 
_h1 Title level 1    ¬
and alike for h2, h3, h4, h5, h6

{p some paragraph...} can be replaced by:
_p some paragraph... ¬ 

{ul 
 {li unordered list item} 
 {li unordered list item}
} can be replaced by: 
_ul unordered list item    ¬  
_ul unordered list item    ¬
and alike for ordered lists ol
For links the general {first rest} form can be replaced by
alternate  forms  easier  to  write  and  read,  following  the  wiki
standards:

{a {@ href="website_URL"}website_name}
   can be replaced by [[website_name|website_URL]]
{a {@ href="?view=page_name"}page_name}
   can be replaced by [[page_name]]

4)  About  evaluation speed:  in  α-wiki,  each  page  is  edited  and
evaluated  in  real-time,  the  entire  evaluation  process  is  started
again at each keyboard entry. Tested on a MacBook Pro (2GHz
InterCore i7) in the FireFox browser, on a small set of pages, the
evaluation's time related to the number of characters before and
after  the  evaluation  and  to  the  number  of  braces  nested
s-expressions {}, is detailed in the table below:

page chars before -> after {} time ms

1 start 16 532 -> 26 453 343 6
3 tutorial 15 931 -> 17 518 221 5
4 reference 18 557 -> 23 352 381 8
2 jules verne 1 230 422 -> 1 230 300 90 48
5 fibo_1 149 -> 52 12 10 000
6 fibo_2 200 -> 51 14 25

start, tutorial and reference are representative of wiki
pages of an intermediate size equivalent to a 8/10 PDF pages,
jules verne contains in a "pre-wrap" div a long text, a 300

pages book. 62 tags (h1, h2, h3) have been added to mark the
chapter's titles and activate a TOC,
fibo_1 and fibo_2 contain fibonacci functions. The first one
is  built  on a  naive recursive algorithm and stops the browser's
engine after the 28th fibonacci number (10.000ms). The second is
built on a tail recursive algorithm and stays under 25 milliseconds
when called for the 1000th fibonacci number.

This page has been written in α-wiki. The average CPU time to
evaluate this page containing 43776->82616 characters and 2130
nested  s-expressions  {},  is  around  100  milli-seconds  on  a
Macbook (2Ghz Intel Core i7) and around 1500ms on an iPad 1st
generation  or  on  an  iPhone  4s.  Beyond  such  a  rather
approximative benchmark, it  appears that on a recent computer
the couple [α-wiki + λ-talk] allows a rather comfortable realtime
edition of standard pages found in a wiki.

CONCLUSION
Commenting this work on the reddit website [8], somebody wrote
this:  «  Reminds  me  of  John  McCarthy's  lament  at  the  W3C's
choice of SGML as the basis for HTML: "An environment where
the markup, styling and scripting is all s-expression based would
be nice." » This is the goal of the α-wiki & λ-talk project.

α-wiki  is  free  and  under  the  GPL  Licence,  [9].  The  present
document  has  been  created  with  α-wiki  working  on  top  of
Firefox, using a specific style sheet in respect with the ACM SIGS
guidelines, and exported as a 8 US pages PDF file directly from
the browser.
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ABSTRACT 

This paper presents a symbolic pattern matcher developed for 

Clojure. The matcher provides new types of function definition, 

new conditional forms and new iterative structures. We argue that 

pattern matching and unification differ in significant ways that 

give them different semantics, both useful, and show that matcher 

capability is enhanced by allowing patterns to be dynamically 

created or embedded in data structures like rules and state-

changing operators. We evaluate the matcher by experimentation, 

demonstrating that it can be used to simplify the specification of 

inference mechanisms as well as other types of code. 

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Constructs and 

Features – control structures, patterns. 

General Terms 

Design, Experimentation, Languages. 

Keywords 

Clojure, Pattern Matching, Rules, Inference. 

1. BACKGROUND 
We can consider four different types of matching: 

 regular expression matching 

 structural matching 

 matching against types 

 symbolic pattern matching 

Regular expression matching operates at the level of strings and 

characters within strings and is a facility provided by most 

modern programming languages. Structural matching, offered by 

many languages (including Prolog, Haskell and Clojure), allow 

variables to be bound to data based on structural correspondence. 

In Clojure for example the variables X, Y and Z would be bound 

to 1, 2 and 3 respectively by the let expression: 

  (let [ [[X Y] Z] [[1 2] 3] ] …) 

 

Structural matching is a feature of many of the more recent 

functional languages. Matching against types is also offered by 

some languages (Scala for example) where matching specifies 

type information and only succeeds if types correspond. 

Symbolic pattern matching operates at the level of symbols and 

the (nested) structures within which they are contained. A 

distinction we make here is that symbolic matching permits literal 

values to be specified in patterns as well as variables. This allows 

patterns to specialise on data according to both its shape and its 

contents. The following patterns, for example, each bind variables 

X and Y but match against tuples describing different relations: 

  (on X Y)        ;; X is on top of Y 

  (next-to X Y)   ;; X is next to Y 

  (holds X Y)     ;; X is holding Y 

 

Despite its long history, few programming languages provide 

symbolic pattern matching. In the early years of Artificial 

Intelligence, many systems, built in various dialects of Lisp, often 

used some form of symbolic matching. Typically this was built on 

an ad hoc “as needed” basis and, eventhough matchers would 

often deliver similar features and symbolic matching provided the 

core functionality for some systems, no standard emerged. 

Examples of early systems based on symbolic pattern matching 

include SIR and STUDENT, perhaps culminating with Eliza and 

SHRDLU [1]; SIR used a small set of simple patterns to extract 

numeric and equality relations from simple English statements, 

STUDENT used patterns specifying conditional matching to 

process algebraic problems described textually (e.g. “If Joe has 4 

times as many oranges as Mary…. How many oranges does Joe 

have”). Eliza (1966) engaged in dialogue, behaving as a non-

directive psychotherapist but, while it produced some interesting 

conversation, did no semantic analysis. SHRDLU (1971) used 

patterns to parse English statements identifying commands to 

move blocks around in a simple world. Its capabilities exceeded 

those of many systems at that time but it targeted a very small 

micro-world of discourse and problem solving. Post Eliza and 

SHRDLU, the A.I. community considered that achieving more 

sophisticated results would not be accomplished by systems based 

exclusively on pattern matching and subsequently discussion of 

symbolic pattern matching, either as a basis for A.I. or as a topic 

in its own right, largely disappeared from academic literature. 

Many modern languages provide regular expression matching and 

there is an increasing trend to provide capabilities associated with 

destructuring and variable assignment. Scheme and Racket 

provide macro-extensible matching but, outside the Lisp world, 

symbolic pattern matching is less common. POP-11 (a little dated 

now) is a notable exception, providing rich matching capabilities 

including match-iterators as well as destructuring [5] and more 

recently Scala has provided matching capability that facilitates 

some symbol matching [7]. 

Despite the lack of standardised Symbolic pattern matchers in 

modern programming languages they are often implicitly present 

in some software systems (e.g. expert systems and PDDL planning 

systems [4, 9]). We argue that a well featured symbolic pattern 

matcher provides many opportunities to simplify code; that 

appropriate matcher facilities allow inference engines and other 

systems to be constructed more concisely and with elegant code. 

We demonstrate this by example in the evaluation section of this 
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paper. The following sections outline different approaches to 

matching and present the key capabilities of the pattern matcher 

we have developed for Clojure. 

2. INTRODUCTION 
Broadly we aim to provide matching capabilities to simplify 

program code, to allow the definition of new types of functions 

which specialise on the structure of their arguments and can 

repeatedly apply patterns over larger data sets. We choose Clojure 

for this due to the nature of our applications (A.I. inference tools) 

which benefit from its semantics and its ability to integrate with 

Java. Clojure provides regular expression matching and some 

structural matching, there are Clojure libraries which provide 

tailored matching capabilities for specialised application areas 

(core.logic and core.unify [2]) and a partially specified matcher 

offering conditionals and function definition (matchure [10]). The 

matcher presented here is in part motivated and informed by these 

and other works but intentionally takes a different approach 

thereby offering alternative facilities. These, we suggest, can form 

the basis of a generalised symbolic matcher for Clojure. 

2.1 Matching vs. Unification 
While the difference between regular expression matching and 

symbolic matching is clear (regular expressions match at the level 

of strings and characters, symbolic matchers operate at the level of 

symbols and structures) the difference between matching and 

unification is more nuanced. Online forums suggest the difference 

between pattern matching and unification is only that unification 

is necessary/occurs if variables are allowed on both sides of a 

match expression. Here we accept there is some progression from 

simple pattern matching through to full unification but we 

consider the term “unification” to imply logical substitution. 

Specifically that a successful outcome of unification may leave 

variables unresolved in the sense that one or more variables may 

have more than one possible value or even an infinite set of 

possible values. For a wider discussion of unification see [3, 8]. 

We consider any process which simply associates one variable 

with one value to be matching. If variables are only permitted on 

only one side of a matching expression we term this “uni-

directional” if variables are allowed on both sides we consider this 

“bi-directional”. 

We also consider examples where matching is uni-directional but 

still requires some level of unification (so unification does not 

fundamentally require variables on both sides of an expression). 

One example occurs when there are multiple patterns, with shared 

variables, which all need to be consistently satisfied. 

A key aspect of any matching/unification algorithm is its policy 

for binding matched variables. The rest of this section explores 

some of the options. We assume that a function f takes two 

arguments and performs some matching or unification process on 

those arguments. f handles variables (denoted using a “?” prefix) 

and produces a mapping of variables to values if it succeeds. 

An example of f using uni-directional  matching: 

f( [a ?x c], [a b c] ) → {?x ↳ b} 

 

Bi-directional  matching: 

f( [a ?x c], [a b ?y] ) → {?x ↳ b, ?y → c} 

 

The semantics of uni-directional matching are clear even when 

variables are bound more than once: 

f( [a ?x ?x], [a b b] ) → {?x ↳ b} 

f( [a ?x ?x], [a b c] ) → fail 

 

However the semantics of bi-directional matching can become 

closer to some form of unification: 

f( [a ?x c], [a ?y ?y] ) → {?x ↳ c, ?y ↳ c} 

 

In this example there are two partial mappings 

(i) {?x ↳ ?y, ?y ↳ ?x}  (ii) {?y ↳ c} which could unify in the 

following ways depending on the matching/unification algorithm: 

(i) {?x ↳ ?y, ?y ↳ ?x}  {?y ↳ c} 

 → {?x ↳ ?y, ?y ↳ c} → {?x ↳ c, ?y ↳ c} 

 

or: 

(ii) {?x ↳ ?y, ?y ↳ ?x}  {?y ↳ c} 

 → {?x ↳ c, ?y ↳ ?x}  {?y ↳ c} 

 → {?x ↳ c, ?y ↳ c} 

 

Further considerations are necessary where values cannot be fully 

resolved during a single application of a pattern, this can occur for 

different reasons. For example, if variables can bind to 1 or more 

values (implied by the use of “??”): 

f( [a ??x], [??x a] ) → {?x ↳ a...a} 

 

Other variables may be unresolved or undefined: 

f( [a ?x c], [a [?p ?q] c] ) 

→ {?x ↳ [?p ?q], ?p ↳ #\, ?q ↳ #\} 

 

where #\ represents an undefined binding. 

We could allow undefined bindings to propagate through to later 

expressions which would either successfully become unified or 

result in failure. The expectation in this case is that a fully 

developed (logic based) unification mechanism would be 

employed which would handle backtracking as necessary. This 

approach has its uses but can also present some limitations. 

Consider a rule application mechanism which accepts rules of the 

form: 

[Rule 5 (hairy ?x) => (mammal ?x)] 

 

The rule application uses patterns in two stages (i) to deconstruct 

a rule and (ii) to work with its antecedent-consequent parts. In the 

first stage matching could be specified as follows: 

f( [Rule ?id ?antecedent => ?consequent], 

   [Rule 5 (hairy ?x) => (mammal ?x)] ) 

 

→ {?id ↳ 5, ?antecedent ↳ (hairy ?x), 

   ?consequent ↳ (mammal ?x), ?x ↳ #\} 

 

We then expect the ?x variable to be bound as part of the second 

stage. It is reasonable to expect that the rule application 

mechanism and the rules themselves are developed by different 

people and it is obvious practice to avoid any coupling between 

these specifications. However, when using the approach above, a 

small change in one of the patterns can have unwanted results 

because the same variable, ?x, is used on both sides: 
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f( [Rule ?x ?antecedent => ?consequent], 

   [Rule 5 (hairy ?x) => (mammal ?x)] ) 

 

→ {?x ↳ 5, ?antecedent ↳ (hairy 5), 

   ?consequent ↳ (mammal 5)} 

 

This results in incorrect variable bindings for the second (rule 

application) phase. The situation could be avoided by requiring 

additional syntax for matching expressions, but adding syntactic 

notations has an impact on the usability of representations which 

is better avoided. In addition, while some of the matching forms 

(described below) use literally specified patterns and data, others 

allow patterns/data to be dynamically produced, e.g. 

f( make-pattern1(),make-pattern2() ) 

 

The matcher could insist that all dynamically created patterns use 

some kind of name generator (gensym) for any dynamically 

created patterns but this approach has other drawbacks (it is 

harder to prime patterns with variables which are intended for 

sharing across pattern generators for example). Both cases above 

can be dealt with appropriately using a uni-directional approach 

(i.e.: assuming match variables are only used on one side of a 

match expression). 

Even with uni-directional matching there may be a requirement 

for some level of unification, notably when multiple patterns, with 

shared variables, are to be consistently applied across data sets – a 

scenario which may also generate multiple possible matches. 

Consider matching a set of patterns {p0, p1 ... pn} over data 

{d0, d1 ... dm} where all variables need consistent values, for 

example: 

f( { [?x ?y], [?y ?z] }, 

   { [a b], [q r], [c d], [m n], [p q] } 

 

→ {?x ↳ a, ?y ↳ b, ?z ↳ c}, 

  {?x ↳ p, ?y ↳ q, ?z ↳ r} 

 

In this case there are two valid mappings of matcher variables. 

While the function f may simply return these mappings we 

consider two other behaviors which may be preferred from a more 

fully developed matcher: 

 to use any one of the matches found; 

 to use each of the matches – either as arguments to some 

specified function or in some block of code which is called 

repeatedly for each valid match. 

2.2 Design Principles 
With the considerations outlined above, we aim to develop a 

matcher that provides the following: 

• clean, unambiguous semantics which allow integration and 

nesting of different matcher forms (macros and functions) 

while consistently preserving their semantics and furthermore 

allows matcher forms to integrate and nest with other Clojure 

forms without disrupting the semantics of either; 

• high-level matcher forms which abstract out the details of the 

matching processes themselves; 

• pattern forms (unencumbered by unnecessary syntax) which 

allow matching to occur over nested lists, vectors and maps; 

• a suitable mix of forms which take literally specified patterns 

(patterns specified in program text) and others which allow 

patterns to be dynamically specified (so patterns may be read, 

constructed or extracted from data at run-time); 

• the ability to specify pattern groups with shared variables 

which implicitly require some type of unification (and by 

implication may require backtracking – see mfind* and mfor*; 

• a namespace which (i) will extend (shadow) into lexically 

nested matcher forms and unwind out of these forms and 

(ii) may be captured in a data structure – to allow the state of 

successful matching to be saved and reinstated or provided 

(e.g. as an argument) to other functions and subsystems. 

A key distinction between this matcher and those acknowledged 

earlier is that other matchers tend to operate only with static 

patterns and use normal (native) variable bindings. While this can 

provide some opportunity to improve performance it restricts the 

ability to store patterns as data or dynamically create them. The 

matcher presented below allows dynamic construction of patterns, 

an approach which significantly effects the matcher utility (as we 

demonstrate in the evaluation section).  

3. MATCHER MACROS AND FUNCTIONS 
This section describes key functions and macros developed to 

provide a symbolic pattern matcher for Clojure which addresses 

the issues discussed above. The matcher takes symbolic data 

structures and matches them against structured patterns. Patterns 

operate at the level of symbols and structures; they may contain 

literals and match variables. Match variables are prefixed with a 

"?" (or "??" – see later), symbols without a "?" prefix are literals 

so the pattern (?x ?y end) will match with any three element 

structure which contains 'end as its third element (binding match 

variables x and y to the first and second elements of the data). The 

pattern ((a b) {n ?x m ?y}) matches a nested structure binding the 

variables x and y to values for n and m held in a two-element map, 

nested within the data. 

The most primitive form of matcher expression provided for 

general use is mlet (matcher-let), it is structured as follows: 

(mlet [ pattern datum ] ...body... ) 

 

mlet operates as follows: if the pattern matches the datum, binding 

(zero or more) matcher variables as part of the matching process 

then mlet evaluates its body in the context of these bindings. If the 

pattern and datum do not match, mlet returns nil. 

In the following example, the pattern (?x ?y ?z) matches the 

datum (cat dog bat) binding match variables "x", "y", "z" to 'cat, 

'dog, 'bat respectively. The expression (? y) in the body of mlet 

retrieves the value of the match variable "y" from (pseudo) 

matcher name space. 

(mlet ['(?x ?y ?z) '(cat dog bat)] 

  (? y)) 

→ dog 

 

mout (matcher-out) is a convenience form to build structured 

output from a mixture of literals and bound match variables: 

(mlet ['(?x ?y ?z) '(cat dog bat)] 

    (mout '(a ?x (a ?y) and a ?z))) 

→ (a cat (a dog) and a bat) 
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mlet returns nil if matches fail: 

(mlet ['(?x ?y ?z) '(cat dog bat frog)] 

    (mout '(a ?x a ?y and a ?z))) 

→ nil 

 

Unbound matcher variables also have nil values as does the 

anonymous match variable "?_" which will always match with a 

piece of data  but does not retain the data it matches against: 

 

(mlet ['(?_ ?x) '(cat dog)] 

    (list (? _) (? x) (? y))) 

→ (nil dog nil) 

 

Matcher variables are immutable so, once bound, a match variable 

cannot be implicitly re-bound and whilst the pattern (?x dog ?x) 

matches (cat dog cat) it will not match (cat dog bat) because this 

would result in an inconsistent/ambiguous binding for "?x". This 

approach also holds true with nested matcher forms, so given the 

data (dog bat) the following expression will return (cat dog bat) 

but with data (rat bat) it will return 'inner-match-failed: 

(defn foo [data] 

  (mlet ['(?x ?y) '(cat dog)] 

    (or (mlet ['(?y ?z) data] 

          (mout '(?x ?y ?z))) 

      'inner-match-failed) 

    )) 

 

(foo '(dog bat)) → (cat dog bat) 

(foo '(rat bat)) → inner-match-failed 

 

In addition to single element match directives (prefixed with "?") 

the matcher supports multiple match directives which match 

against zero or more elements of data (these are prefixed with 

"??"). Multiple directives may also be used in matcher-out 

expressions, in which case their value is appended into the 

resulting structure: 

(mlet ['(??pre x ??post) 

       '(mango melon x apple pear berry)] 

  (mout '(pre= ?pre post= ??post))) 

 

→ (pre= (mango melon) 

   post= apple pear berry) 

 

All patterns may be structured, containing sequences, 

subsequences (and maps within sequences within maps within 

sequences, etc.), so it is possible to use patterns to extract data 

from nested data structures. The pattern used in the following 

example extracts the value from a quantification slot nested 

within an actor slot (which is also nested in the enclosing data 

structure)… 

(mlet ['(??_ (actor ??_ [quant ?q] ??_) ??_) 

       semantics ] 

  (? q)) 

 

mlet has its uses but other forms (constructed on top of mlet) 

provide greater functionality. These other forms can be grouped 

into three families (i) switching and specialisation (ii) searching 

and selection (iii) iteration and collection. 

3.1 Switching and Specialisation 
mcond is the most general of the switching/specialisation forms, it 

can be used to specify a series of pattern based rules as follows: 

(mcond [exp] 

    ((?x plus ?y)  (+ (? x) (? y))) 

    ((?x minus ?y) (- (? x) (? y))) 

    ) 

 

The mcond form will attempt to match the data it is given (the 

value of exp in the example above) to the first pattern in its 

sequence of rules (?x plus ?y) then its second (?x minus ?y) until 

it finds a rule which matches; it then evaluates the body of that 

rule and returns the result. As with other matcher forms, mcond 

returns nil if it fails to find a match.  The mcond form above will 

return 9 if exp has a value of (5 plus 4) or 1 if exp has a value of 

(5 minus 4). Note that mcond (and other forms) can optionally use 

additional symbols to make their rule-based structure more 

explicit, we recommend using “:=>” for example: 

(mcond [exp] 

    ((?x plus ?y)  :=> (+ (? x) (? y))) 

    ((?x minus ?y) :=> (- (? x) (? y))) 

    ) 

 

defmatch is similar in structure to mcond, wrapping an implicit 

mcond form with a function definition: 

(defmatch math1 [] 

  ((?x plus ?y)  :=> (+ (? x) (? y))) 

  ((?x minus ?y) :=> (- (? x) (? y))) 

  ) 

 

(math1 '(4 plus 5))  → 9 

(math1 '(4 minus 5)) → -1 

(math1 '(4 times 5)) → nil 

 

defmatch forms can take explicit arguments in addition to their 

implicit matched-data argument. The example below illustrates 

this and additionally uses an anonymous match variable to handle 

default cases: 

(defmatch math2 [x] 

  ((add ?y)  :=> (+ x (? y))) 

  ((subt ?y) :=> (- x (? y))) 

  ( ?_       :=> x) 

  ) 

 

(math2 '(add 7) 12) → 19 

(math2 '(subt 7) 12) → 5 

(math2 '(times 7) 12) → 12 

 

Due to the way patterns may be specified at the symbol level, 

defmatch forms can be used to specialise on keywords and thereby 

resemble some kind of dispatch, e.g. 

(defmatch calcd [x y] 

  (:add  :=> (+ x y)) 

  (:subt :=> (- x y)) 

  (:mult :=> (* x y)) 

  ) 

 

(calcd :add 5 4)  → 9 

(calcd :mult 5 4) → 20 

 

3.2 Searching and Selection 
The searching and selection mechanisms apply patterns across 

collections of data, returning the first match found. These matcher 

forms are called mfind (which matches one pattern across a 

collection of data) and mfind* (which consistently matches a 
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group of patterns across a collection of data). This is illustrated 

using the following data: 

(def food 

 '([isa cherry  fruit]   [isa cabbage veg] 

   [isa chilli  veg]     [isa apple   fruit] 

   [isa radish veg]      [isa leek    veg] 

   [color leek  green]   [color chilli  red] 

   [color apple green]   [color cherry  red] 

   [color cabbage green] [color radish red] 

  )) 

 

Note that in this example we use vectors in our data, this is 

perhaps idiomatic but we sometimes prefer wrapping tuples as 

vectors (rather than as lists) and the matcher deals with either 

vectors or lists (or maps). 

mfind takes one pattern, mfind* takes multiple patterns: 

(mfind ['[isa ?f veg] food] (? f)) 

→ cabbage 

 

 (mfind* ['([isa ?f veg] [color ?f red]) 

         food] 

    (? f)) 

→ chilli 

3.3 Iteration and Collection 
The matcher supports two forms to provide iteration and 

collection, these are called mfor and mfor*. They iterate over sets 

of data using one pattern (mfor) or multiple patterns (mfor*). The 

following examples use the food data presented above: 

(mfor ['[isa ?f veg] food] (? f)) 

→ (cabbage chilli radish leek) 

 

(mfor* ['([isa ?f veg] [color ?f red]) food] 

    (? f)) 

→ (chilli radish) 

3.4 Matcher Name Space 
A pseudo matcher name space is maintained. This is not a Clojure 

name space but is a map (called mvars) which associates named 

matcher variables with their values. mvars is a lexically bound 

Clojure symbol accessible within the body of all matcher 

expressions.  

with-mvars provides a simple way to inject variables into the 

matcher name space or shadow existing values, for example: 

(with-mvars {'a (+ 2 3), 'b (- 3 4)} 

  (println mvars) 

  (with-mvars {'b 'bb, 'd 'xx, 'e 'yy} 

    (println "  " mvars) 

    (mlet ['(?a ?b ?d ?c) '(5 bb xx spam)] 

      (println "    " mvars)) 

    (println "  " mvars)) 

  (println mvars)) 

 

output: 

{b -1, a 5} 

   {e yy, d xx, b bb, a 5} 

     {c spam, :pat (?a ?b ?d ?c), 

        :it (5 bb xx spam), 

        e yy, d xx, b bb, a 5} 

   {e yy, d xx, b bb, a 5} 

{b -1, a 5} 

nil 

 

Note that the matcher adds the last datum that was match (called 

:it) and the last pattern :it matched against into the name space. 

While direct reference to mvars is generally unnecessary, it is 

useful for writing new macros and it allows the results of 

successful matching operations to be saved for later processing or 

passed to other functions (in cases where the lexical scoping of 

matcher variables is found restrictive). 

3.5 Implementation Notes 
There are few basic building blocks to the matcher. The first is the 

core matches function which, in the context of any existing 

matcher variable bindings, performs the essential pattern matching 

process and builds a map of bindings for new matcher variables, 

e.g. 

(matches '(a ?x ?y) '(a b c)) 

→ {y c, x b, :pat (a ?x ?y), :it (a b c)} 

 

(with-mvars {'p 'ppp, 'q 'qqq} 

    (matches '(a ?x ?y) '(a b c))) 

→ {y c, x b, :pat (a ?x ?y), 

     :it (a b c), p ppp, q qqq} 

 

Other building blocks (with-mvars and mlet) use "let" forms to set 

up new lexical closures to shadow matcher name space when 

matching is successful which, in effect, provides lexical scope for 

matcher variables. 

mcond (a macro) is specified as a series of mlet expressions and 

defmatch (also a macro) is specified in terms of mcond. mfor, 

mfor*, mfind and mfind* are also all specified as macros. mfor 

uses a function which recurses through an mlet form and mfor* is 

specified in terms of mfor. mfind (like mfor) uses its own function 

to recurse through its own mlet form and mfind* recurses through 

mlet. 

In this way the expansion of nested matcher forms (defined as 

macros) produces a cascade of nested let forms where the pseudo 

matcher name space (mvars) is populated with match variables 

created by successful matches. 

4. EVALUATION 
We have evaluated the matcher from three different perspectives: 

(i) an objective examination to assess whether matcher 

functions and macros operate as intended; whether they are 

semantically consistent when nested/interleaved with other 

matcher expressions and Clojure forms; 

(ii) from the subjective view of Clojure programmers are the 

semantics of matcher forms appropriate and do their names 

(mfind, mfor, etc.) mnemonically suggest their semantics? 

(iii) is the matcher useful? Does it simplify the construction and 

readability of Clojure code? Specifically (since this is the 

nature of much of our work) we are interested in simplifying 

the construction of inference engines – typically based on 

the application of rules and state changing operations. 

The first approach to evaluation (above) is not described here, the 

matcher was constructed using a strict test driven development 

approach. The matcher presented here satisfies all tests. 
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User acceptance evaluation has been conducted using the matcher 

as a basis for student assessments and projects and also as a build 

tool for developing larger subsystems. Feedback from these user 

groups has influenced (i) the choice of names for matcher forms 

(macros and functions), (ii) the syntactic conventions used to 

specify macros and patterns and (iii) cases where the matcher 

semantics needed to be more clearly specified. Detailed analysis 

of this process is not discussed here, instead we focus on the third 

style of evaluation which considers the utility of the matcher as a 

tool for code construction. 

4.1 Searching Sets of Tuples 
For the first example we consider searching for objects in a set of 

tuples which describe the state of a micro-world. To put this in 

context: we receive object descriptions (and other forms) from 

language processing subsystem so, for example, the noun-phrase 

"red fruit" would produce: 

(obj 

  (quantifier all) 

  (desc ((color red) (isa fruit)))) 

 

The phrase "a large red fruit" would produce: 

(obj 

  (quantifier any) 

  (desc 

    ((size large) (color red) (isa fruit)))) 

 

We store state information in the following form: 

(def food 

  '#{[isa chilli veg]    [isa cherry fruit] 

     [isa radish veg]    [isa apple fruit] 

     [isa leek veg]      [isa kiwi fruit] 

     [color chilli red]  [color cherry red] 

     [color radish red]  [color apple green] 

     [color leek green]  [color kiwi green] 

     [on chilli table]   [on cherry table] 

     [on leek table] 

     }) 

 

Our aim is to write code which, using the type of object 

descriptions from the language processing subsystem, can retrieve 

the relevant object names. Given the matcher facilities described 

in preceding sections we can use mfor to find the names of objects 

for a single type of fact/tuple. For example, the following form 

returns the names of all cubes: 

(mfor ['(isa ?obj veg) food] 

    (? obj)) 

→ (chilli leek radish) 

 

It is possible to dynamically construct a suitable pattern for an 

mfor expression from the type of [relation value] pairs provided 

by the language processing subsystem. A match function provides 

a convenient way to extract the components of a [relation value] 

pair which can then be used in the mfor expression: 

(defmatch find-all [tuples] 

  ([?reln ?val] 

    (mfor ['(?reln ?obj ?val) tuples] 

      (? obj) 

      ))) 

 

(find-all '(isa veg) food) 

→ (chilli leek radish) 

If the results of multiple find-all expressions are converted to sets 

multiple (relation value) pairs can be handled using set operators. 

So to find red vegetable from the food data: 

(find-all '(isa veg) food) 

→ (chilli leek radish) 

 

(find-all '(color red) food) 

→ (chilli radish cherry) 

 

(intersection 

    (set '(chilli leek radish)) 

    (set '(chilli radish cherry))) 

→ #{radish chilli} 

 

This processing can be captured in a function as follows: 

(defn query 

  [reduction pairs tuples] 

  (reduce reduction 

    (map #(set (find-all % tuples)) pairs)) 

  ) 

 

(query intersection 

    '((isa veg)(color red)) food) 

→ #{radish chilli} 

 

The query function may also be used with union to return "or" 

combinations: 

(query union 

    '((isa veg)(color red)) food) 

→ #{cherry radish chilli leek} 

 

To satisfy our initial aim we therefore need the following: 

(defmatch find-all [tuples] 

  ([?reln ?val] 

    (mfor ['(?reln ?obj ?val) tuples] 

      (? obj) 

      ))) 

 

(defn query 

  [reduction pairs tuples] 

  (reduce reduction 

    (map #(set (find-all % tuples)) pairs)) 

  ) 

 

4.2 Application of Rules 
The second example considers a rule-based, fact deduction or 

forward chaining mechanism. Facts are held as tuples and rules 

have antecedents and consequents. Some introductory texts for 

Artificial Intelligence provide example rules like: 

IF (has fido hair) THEN (isa fido mammal) 

 

While these serve to illustrate their discussion of rule-based 

inference, rules like this are of limited use because they are 

specific to object names ("fido" in this case) and take only a single 

antecedent and consequent. For practical purposes we need to 

extend this rule syntax – to allow rules to be flexible about the 

length of their antecedents/consequents and the objects they 

describe. Specifying rules in terms of match variables and writing 

a flexible rule application mechanism addresses this. For example: 

(rule 15 (parent ?a ?b) (parent ?b ?c) 

      => (grandparent ?a ?c)) 
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can match against tuples like: 

(def family 

 '((parent Sarah Tom) (parent Steve Joe) 

   (parent Sally Sam) (parent Ellen Sarah) 

   (parent Emma  Bill)(parent Rob   Sally))) 

 

A suitable rule application mechanism needs to split the rule into 

its constituent parts, search for all consistent sets of antecedents, 

ripple any antecedent variable bindings through to consequents 

and collect evaluated consequents for each rule every time it fires. 

In practice these requirements can be satisfied by using a match 

function to pull a rule apart, mfor* to satisfy all possible 

antecedent combinations and mout to bind variables into 

consequents. This can be specified as follows: 

(defmatch apply-rule [facts] 

  ((rule ?n ??antecedents => ??consequents) 

    :=> (mfor* [(? antecedents) facts] 

          (mout (? consequents))))) 

 

(apply-rule 

  '(rule 15 (parent ?a ?b) (parent ?b ?c) 

             => (grandparent ?a ?c)) 

  family) 

 

→ ((grandparent Ellen Tom)  

   (grandparent Rob Sam)) 

 

Notice that while the pattern for defmatch is literally specified, the 

patterns for mfor* and mout must, necessarily, be generated 

dynamically. Furthermore these dynamically generated patterns 

are embedded in the rule structure pulled apart by defmatch's 

literal pattern. 

To investigate this rule deduction example further we use a richer 

set of facts and rules where the consequences of some rules trigger 

the antecedents of others (we choose a "toy" example to illustrate 

this). 

(def facts 

  '((mineral pebble)  (small pebble) 

    (mineral boulder) (large boulder) 

    (small daisy)     (light daisy) 

    (on boulder daisy) 

     )) 

 

(def rules1 

  '((rule 0 

       (dangerous ?x)(fragile ?y)(on ?x ?y) 

           => (broken ?y)) 

     (rule 1 (heavy ?x) => (dangerous ?x)) 

     (rule 2 (large ?x) => (heavy ?x)) 

     (rule 3 (small ?x)(light ?x) 

           => (portable ?x)(fragile ?x)) 

     )) 

 

Given these definitions it is possible to develop a function to 

apply all rules once: 

(defn apply-all [rules facts] 

  (reduce concat 

    (map #(apply-rule % facts) rules) 

    )) 

 

(apply-all rules facts) 

→ ((hard pebble)   (hard boulder) 

   (fragile daisy) (portable daisy)) 

For simplicity in combining the output of rules we use sets which 

necessitates modifying the apply-all function to: 

(defn apply-all [rules facts] 

  (set (reduce concat 

         (map #(apply-rule % facts) rules) 

         ))) 

 

A forward chaining/fact deduction function which continues to 

operate while it is generating new facts can then be defined: 

(defn fwd-chain [rules facts] 

  (let [new-facts (apply-all rules facts)] 

    (if (subset? new-facts facts) 

      facts 

      (recur rules (union facts new-facts)) 

      ))) 

 

(fwd-chain rules (set facts)) 

→ #{(light daisy)  (mineral boulder) 

    (hard boulder) (fragile daisy) 

    (small daisy)  (heavy boulder) 

    (broken daisy) (small pebble) 

    (mineral pebble) (hard pebble) 

    (portable daisy) (on boulder daisy) 

    (large boulder)} 

 

As with the previous example, the matcher performs most of the 

processing (in this case using a defmatch construct and mfor* in 

apply-rule) while other functions collate results, etc. 

(defmatch apply-rule [facts] 

  ((rule ?n ??antecedents => ??consequents) 

    :=> (mfor* [(? antecedents) facts] 

          (mout (? consequents))))) 

 

(defn apply-all [rules facts] 

  (reduce concat 

    (map #(apply-rule % facts) rules) 

    )) 

 

(defn fwd-chain [rules facts] 

  (let [new-facts (apply-all rules facts)] 

    (if (subset? new-facts facts) 

      facts 

      (recur rules (union facts new-facts)) 

      ))) 

 

4.3 Application of Operators 
In this example we consider how to apply the kind of state 

changing operators that are used in some planning systems. 

Broadly we adapt a representation borrowed from PDDL [4, 9] for 

use with a STRIPS [6] style solver. The operators are specified in 

terms of their preconditions and their effects. As with the earlier 

examples, we use tuples to capture state information. The 

following tuples, for example, describe a simple state in which 

some (animated) agent (R) is at a table, holding nothing and a 

book is on the table. 

#{(at R table)        (on book table) 

  (holds R nil)       (path table bench) 

  (manipulable book)  (agent R) } 

 

In order to generalise an operator (so it can be used with different 

agents, objects and in various locations) it is necessary to specify 

it using variables, in this case matcher variables. An operator 

which describes a "pickup" activity for an agent and which can be 
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used to produce a new state (new tuples) can be described as 

follows: 

  {:pre ((agent ?agent) 

         (manipulable ?obj) 

         (at ?agent ?place) 

         (on ?obj   ?place) 

         (holds ?agent nil) 

         ) 

   :add ((holds ?agent ?obj)) 

   :del ((on ?obj   ?place) 

         (holds ?agent nil)) 

   } 

 

The operator is a map with three components (i) a set of 

preconditions which must be satisfied in order for the operator to 

be used (ii) a set of tuples to add to an existing state when 

producing a new state and (iii) a set of tuples to delete from an 

existing state. 

To apply this kind of operator specification we extract patterns 

from the operator then use mfind* 

(defn apply-op 

  [state {:keys [pre add del]}] 

  (mfind* [pre state] 

    (union (mout add) 

      (difference state (mout del)) 

      ))) 

 

 (apply-op state1 ('pickup ops)) 

 →  #{(agent R) (holds R book) 

      (manipulable book) 

      (path table bench) (at R table)} 

 

As with the previous examples, the patterns used by mfind* are 

provided dynamically when apply-op is called. Furthermore, in 

this example, the patterns themselves define the semantics of the 

operators. 

Collections of operators are conveniently held in a map and 

ordered sequences of operator applications can be formed by 

chaining apply-op calls, e.g. 

(def ops 

  '{pickup {:pre ((agent ?agent) 

                  (manipulable ?obj) 

                  (at ?agent ?place) 

                  (on ?obj   ?place) 

                  (holds ?agent nil) 

                  ) 

            :add ((holds ?agent ?obj)) 

            :del ((on ?obj   ?place) 

                  (holds ?agent nil)) 

            } 

    drop    {:pre ((at ?agent ?place) 

                   (holds ?agent ?obj)) 

             :add ((holds ?agent nil) 

                   (on ?obj   ?place)) 

             :del ((holds ?agent ?obj)) 

             } 

    move    {:pre ((agent ?agent) 

                   (at ?agent ?p1) 

                   (path ?p1 ?p2) 

                   ) 

             :add ((at ?agent ?p2)) 

             :del ((at ?agent ?p1)) 

    }}) 

 

(-> state1  (apply-op ('pickup ops)) 

            (apply-op ('move   ops)) 

            (apply-op ('drop   ops))) 

 

→ #{(agent R) (manipulable book) 

    (on book bench) (holds R nil) 

    (at R bench) (path table bench)} 

 

We can further develop this example so apply-op (or some similar 

function) works with a search process or a STRIPS-style planner 

to generate sequences of moves in order to reach a goal state. 

5. SUMMARY & CONCLUSION 
This paper has argued that pattern matching can be used to 

simplify some programming tasks, facilitating the production of 

concise, well-formed code with precise semantics. We have 

presented a symbolic pattern matcher (now available under 

"clojure resources" at www.agent-domain.org) which binds 

immutable match variables and provides matcher 

functions/macros to support pattern-based conditional statements, 

function definitions and iterative/mapping forms. The matcher has 

some forms which take literal patterns but, importantly, has others 

which allow their patterns to be retrieved from data structures or 

to be constructed at run-time. This provides increased flexibility 

in pattern production and use; allowing some types of rules and 

state-change operators to have their semantics described in terms 

of patterns. These in turn facilitate the construction of inference 

engines which apply these structures. In the evaluation section we 

have presented three sample problems (searching tuples, applying 

rules and using operators) and demonstrated how the matcher can 

be employed to solve these problems. 
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ABSTRACT
Simulations based on tensor networks have become popular
in computational quantum physics recently. They allow to
predict the behavior of quantum models with a large number
of particles. While most of the software for tensor-network
simulations is written in MATLAB or C++, implementa-
tions in higher languages have many advantages. They allow
to extend simulations to more complex models. In this arti-
cle I present TEBDOL, a program using the time-evolving
block decimation algorithm (TEBD) to simulate time evolu-
tion of one-dimensional chains of atoms in optical lattices. I
discuss the advantages and disadvantages of using Common
Lisp for high-performance computing, and report on strong
and weak scaling performance of the program.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Physics; I.6.8
[Simulation and Modeling]: Types of Simulation—Par-
allel

General Terms
Languages, Performance

Keywords
Common Lisp, High-performance computing,
Quantum physics, Tensor network

1. INTRODUCTION
The world of scientific high-performance computing (HPC)
is a world firmly rooted in programming languages Fortran,
C, and C++. Tools and libraries provided by the system
vendors usually have bindings to these languages only. With
growing complexity of numerical simulations there is a need
to use higher-level languages that provide better abstrac-
tions. At the same time, huge problem sizes require good
numerical performance.

In this article I report on the experience with using Com-
mon Lisp for high-performance computing. There are many
popular implementations of the language available. We use
Steel Bank Common Lisp (SBCL) [5] specifically. Most of
our code is written in ANSI Common Lisp, but there are
several areas where we use extensions available in SBCL
only. We decided for this approach based on observations
that a) SBCL has a permissive open-source license, b) it is
actively developed and has a vibrant community, c) it runs
on x86 64, and d) it generates reasonably fast code. We did

not use a portable libraries like CFFI [6] because portability
was not a priority, and each library or dependency brings
additional complexity. However, it should be a fairly easy
to port the program to a different implementation.

TEBDOL uses tensor-network algorithms to simulate time-
evolution of ultracold atoms in one-dimensional optical lat-
tices. It has good numerical performance, and has been par-
allelized using Message Passing Interface (MPI). It was used
to investigate phase revivals in binary mixtures of ultracold
atoms [8].

Time evolution of a system is simulated using the time-
evolving block decimation (TEBD) algorithm [9, 10]. The
program uses BLAS and LAPACK libraries for low-level nu-
merical algebra and MPI library for communication between
parallel processes. Up to 1024 CPU cores were used in one
simulation run. The program was tested on several super-
computers.

Raw performance is not our only goal. The program uses
external libraries for most of the heavy numerical lifting any-
way. We are instead interested in a good balance between
speed and convenience. After successfully investigating a
single physical model, our focus usually shifts to a differ-
ent model. This requires additional non-trivial program-
ming. We therefore prefer a convenient and high-level pro-
gramming language that allows to constantly reshape the
code. Our first version was developed in MATLAB. As the
program grew more complex, it became clear that MAT-
LAB does not provide language constructs we would like to
use. We considered several languages, and we chose Com-
mon Lisp because it provides a nice balance of required fea-
tures. There is other software for tensor network manipula-
tion available, namely ITensor [3] written in C++. It repre-
sents an example of different approach to similar problems
in C++ in comparison with Common Lisp.

SBCL supports symmetric multiprocessing, but we currently
do not use it. There are two reasons for that. First, calcula-
tions with tensors networks consume huge amounts of mem-
ory. It is common that TEBDOL consumes tens of gigabytes
on a single node. While many supercomputers include a
few fat nodes, which have hundreds of gigabytes of avail-
able memory, most of the nodes are equipped with a some-
what conservative amount of 32-128 GB RAM. We therefore
decided to parallelize TEBDOL with MPI for distributed-
memory architectures. With this approach we are able to
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Figure 1: Optical lattice confines ultracold neutral
atoms in a periodic structure. a) A reflected laser
beam interferes with the original beam. The re-
sulting standing wave creates a periodic energetic
potential for the atoms. b) The atoms are confined
to potential minima, which constitute lattice sites.
They can hop between sites, and multiple atoms at
a single site repulse each other.

scale the program beyond the memory limits of a single node
and thus simulate larger and more difficult systems. Second
reason is that the BLAS/LAPACK libraries are usually par-
allelized using OpenMP. Difficult simulations spend most
of the time in routines from these libraries. The program
therefore utilizes additional parallel processing in each MPI
process.

2. MANY-BODY QUANTUM PHYSICS
An optical lattice is an experimental device used to investi-
gate fundamental quantum physics. A laser beam, reflected
by a mirror, interferes with the original beam, and both
beams create a standing electromagnetic wave (Fig. 1). The
standing wave provides a tiny energy difference between its
nodes and anti-nodes for a gas of ultracold neutral atoms.
Atoms then stay in places of minimal energy. These spatial
points constitute the lattice sites.

A state of a system in quantum physics is represented by a
complex unit vector, and all physical quantities correspond
to linear operators, which are represented by matrices. Nu-
merical quantum simulations employ mainly linear algebra.
Typical questions asked are a) what is the energy spectrum,
i.e., what are the eigenvalues of the energy operator, and
b) how the system evolves in time. The energy operator is
usually called a Hamiltonian.

The physics of low-energetic atoms loaded into an optical
lattice is described by the Bose-Hubbard model with Hamil-
tonian

H = −J
∑
〈i,j〉

b†i bj +
U

2

∑
i

ni (ni − 1) . (1)

Terms in the sums above and also the Hamiltonian itself are
matrices. The integers i and j index lattice sites. We con-
sider a system of length L and impose the open boundary
conditions, therefore 0 ≤ i, j < L. The angle brackets de-
note sum over adjacent sites, because we take into account
interactions between neighboring sites only. The operators
bi and b†i are so-called annihilation and creation operators,

and ni = b†i bi are particle number operators. A term b†i bj
moves a particle from the site i to the site j. The param-

eter J describes the amount of tunneling between the sites
and the parameter U denotes the intensity of the on-site
repulsion.

A state of the system is represented by a vector in an ab-
stract space. The matrices above act on this space. All
quantum-mechanical calculations can be reduced to opera-
tions with these vectors and matrices. Depending on the
number of lattice sites and particles, the space has a certain
dimension.

This dimension grows exponentially with the system size.
For example, let us assume that each lattice site can be oc-
cupied by a single particle only, i.e., each site can be in a
vacant state or in an occupied state. A single site then repre-
sents a two-state quantum system. The vector space of this
system has a dimension of D1 = 2. With two lattice sites,
there are two possible states at each site, and the state space
has a dimension of D2 = 2 × 2 = 4. The space dimension
becomes DL = 2L for a system with L lattice sites. For a
moderate system of L = 20 sites, this gives a dimension of
D20 = 1048576. Each observable quantity in this system
is represented by a D20 × D20 matrix. Such matrices are
very difficult to handle numerically. The problem can be
somewhat simplified because the total number of particles
is usually fixed, and the calculations can be restricted to a
subspace of the above vector space. Additionally, relevant
matrices are usually represented by sparse matrices, which
make the problem more tractable. However, mesoscopic sys-
tems with hundreds of particles, which are interesting from
the experimental point of view, are unreachable with this
approach.

It has been found that there exists a better description of a
quantum system using tensor networks. This representation
is especially useful for studying one-dimensional systems,
where it produces very precise results, while being tractable
on current computers.

3. TENSOR NETWORKS
A tensor is a multidimensional array. A rank of a tensor
specifies its number of dimensions. A rank-0 tensors is a
scalar, a rank-1 tensor is a vector, a rank-2 tensor is a ma-
trix, and so on. A common tensor operation is a tensor
contraction. It is a generalization of matrix multiplication.
Let Ai1i2i3... and Bj1j2j3... be two tensors of an arbitrary
rank. A tensor contraction over indices ia and jb of equal
dimension is an operation that produces a new tensor C
defined by

Ci1...ia−1ia+1...j1...jb−1jb+1...

=
∑
k

Ai1...ia−1kia+1...Bj1...jb−1kjb+1.... (2)

A convenient graphical representation of a tensor is a ball
with several legs that represent its indices. A tensor contrac-
tion can be depicted by joining legs of two tensors. A tensor
network is a set of tensors and their contractions (Fig. 2).

Besides the tensor contraction, there are other important
tensor operations, namely a tensor decomposition, a tensor
permutation, and a tensor fusion (Fig. 3).
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Figure 2: A tensor can be graphically represented
as a ball with several legs representing its indices.
The number of its legs is the same as the tensor
rank. A leg connecting two tensors represents a ten-
sor contraction. A tensor network is then a graph
whose vertices represent tensors and whose edges
represent tensors contractions. The figure shows an
example of a) a scalar, b) a vector, c) a matrix, d) a
rank-3 tensor, e) a matrix-vector multiplication, f) a
matrix-matrix multiplication, and g) a large tensor
network that results in a scalar after performing all
its contractions.

A numerical analysis of certain quantum models becomes
more tractable when the system state and its operators are
represented by tensor networks instead of vectors and ma-
trices. The full system description still requires the same
amount of information. However, under reasonable assump-
tions many elements can be ignored because they contribute
to the physical behavior only a little. Approximation of the
full system with a tensor network containing only relevant
elements produces very precise results.

TEBDOL uses tensors as its basic building blocks. Tensors
are organized in tensor networks that represent a system
state, a Hamiltonian, and observables (Fig. 4). Tensors di-
mensions are truncated during simulations, and only states
of high physical probability are kept in memory. This en-
sures that the problem stays tractable.

Many interesting physical models exhibit symmetries and
thus conserve certain physical quantities. The model (1)
conserves the total number of particles. Particles cannot
suddenly appear in the system or disappear from it. We
take advantage of this fact in our tensor representation. It
turns out that it is not necessary to work with a full tensor,
because some parts of it are guaranteed to be filled with zero
elements only. TEBDOL therefore works with symmetric
tensors, and for each tensor stores only sectors which can
contain non-zero elements. Each sector is stamped with the
number of particles it represents. This approach allows us
to further reduce the computational costs.

4. PARALLELIZATION
A parallel implementation of the TEBD algorithms is con-
ceptually simple. A full tensor networks is divided among
MPI processes. Each process calculates time evolution of

a)

b)

c)

d)

Figure 3: a) A tensor decomposition splits a single
tensor into two. It is a generalization of the sin-
gular value decomposition. b) A tensor contraction
joins two tensors into one. c) A tensor permutation
reshuffles the order of indices. d) A tensor fusion
combines several indices into one.

a part of the network it manages. After each time step it
is necessary to perform an exchange of boundary tensors
between processes managing adjacent parts of the network.
Communication costs are small in comparison with costs of
numerical routines. MPI provides a major speedup in the
calculation time.

Additional parallelization comes from BLAS/LAPACK li-
braries. We benchmarked several implementations during
the initial phase of the project. Commercial implementa-
tions provided by vendors, for examples Inter Math Ker-
nel Library (MKL) [2] for Intel processors, offer great per-
formance. Among the open-source implementations, Goto-
BLAS [1] stands out both with its superb performance and
its clean design. It is remarkable that it was developed by
a single person, Kazushige Goto, whose hand-written op-
timizations could surpass optimizations generated by com-
pilers. The last architecture GotoBLAS is optimized for is
Intel Nehalem. OpenBLAS is a project originating from Go-
toBLAS that provides optimizations for current processors,
including Intel Sandy Bridge architecture. We achieved per-
formance similar to Intel MKL with OpenBLAS.

5. COMMON LISP BENEFITS
Programming in ANSI Common Lisp brings many practical
benefits. Expressive power of the language reduces develop-
ment time. At the same time, the code produced by SBCL
is very fast. Interactive nature of the SLIME development
environment allows the programmer to design and imme-
diately test program functions. In the following I describe
several program areas that benefit from using Common Lisp.

5.1 Data structures
Common Lisp includes a rich set of built-in data types and
allows to easily create complex data structures. The basic
building block of TEBDOL is a symmetric tensor. The ten-
sor data structure contains a list of indices and list of non-
vanishing sectors. Each index is a list of segments, where
each segment is defined by a list of particle numbers and
a segment dimension. Each sector contains lists of particle
numbers and a complex double-float array. Following the
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Figure 4: a) A state of a one-dimensional quantum
system is represented by a tensor network consisting
of rank-3 tensors in the bulk and rank-2 tensor at
the edges. A transformation from a tensor-network
representation to the standard vector representation
consists of performing all tensor contractions and
fusing all tensor indices into a single index. b) A one-
dimensional quantum operator is represented by a
tensor network consisting of rank-4 tensors in the
bulk and rank-3 tensors at the edges.

theory of symmetric tensors, a sector is non-vanishing only
if its lists of particle numbers sum to a list of zeros. As an
illustration, the following listing shows a rank-2 tensor with
0 to 2 particles on each index, equivalent to a 3x3 identity
matrix:

#s(tensor

:indices

((#s(segment :numbers (0) :dimension 1)

#s(segment :numbers (1) :dimension 1)

#s(segment :numbers (2) :dimension 1))

(#s(segment :numbers (-2) :dimension 1)

#s(segment :numbers (-1) :dimension 1)

#s(segment :numbers (0) :dimension 1)))

:sectors

(#s(sector

:numbers ((0) (0))

:array #2a((#c(1.0d0 0.0d0))))

#s(sector

:numbers ((1) (-1))

:array #2a((#c(1.0d0 0.0d0))))

#s(sector

:numbers ((2) (-2))

:array #2a((#c(1.0d0 0.0d0))))))

Tensor operations transform input tensors into output ten-
sors and thus have to access and manipulate tensors in an
intricate way. For example, in a tensor contraction only sec-
tors with matching particle numbers are combined into a
new sector. TEBDOL uses hash tables with lists as keys to
find matching sectors of the input tensors. All these oper-
ations are conveniently expressed in Common Lisp. More-
over, data structures are allocated and collected automati-
cally. Common Lisp ability to create and manipulate com-

plex structures is its key characteristic. It makes possible to
deliver a functioning software in a realistic time frame.

5.2 Multidimensional indices
The elements of multidimensional arrays are accessed using
multidimensional indices. A multidimensional index is a list
of subscripts. Common Lisp offers a simple expression to
access an array element using a multiindex:

(apply #’aref array multiindex)

Operations with multiindices are similarly simple. For ex-
ample, the following function implements a sum of multi-
indices:

(defun multi-index-+ (&rest args)

(apply #’mapcar #’+ args))

Working with multidimensional arrays and indices is thus
very convenient. Functions to manipulate, compare, and
iterate over multiindices are easy to express.

5.3 Array permutations
A common operation in array manipulations is a permu-
tation of array indices. It corresponds to a matrix trans-
pose. We have found that an abstract implementation of
index permutations for arrays of arbitrary rank is rather
slow. On the other hand, SBCL can generate an efficient
machine code for a fixed permutation implemented using
nested loops. TEBDOL therefore uses a macro to generate
an expression with nested loops that performs a particular
permutation. Fixed permutation functions are generated,
compiled and stored in a cache during the program runtime.
The array-permutation function works in the following way:

1. If there already exists a permutation function for the
requested array rank and permutation description in
the cache, it is called.

2. Otherwise, such function is generated using the per-
mutation macro.

3. The generated function is compiled. SBCL produces
optimized code for nested loops.

4. The compiled function is stored in the cache. The
cache is implemented using a hash table with permu-
tation descriptions as keys.

5. The compiled function is called to perform the array
permutation.

The above strategy preserves the high-level interface, where
the permutation-function parameters are only the array it-
self and the permutation description. At the same time,
SBCL produces highly optimized and fast code. This strat-
egy would be very difficult to implement in the most of the
other programming languages.
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There are several types of tensor contraction performed dur-
ing a single program run. We could achieve a similar perfor-
mance without using macros by implementing each contrac-
tion type individually. Extending the algorithm, for example
to two-dimensional models, would be a challenging task. We
would need to implement new contraction types. Therefore
the main advantage of our solution is its generality and its
ease of use. Common Lisp allowed us to achieve it without
compromising on the performance.

5.4 Array contractions
Similarly to the array permutations, the array contraction
function makes use of a generating macro and a function
cache. The performance benefits are not as pronounced as
for the permutation function. However, this strategy en-
sures that the contraction function is as fast as possible. It
also helps in profiling, as each generated function shows up
independently in the profiler statistics.

Array contractions in TEBDOL utilize the BLAS library.
First, TEBDOL permutes array indices to ensure that the
contraction indices are either the leading or the ending in-
dices of both arrays. Then it calls the BLAS matrix multi-
plication routine. Here, the program uses SBCL functions
array-storage-vector and vector-sap that allows to pass
a pointer to Lisp typed arrays to external routines. As a re-
sult, the contraction function has a high-level interface that
supports arrays of any rank and contractions over multiple
indices. At the same time, the code is very fast thanks to
the optimized BLAS library.

5.5 Data serialization
Distributed-memory parallel programs have to transfer data
between computing nodes. The MPI standard provides sev-
eral data sending and receiving routines. These routines are
designed to transfer C and Fortran arrays and structures.
TEBDOL exchanges symmetric tensors between the nodes.
A symmetric tensor consists of lists, numbers, typed arrays,
and a few Lisp structures. To conveniently transfer these
tensors, TEBDOL uses custom data serialization and dese-
rialization routines.

The routines are implemented using macros. For each data
type, a custom function to serialize and deserialize the type
is defined. For example, the following expressions define
these routines for the type fixnum:

(defser fixnum (obj buf pos)

(if (plusp (length buf))

(pack obj +fixnum-size+ buf pos))

+fixnum-size+)

(defdes fixnum (buf pos)

(values (unpack +fixnum-size+ buf pos)

+fixnum-size+))

The macro defser generates a function that first stores a
one-byte type identifier into the output buffer buf. This
ensures that a correct function, generated by the defdes

macro, is dispatched during the deserialization. The func-
tions pack and unpack store and load representations of ob-

ject obj to and from a byte array buf at position pos, re-
spectively. When the serialization routine is called with a
buffer of length zero, the routine does not store any data,
and only calculates the required size of the output array.
The routines for more complex data structures recursively
store and load each structure member.

The data transfer in the sending process works as follows:

1. The required buffer length for the transferred object
in bytes is calculated.

2. A byte array with the calculated length is created.

3. The object is serialized into the created array.

4. Data in the array are sent as the MPI type MPI_BYTE.

In the receiving process:

1. The length of the incoming data is obtained using the
function MPI_Probe.

2. An input buffer with the required length is created.

3. Data are received into the created array as the MPI
type MPI_BYTE.

4. Data are deserialized into an object.

The serialization and deserialization routines provide a pow-
erful method to transfer any complex Lisp object with MPI.
They are fast enough for our application. A calculation of
new tensors during a time-evolution step takes an order of
magnitude longer than the exchange of tensors between MPI
processes.

6. COMMON LISP ISSUES
There are several areas that are difficult to handle in Com-
mon Lisp. Although the hindrances are not fundamental,
they have to be taken into account during program devel-
opment. Most of the following issues are specific to SBCL,
but they illustrate a class of problems one encounters when
interacting with real systems.

6.1 Profiling
Profiling is a necessary technique for developing a high-
performing program. SBCL offers two profiling packages,
a deterministic profiler sb-profile and a statistical profiler
sb-sprof.

sb-profile does not profile foreign functions and therefore
is not suitable for use with TEBDOL. sb-sprof works bet-
ter, it covers foreign functions and also prints a call graph.
Its performance hit is small enough and can be decreased
by adjusting the sampling frequency. However, the profiler
does not provide a complete performance picture. Its results
does not show the overhead of internal routines, especially
time spent in the garbage collector.
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Another approach is to use the Linux system-wide profiler
perf. It provides accurate and detailed statistics using hard-
ware counters. However, it does not distinguish between in-
dividual Lisp functions. perf supports dynamic languages
as well. The program has to create a file with debug in-
formation in the form of function addresses. It should be
straightforward to create a library providing this debug in-
formation for SBCL.

There exist powerful tools for code profiling and analysis
geared towards HPC users. A package underpinning several
of these tools is Score-P [4]. It provides instrumentation for
programs written in C/C++ and Fortran. Using a compiler
wrapper, Score-P automatically inserts calls to trace func-
tions during a compilation. The trace data generated in a
program run can be analyzed to obtain detailed report about
program bottlenecks. Score-P is easy to use in C/C++ and
Fortran, but there is no support for Common Lisp. The only
way to use it is to explicitly call trace functions. While this
approach is possible, the difficulties in low-level interaction
with the library make it a cumbersome solution. Profiling
cluster performance is thus quite limited in Lisp. A tool
that could automatically provide Score-P instrumentation
for Lisp programs would be a great improvement.

A good profiler should have low overhead, profile foreign
functions, produce a call graph, and include garbage collec-
tion overhead. sb-sprof is currently closest to achieving
these objectives. Profiling Lisp code with perf or Score-P

would provide a better overview of overall performance, but
has not been developed yet.

6.2 Garbage collection
TEBDOL is a memory-bound program. It can consume any
amount of computer memory to accurately simulate inter-
esting physical models. Garbage collection is thus a major
factor influencing both the maximal accessible model sizes
and calculation times. The behavior of the garbage collector
is hard to predict.

SBCL uses a generational garbage collector. Its design is
based on a hypothesis that the most recently allocated ob-
jects are ephemeral, i.e., they are also the most probable to
be collected soon. The collector allocates objects in gener-
ations and collects the most recent generations more often.
The oldest generation is collected only rarely.

The memory usage pattern of TEBDOL is quite different.
The existing tensors are used to calculate new tensors in each
time step. The program thus allocates huge data structures
in every step. The old structures can be released when they
are not referenced anymore. However, they are usually kept
in older generations and the collector does not collect them
immediately. Old huge tensors therefore easily fill up the
available dynamic space. This usage pattern, where the old-
est allocated objects are released often, does not satisfy the
hypothesis above.

With a standard collector settings, the accessible model sizes
are limited because of insufficient memory. To solve this
problem, TEBDOL performs an explicit full garbage collec-
tion after each partial time-evolution step. This strategy
keeps the allocated memory compact and allows us to use

much higher tensor dimensions. On the other hand, a full
garbage collection consumes processor time. Another pos-
sible strategy would be adjusting the collector settings, for
example, decreasing the number of generations or decreasing
the thresholds for collecting older generations.

6.3 Groveller
The groveller, provided by the SBCL package sb-grovel,
is a standard method to create Common Lisp interface to
libraries implemented in C. However, it is often easier to
define required foreign structures and constants by hand.
The following example illustrates such a case.

The MPI library defines a type MPI_Comm, which describes
a communicator handle. A default instance of this type is
a communicator MPI_COMM_WORLD, which is defined as a pre-
processor macro in a C header file. The actual definitions
are very different in OpenMPI and MPICH, the two stan-
dard implementations of the MPI specification. In Open-
MPI, MPI_Comm is a pointer and MPI_COMM_WORLD is a pointer
to a library object. The following definitions provide the re-
quired type and constant in SBCL:

(define-alien-type nil

(struct ompi-communicator-t))

(define-alien-type mpi-comm

(* (struct ompi-communicator-t)))

(define-alien-variable "ompi_mpi_comm_world"

(struct ompi-communicator-t))

(defparameter *mpi-comm-world*

(addr ompi-mpi-comm-world))

The version for MPICH is simpler. The type is an integer
and the constant is just a magic value:

(define-alien-type mpi-comm int)

(defparameter *mpi-comm-world* #x44000000)

It would be great if the groveller could provide these defini-
tions automatically in both cases. Another strategy would
be to write a wrapper library in C that would call respec-
tive MPI functions. Common Lisp code would call functions
from the wrapper library only. The wrapper library would
encapsulate the differences between MPI implementations.

6.4 Foreign libraries
TEBDOL uses the foreign libraries BLAS, LAPACK, and
MPI. There are several popular implementations of them.
Their optimized versions are usually supplied by the vendor
of a computer cluster. TEBDOL is being developed with
OpenBLAS, which provides both BLAS and LAPACK, and
OpenMPI.

While all implementations use the same API, there are ma-
jor differences in their behavior. The differences usually do
not affect programs in C and Fortran. However, they can
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influence the SBCL runtime environment. It is thus neces-
sary to test every implementation for incompatibilities with
SBCL.

For example, IBM MPI installs a signal handler for the signal
SIGSEGV. At the same time, SBCL uses SIGSEGV for its
memory management. As the MPI library is loaded dynam-
ically, the MPI handler takes over the SBCL handler. When
the operating system delivers the signal, the MPI handler
does not call the SBCL handler, and aborts the program in-
stead. The best solution for this problem would be to patch
the IBM MPI library. It is not easy, because the library is a
proprietary software with no source code available. Another
solution would be to reinstall the SBCL handler after calling
the function MPI_init, but that requires a change to SBCL
internals.

Implementation details of foreign libraries like in this ex-
ample represent a difficulty in making the Common Lisp
software portable in high-performance computing environ-
ments.

7. BENCHMARKS
In this section I present the scaling performance of TEB-
DOL. There are two notions of scaling, strong scaling refers
to a speedup with a fixed problem size, and weak scaling
refers to performance increase when the problem sizes grows
with the number of processes.

7.1 Strong scaling
The first presented benchmark simulates time evolution of
65 particles in a lattice with 65 sites and with a hopping
parameter J = U/10. In this case, tensor dimensions grow
quickly. I was able to run all calculations with the maximal
tensor dimension of D = 2000. The second benchmark simu-
lates a long lattice with 513 particles and 513 sites and with
a hopping parameter J = U/25. Due to memory require-
ments, I chose the maximal tensor dimension of D = 1000
to be able to finish the calculation even with a single MPI
process.

The scaling results for both calculations are presented in
Fig. 5. TEBDOL shows good strong scaling performance.

7.2 Weak scaling
The second benchmark simulates a lattice with a varying
number of lattice sites L and a varying number of parti-
cles N . In each calculation L = N . The results in Fig. 6
represent constant scaling performance. With the increased
problem size and with appropriately increased resources, the
calculation time is approximately constant.

7.3 Large dimensions
The last example shows a recalculation of a single state-of-
art result from Ref. [7]. Initially, atoms occupy even sites
in a one-dimensional lattice and do not hop between sites.
After a sudden change in lattice parameters, atoms start to
move around. The system then relaxes into equilibrium due
to their strong mutual interactions.

The calculation was performed in 32 MPI processes on 32
nodes. Each node was equipped with 16 CPU cores and
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Figure 5: Strong scaling of TEBDOL for two one-
dimensional models. Model A has 65 lattice sites
and 65 particles, while model B has 513 sites 513
particles. Maximal allowed tensor dimension was
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proximately constant weak scaling with the number
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Figure 7: Relaxation towards equilibrium in a one-
dimensional optical lattice. The calculation uses a
model from Ref. [7]. There are 43 particles on a
lattice with 121 sites. Particles initially occupy even
sites near the lattice center. They start to move
after a change of parameters at the time t = 0. nodd

is the particle density at odd sites. Maximal allowed
tensor dimension was D = 8000.
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64 GB RAM. The MPI processes consumed about 32 GB of
memory at their peaks. The calculation took about 38 hours
with the maximal tensor dimension of D = 8000. The result
in Fig. 7 shows a change in the occupation of odd sites with
time. The example illustrates that our implementation is
competitive with other state-of-art implementations.

8. CONCLUSIONS
In this paper I discussed experience with using Common Lisp
in the field of computational quantum physics. Common
Lisp equipped with external numerical libraries is a suitable
programming language for this domain. While there are
some disadvantages with regards to existing libraries and
tools that focus on C and Fortan, the overall experience has
been positive. The power of language constructs in Common
Lisp will be beneficial in extending the current program to
higher-dimensional models.

A major improvement over the current state of things would
be a better groveller. Many programs access foreign li-
braries. Several libraries provide a clean API on the source-
code level only. A groveller should parse library headers and
provide Common Lisp definitions. The tools we worked with
are quite limited in this scope, and cannot provide proper
definitions for OpenMPI. I am not aware of any tool that
have the required capabilities. A better groveller would ac-
celerate the development and would also provide access the
non-fundamental but useful libraries like the Score-P profil-
ing library.

Most of TEBDOL is written in ANSI Common Lisp. We use
extensions specific to SBCL mainly for calling foreign func-
tions. It should be easy to port the program to other im-
plementations after rewritting this code to use CFFI. Other
non-portable code deals with garbage collection, but it is
not critical to the program operation. However, we do not
plan to port the program, because SBCL suits our needs.
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ABSTRACT
Environments are mentioned in many places in the Com-
mon Lisp standard, but the nature of such objects is not
specified. For the purpose of this paper, an environment
is a mapping from names to meanings. In a typical Com-
mon Lisp implementation the global environment is not a
first-class object.

In this paper, we advocate first-class global environments,
not as an extension or a modification of the Common Lisp
standard, but as an implementation technique. We state
several advantages in terms of bootstrapping, sandboxing,
and more. We show an implementation where there is no
performance penalty associated with making the environ-
ment first class. For performance purposes, the essence of
the implementation relies on the environment containing
cells (ordinary cons cells in our implementation) holding
bindings of names to functions and global values that are
likely to be heavily solicited at runtime.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, Packages; D.3.4 [Programming
Languages]: Processors—Code generation, Run-time envi-
ronments

General Terms
Design, Languages

Keywords
CLOS, Common Lisp, Environment

1. INTRODUCTION
The Common Lisp standard contains many references to
environments. Most of these references concern lexical envi-
ronments at compile time, because they are needed in order
to process forms in non-null lexical environments. The stan-
dard does not specify the nature of these objects, though in

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
ELS ’15, April 20 - 21 2015, London, UK Copyright is held by the author.

CLtL2 [5] there is a suggested protocol that is sometimes
supplied in existing Common Lisp implementations.

When it comes to global environments, however, the stan-
dard is even more reticent. In section 3.2.1 (entitled Com-
piler Terminology) of the Common Lisp HyperSpec, the dis-
tinction is made between the startup environment, the com-
pilation environment, the evaluation environment, and the
runtime environment. Excluding the runtime environment,
the standard allows for all the others to be identical.

In a typical Common Lisp implementation, these global en-
vironments are not first-class objects, and there is typically
only one global environment available as specifically allowed
by the standard. In some implementations, part of the en-
vironment is contained in other objects. For instance, it is
common for a symbol object to contain a value cell contain-
ing the global value (if any) of the variable having the name
of the symbol and/or a function cell containing the defini-
tion of a global function having the name of the symbol.
This kind of representation is even implicitly suggested by
the standard in that it sometimes uses terminology such as
value cell and function cell1, while pointing out that this
terminology is “traditional”.

In this paper, we argue that there are many advantages to
making the global environment a first-class object. An im-
mediate advantage is that it is then possible to distinguish
between the startup environment, the compilation environ-
ment and the evaluation environment so that compile-time
evaluations by the compiler are not visible in the startup-
environment. However, as we show in this paper, there are
many more advantages, such as making it easier to create
a so-called sandbox environment, which is notoriously diffi-
cult to do in a typical Common Lisp implementation. An-
other significant advantage of first-class global environments
is that it becomes unnecessary to use temporary package
names for bootstrapping a target Common Lisp system from
a host Common Lisp system.

In order for first-class global environments to be a viable
alternative to the traditional implementation method, they
must not incur any performance penalty, at least not at
runtime. We show an implementation of first-class global
environments that respects this constraint by supplying cells
that can be thought of as the same as the traditional value

1See for instance the glossary entries for cell, value cell, and
function cell in the HyperSpec.
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cells and function cells, except that they are dislocated so
that the are physically located in the environment object as
opposed to being associated with a symbol.

2. PREVIOUS WORK
2.1 Gelernter et al
The idea of first-class environments is of course not new.
Gelernter et al [1] defined a language called “Symmetric
Lisp” in which the programmer is allowed to evaluate ex-
pressions with respect to a particular first-class environment.
They suggest using this kind of environment as a replace-
ment for a variety of constructs, including closures, struc-
tures, classes, and modules. The present paper does not
have this kind of ambitious objective, simply because we do
not know how to obtain excellent performance for all these
constructs with our suggested protocol.

2.2 Miller and Rozas
Miller and Rozas [2] describe a set of extensions for the
Scheme programming language. In their paper, Miller and
Rozas also claim that their proposed first-class environments
could serve as a basis for an object-oriented system. Like the
present work, Miller and Rozas are concerned with perfor-
mance, and a large part of their paper is dedicated to this
aspect of their proposal.

In their paper, they show that the extensions incurs no per-
formance penalty for code that does not use it. However, for
code that uses the extension, the compiler defers accesses to
the first-class environment to the interpreter, thereby im-
posing a performance penalty in code using the extension.

The basic mechanism of their proposed extension is a special
form named make-environment that creates and returns an
environment in which the code in the body of that special
form is executed. The operators lexical-reference and
lexical-assignment are provided to access bindings in a
first-class environment.

From the examples in the paper, it is clear that their first-
class environments are meant to be used at a much finer
level of granularity than ours.

2.3 Queinnec and Roure
Queinnec and de Roure [3] proposed a protocol for first-
class environments in the context of the Scheme program-
ming language. Their motivation is different from ours, in
that their environments are meant to be part of the user-
visible interface so as to simplify sharing of various objects.
However, like the present work, they are also concerned with
performance, and they show how to implement their proto-
col without serious performance degradation.

The environments proposed by Queinnec and de Roure were
clearly meant to allow for modules as collections of bindings
where the bindings can be shared by other modules through
the use of the new operators export and import. In contrast,
the first-class environments proposed in the present paper
are not meant to allow such sharing of bindings, though our
proposal might allow such sharing for function and variable
bindings.

The paper by Queinnec and de Roure contains a thorough
survey of other work related to first-class environments that
will not be repeated here.

2.4 Garret’s lexicons
Ron Garret describes lexicons2 which are said to be first-
class global environments. However, the concept of a lexi-
con is very different from the concept of a first-class global
environment as defined in this paper.

For one thing, a lexicon is “a mapping from symbols to
bindings”, which excludes a per-environment set of pack-
ages, simply because package names are not symbols, but
strings.

Furthermore, a clearly stated goal of lexicons is to create a
different Lisp dialect targeted to new users or to users that
have prior experience with languages that are different from
Lisp.

One explicit goal of lexicons is to replace Common Lisp pack-
ages, so that there is a single system-wide symbol with a
particular name. In contrast, the first-class environments
presented in this paper do not in any way affect the package
system. It should be noted that with our first-class envi-
ronments, symbols are still unique, i.e., for a given package
P and a given symbol name N , there is at most one sym-
bol with the name N in P ; independently of the number of
first-class environments in the system.

Garret discusses the use of lexicons as modules and shows
examples where functions defined in one lexicon can be im-
ported into a different lexicon. The use of the operator use-
lexicon imports all the bindings of an explicitly-mentioned
lexicon into the current one. In the present work, we do not
emphasize the possibility of sharing bindings between first-
class environments. However, since functions and global val-
ues of special variables are stored in indirections called cells
in our environment, such sharing of bindings would also be
possible in the first-class environments presented in this pa-
per.

3. OUR TECHNIQUE
We suggest a CLOS-based protocol defining the set of oper-
ations on a first-class environment. This protocol contains
around 40 generic functions. The details of the proposed
protocol can be found in the appendix of this paper. The
protocol has been implemented as part of the SICL project.3

Mainly, the protocol contains versions of Common Lisp en-
vironment functions such as fboundp, find-class, etc. that
take an additional required environment argument.

For a simple example, consider the SICL implementation of
the standard Common Lisp function fboundp:

(defun fboundp (name)
(sicl-genv:fboundp
name

2Unpublished document. A PDF version can be found here:
http://www.flownet.com/ron/lisp/lexicons.pdf.
3See https://github.com/robert-strandh/SICL.
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(load-time-value (sicl-genv:global-environment))))

In this example sicl-genv is the nickname for the package
named sicl-global-environment which contains the sym-
bols of the protocol defined in this paper. In each global en-
vironment, the function global-environment in that pack-
age returns the value of the environment itself. When the
definition in the example above is loaded, either as source
or from a previously compiled file, the value of the load-

time-value form will therefore be the global environment
in which the definition is loaded, thereby permanently link-
ing this definition to that global environment.

In addition to these functions, the protocol contains a set of
functions for accessing cells that in most implementations
would be stored elsewhere. Thus, a binding of a function
name to a function object contains an indirection in the
form of a function cell. The same holds for the binding of a
variable name (a symbol) to its global value. In our imple-
mentation, these cells are ordinary cons cells with the car

containing the value of the binding, and the cdr containing
nil. The reason for using ordinary cons cells is that they
are already supported in any Common Lisp implementation.
The only possible reason for choosing a different represen-
tation for cells would be to save one word in each cell, since
the cdr slot in each of our cons cells is wasted. However,
the saved space would probably be more than consumed by
the space occupied by specialized inspector functionality for
dealing with custom cell representations.

These cells are created as needed. The first time a refer-
ence to a function is made, the corresponding cell is created.
Compiled code that refers to a global function will have the
corresponding cell in its run-time environment. The cost
of accessing a function at run-time is therefore no greater
in our implementation than in an implementation that ac-
cesses the function through the symbol naming it, hence our
claim that there is no performance penalty for accessing this
information at run-time.

The SICL compiler translates a reference to a global function
(say foo) into something similar to this code:

(car
(load-time-value
(sicl-genv:function-cell
’foo
(sicl-genv:global-environment+))))

except that what is shown as car is not the full Common
Lisp function, because the argument is known to be a cons

cell. When the code containing this reference is loaded, the
resulting machine code will refer to a local variable contain-
ing the cons cell of the current global environment that is
permanently assigned to holding the function definition of
foo.

Our technique does, however, incur a performance penalty
for functions such as fdefinition and symbol-value with
an argument that is computed at run-time4 compared to

4When the argument is a constant, a suitable compiler-

an implementation in which each symbol contains slots for
these objects. However, even in a high-performance imple-
mentation such as SBCL, these values are not contained in
symbol slots.

The performance penalty incurred on these functions de-
pends on the exact representation of the environment. The
representation of the environment is outside the scope of
this paper, however. Here, we only consider the protocol
for accessing it. However, it is not hard to devise a reason-
able implementation. In SICL, we use a hash table for each
namespace with the keys being the corresponding names5 of
the entities in that namespace.

While it is possible for the application programmer to create
new global environments, it would not be a common thing
to do, at least not for the applications of first-class global
environments that we have considered so far. For that rea-
son, we have not streamlined any particular technique for
doing so. The difficulty is not in creating the environment
per se, but rather in filling it with useful objects. For the
purpose of bootstrapping, we currently fill environments by
loading code into it from files.

4. BENEFITS OF OUR METHOD
4.1 Native compilation
The Common Lisp standards suggests that the startup envi-
ronment and the evaluation environment may be different.6

Our method allows most evaluations by the compiler to have
no influence in the startup environment. It suffices to clone
the startup environment in order to obtain the evaluation
environment.

With the tradition of the startup environment and evalua-
tion environment being identical, some evaluations by the
compiler would have side effects in the startup environment.
In particular, the value cells and function cells are shared.
Therefore, executing code at compile time that alters the
global binding of a function or a variable will also be seen
in the startup environment.

As an example of code that should not be evaluated in the
startup environment, consider definitions of macros that are
only required for the correct compilation of some program,
as well as definitions of functions that are only required for
the expansion of such macros. A definition for this purpose
might be wrapped in an eval-when form with :compile-

toplevel as the only situation in which the definition should
be evaluated. When the evaluation environment and the
startup environment are identical, such a definition will be
evaluated in the startup environment, and persist after the
program has been compiled.

macro can turn the form into an access of the corresponding
cell.
5Functions are named by symbols and lists; variables are
named by symbols; packages are named by strings; classes
are named by symbols; etc.
6Recall that the startup environment is the global environ-
ment as it was when the compilation was initiated, and
that the evaluation environment is the global environment
in which evaluations initiated by the compiler are accom-
plished.
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4.2 Bootstrapping
For the purpose of this paper, we use the word bootstrapping
to mean the process of building the executable of some im-
plementation (the target system) by executing code in the
running process of another implementation (the host sys-
tem). The host and the target systems may be the same
implementation. In this context, a cross compiler is a com-
piler that executes in the host system while generating code
for the target system.

When a host Common Lisp system is used to bootstrap a
target Common Lisp system, the target system needs its
own definitions of many standard Common Lisp features. In
particular, in order to compile code for the target system in
the host system, the cross compiler needs access to the target
definitions of standard Common Lisp macros, in particular
the defining macros such as defun, defmacro, defgeneric,
defvar, etc.

It is, of course, not an option to replace the host versions
of such macros with the corresponding target versions. Do-
ing so would almost certainly break the host system in ir-
reparable ways. To avoid that the system might be damaged
this way, many Common Lisp systems have a feature called
package locks7 which prevents the redefinition of standard
Common Lisp functions, macros, etc.

To deal with the problem of bootstrapping, some systems,
in particular SBCL, replace the standard package names by
some other names for target code, typically derived from the
standard names in some systematic way [4]. Using different
package names guarantees that there is no clash between a
host package name and the corresponding target package
name. However, using non-standard package names also
means that the text of the source code for the target will
not correspond to the target code that ends up in the final
system.

As an alternative to renaming packages, first-class global en-
vironments represent an elegant solution to the bootstrap-
ping problem. In a system that already supports first-class
global environments, creating a new such environment in
which the target definitions are allowed to replace standard
Common Lisp definitions is of course very simple. But even
in a host system that does not a priori support first-class
global environments, it is not very difficult to create such
environments.

Making the cross compiler access such a first-class global
environment is just a matter of structuring its environment-
lookup functions so that they do not directly use standard
Common Lisp functions such as fboundp or fdefinition,
and instead use the generic functions of the first-class global
environment protocol.

4.3 Sandboxing
It is notoriously hard to create a so-called sandbox environ-
ment for Common Lisp, i.e., an environment that contains a

7The name of this feature is misleading. While it does make
sure that the protected package is not modified, it also makes
sure that functions, macros, etc., with names in the package
are not redefined. Such redefinitions do not alter the package
itself, of course.

“safe” subset of the full language. A typical use case would
be to provide a Read-Eval-Print Loop accessible through a
web interface for educational purposes. Such a sandbox en-
vironment is hard to achieve because functions such as eval
and compile would have to be removed so that the environ-
ment could not be destroyed by a careless user. However,
these functions are typically used by parts of the system.
For example, CLOS might need the compiler in order to
generate dispatch code.

The root of the problem is that in Common Lisp there is al-
ways a way for the user of a Read-Eval-Print Loop to access
every global function in the system, including the compiler.
While it might be easy to remove functions that may render
the system unusable directly such as functions for opening
and deleting files, it is generally not possible to remove the
compiler, since it is used at run-time to evaluate expressions
and in many systems in order to create functions for generic
dispatch. With access to the compiler, a user can potentially
create and execute code for any purpose.

Using first-class global environments solves this problem in
an elegant way. It suffices to provide a restricted environ-
ment in which there is no binding from the names eval and
compile to the corresponding functions. These functions
can still be available in some other environment for use by
the system itself.

4.4 Multiple package versions
When running multiple applications in the same Common
Lisp process, there can easily be conflicts between different
versions of the same package. First-class global environ-
ments can alleviate this problem by having different global
environments for the different applications causing the con-
flict.

Suppose, for instance, that applications A and B both re-
quire some Common Lisp package P, but that P exists in
different versions. Suppose also that A and B require differ-
ent such versions of P. Since the Common Lisp standard has
no provisions for multiple versions of a package, it becomes
difficult to provide both A and B in the same Common Lisp
process.

Using first-class global environments as proposed in this pa-
per, two different global environments can be created for
building A and B. These two environments would differ in
that the name P would refer to different versions of the
package P.

4.5 Separate environment for each application
Taking the idea of Section 4.4 even further, it is sometimes
desirable for a large application to use a large number of
packages that are specific to that application. In such a
situation, it is advantageous to build the application in a
separate global environment, so that the application-specific
packages exist only in that environment. The main entry
point(s) of the application can then be made available in
other environments without making its packages available.

Using separate first-class global environments for this pur-
pose would also eliminate the problem of choosing package
names for an application that are guaranteed not to conflict
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with names of packages in other applications that some user
might simultaneously want to install.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have advocated first-class global environ-
ments as a way of implementing the global environments
mentioned in the HyperSpec. We have seen that this tech-
nique has several advantages in terms of flexibility of the
system, and that it greatly simplifies certain difficult prob-
lems such as bootstrapping and sandboxing.

An interesting extension of our technique would be to con-
sider environment inheritance.8 For example, an environ-
ment providing the standard bindings of the Common Lisp
language could be divided into an immutable part and a
mutable part. The mutable part would then contain fea-
tures that can be modified by the user, such as the generic
function print-object or the variable *print-base*, and it
would inherit from the immutable part. With this feature,
it would only be necessary to clone the mutable part in or-
der to create the evaluation environment from the startup
environment as suggested in Section 4.1.

We also think that first-class global environments could be
an excellent basis for a multi-user Common Lisp system.

In such a system, each user would have an initial, private,
environment. That environment would contain the stan-
dard Common Lisp functionality. Most standard Common
Lisp functions would be shared between all users. Some
functions, such as print-object or initialize-instance

would not be shared, so as to allow individual users to add
methods to them without affecting other users.

Furthermore, functionality that could destroy the integrity
of the system, such as access to raw memory, would be ac-
cessible in an environment reserved for system maintenance.
This environment would not be accessible to ordinary users.
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APPENDIX
A. PROTOCOL
In this appendix we present the generic functions making
up the protocol for our first-class global environments. The
definitions here should be considered preliminary, because
there are some aspects of this protocol that need further con-
sideration. As an example, consider the function function-

lambda-list. We have not made up our minds as to whether
this function should be part of the protocol, or just a func-
tion to be applied to function objects.

In order for our definitions to fit in a column, we have ab-
breviated “Generic Function” as “GF”.

+global-environment+ [Constant ]

8We mean inheritance not in the sense of subclassing, but
rather as used in section 3.2.1 of the HyperSpec.

In each global environment e, the value of this constant vari-
able is e.

global-environment [Function]

In each global environment e, this function takes no argu-
ments and returns e.

fboundp fname env [GF ]

This generic function is a generic version of the Common
Lisp function cl:fboundp.

It returns true if fname has a definition in env as an ordinary
function, a generic function, a macro, or a special operator.

fmakunbound fname env [GF ]

This generic function is a generic version of the Common
Lisp function cl:fmakunbound.

Makes fname unbound in the function namespace of env.

If fname already has a definition in env as an ordinary func-
tion, as a generic function, as a macro, or as a special oper-
ator, then that definition is lost.

If fname has a setf expander associated with it, then that
setf expander is lost.

special-operator fname env [GF ]

If fname has a definition as a special operator in env, then
that definition is returned. The definition is the object
that was used as an argument to (setf special-operator).
The exact nature of this object is not specified, other than
that it can not be nil. If fname does not have a definition
as a special operator in env, then nil is returned.

(setf special-operator) new-def fname env [GF ]

Set the definition of fname to be a special operator. The
exact nature of new-def is not specified, except that a value
of nil means that fname no longer has a definition as a
special operator in env.

If a value other than nil is given for new-def, and fname
already has a definition as an ordinary function, as a generic
function, or as a macro, then an error is signaled. As a
consequence, if it is desirable for fname to have a definition
both as a special operator and as a macro, then the definition
as a special operator should be set first.

fdefinition fname env [GF ]

This generic function is a generic version of the Common
Lisp function cl:fdefinition.

If fname has a definition in the function namespace of env
(i.e., if fboundp returns true), then a call to this function
succeeds. Otherwise an error of type undefined-function

is signaled.

If fname is defined as an ordinary function or a generic func-
tion, then a call to this function returns the associated func-
tion object.

If fname is defined as a macro, then a list of the form
(cl:macro-function function) is returned, where function
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is the macro expansion function associated with the macro.

If fname is defined as a special operator, then a list of the
form (cl:special object) is returned, where the nature of
object is currently not specified.

(setf fdefinition) new-def fname env [GF ]

This generic function is a generic version of the Common
Lisp function cl:fdefinition.

new-def must be an ordinary function or a generic function.
If fname already names a function or a macro, then the
previous definition is lost. If fname already names a special
operator, then an error is signaled.

If fname is a symbol and it has an associated setf expander,
then that setf expander is preserved.

macro-function symbol env [GF ]

This generic function is a generic version of the Common
Lisp function cl:macro-function.

If symbol has a definition as a macro in env, then the corre-
sponding macro expansion function is returned.

If symbol has no definition in the function namespace of env,
or if the definition is not a macro, then this function returns
nil.

(setf macro-function) new-def symbol env [GF ]

This generic function is a generic version of the Common
Lisp function (setf cl:macro-function).

new-def must be a macro expansion function or nil. A call
to this function then always succeeds. A value of nil means
that the symbol no longer has a macro function associated
with it. If symbol already names a macro or a function,
then the previous definition is lost. If symbol already names
a special operator, that definition is kept.

If symbol already names a function, then any proclamation
of the type of that function is lost. In other words, if at
some later point symbol is again defined as a function, its
proclaimed type will be t.

If symbol already names a function, then any inline or
notinline proclamation of the type of that function is lost.
In other words, if at some later point symbol is again defined
as a function, its proclaimed inline information will be nil.

If fname is a symbol and it has an associated setf expander,
then that setf expander is preserved.

compiler-macro-function fname env [GF ]

This generic function is a generic version of the Common
Lisp function cl:compiler-macro-function.

If fname has a definition as a compiler macro in env, then
the corresponding compiler macro function is returned.

If fname has no definition as a compiler macro in env, then
this function returns nil.

(setf compiler-macro-function) new-def fname env [GF ]

This generic function is a generic version of the Common
Lisp function (setf cl:compiler-macro-function).

new-def can be a compiler macro function or nil. When
it is a compiler macro function, then it establishes new-def
as a compiler macro for fname and any existing definition
is lost. A value of nil means that fname no longer has a
compiler macro associated with it in env.

function-type fname env [GF ]

This generic function returns the proclaimed type of the
function associated with fname in env.

If fname is not associated with an ordinary function or a
generic function in env, then an error is signaled.

If fname is associated with an ordinary function or a generic
function in env, but no type proclamation for that function
has been made, then this generic function returns t.

(setf function-type) new-type fname env [GF ]

This generic function is used to set the proclaimed type of
the function associated with fname in env to new-type.

If fname is associated with a macro or a special operator in
env, then an error is signaled.

function-inline fname env [GF ]

This generic function returns the proclaimed inline informa-
tion of the function associated with fname in env.

If fname is not associated with an ordinary function or a
generic function in env, then an error is signaled.

If fname is associated with an ordinary function or a generic
function in env, then the return value of this function is
either nil, inline, or notinline. If no inline proclamation
has been made, then this generic function returns nil.

(setf function-inline) new-inline fname env [GF ]

This generic function is used to set the proclaimed inline
information of the function associated with fname in env to
new-inline.

new-inline must have one of the values nil, inline, or
notinline.

If fname is not associated with an ordinary function or a
generic function in env, then an error is signaled.

function-cell fname env [GF ]

A call to this function always succeeds. It returns a cons

cell, in which the car always holds the current definition of
the function named fname. When fname has no definition
as a function, the car of this cell will contain a function that,
when called, signals an error of type undefined-function.
The return value of this function is always the same (in
the sense of eq) when it is passed the same (in the sense
of equal) function name and the same (in the sense of eq)
environment.

function-unbound fname env [GF ]

A call to this function always succeeds. It returns a func-
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tion that, when called, signals an error of type undefined-

function. When fname has no definition as a function, the
return value of this function is the contents of the cons cell
returned by function-cell. The return value of this func-
tion is always the same (in the sense of eq) when it is passed
the same (in the sense of equal) function name and the same
(in the sense of eq) environment. Client code can use the
return value of this function to determine whether fname is
unbound and if so signal an error when an attempt is made
to evaluate the form (function fname).

function-lambda-list fname env [GF ]

This function returns two values. The first value is an ordi-
nary lambda list, or nil if no lambda list has been defined
for fname. The second value is true if and only if a lambda
list has been defined for fname.

boundp symbol env [GF ]

It returns true if symbol has a definition in env as a con-
stant variable, as a special variable, or as a symbol macro.
Otherwise, it returns nil.

constant-variable symbol env [GF ]

This function returns the value of the constant variable sym-
bol.

If symbol does not have a definition as a constant variable,
then an error is signaled.

(setf constant-variable) value symbol env [GF ]

This function is used in order to define symbol as a constant
variable in env, with value as its value.

If symbol already has a definition as a special variable or as
a symbol macro in env, then an error is signaled.

If symbol already has a definition as a constant variable, and
its current value is not eql to value, then an error is signaled.

special-variable symbol env [GF ]

This function returns two values. The first value is the value
of symbol as a special variable in env, or nil if symbol does
not have a value as a special variable in env. The second
value is true if symbol does have a value as a special variable
in env and nil otherwise.

Notice that the symbol can have a value even though this
function returns nil and nil. The first such case is when the
symbol has a value as a constant variable in env. The second
case is when the symbol was assigned a value using (setf

symbol-value) without declaring the variable as special.

(setf special-variable) value symbol env init-p [GF ]

This function is used in order to define symbol as a special
variable in env.

If symbol already has a definition as a constant variable or as
a symbol macro in env, then an error is signaled. Otherwise,
symbol is defined as a special variable in env.

If symbol already has a definition as a special variable, and
init-p is nil, then this function has no effect. The current
value is not altered, or if symbol is currently unbound, then

it remains unbound.

If init-p is true, then value becomes the new value of the
special variable symbol.

symbol-macro symbol env [GF ]

This function returns two values. The first value is a macro
expansion function associated with the symbol macro named
by symbol, or nil if symbol does not have a definition as a
symbol macro. The second value is the form that symbol
expands to as a macro, or nil if symbol does not have a
definition as a symbol macro.

It is guaranteed that the same (in the sense of eq) function
is returned by two consecutive calls to this function with the
same symbol as the first argument, as long as the definition
of symbol does not change.

(setf symbol-macro) expansion symbol env [GF ]

This function is used in order to define symbol as a symbol
macro with the given expansion in env.

If symbol already has a definition as a constant variable, or
as a special variable, then an error of type program-error

is signaled.

variable-type symbol env [GF ]

This generic function returns the proclaimed type of the
variable associated with symbol in env.

If symbol has a definition as a constant variable in env, then
the result of calling type-of on its value is returned.

If symbol does not have a definition as a constant variable
in env, and no previous type proclamation has been made
for symbol in env, then this function returns t.

(setf variable-type) new-type symbol env [GF ]

This generic function is used to set the proclaimed type of
the variable associated with symbol in env.

If symbol has a definition as a constant variable in env, then
an error is signaled.

It is meaningful to set the proclaimed type even if sym-
bol has not previously been defined as a special variable or
as a symbol macro, because it is meaningful to use (setf

symbol-value) on such a symbol.

Recall that the HyperSpec defines the meaning of proclaim-
ing the type of a symbol macro. Therefore, it is meaningful
to call this function when symbol has a definition as a symbol
macro in env.

variable-cell symbol env [GF ]

A call to this function always succeeds. It returns a cons

cell, in which the car always holds the current definition of
the variable named symbol. When symbol has no definition
as a variable, the car of this cell will contain an object that
indicates that the variable is unbound. This object is the
return value of the function variable-unbound. The return
value of this function is always the same (in the sense of eq)
when it is passed the same symbol and the same environ-
ment.
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variable-unbound symbol env [GF ]

A call to this function always succeeds. It returns an object
that indicates that the variable is unbound. The cons cell
returned by the function variable-cell contains this object
whenever the variable named symbol is unbound. The re-
turn value of this function is always the same (in the sense of
eq) when it is passed the same symbol and the same environ-
ment. Client code can use the return value of this function
to determine whether symbol is unbound.

find-class symbol env [GF ]

This generic function is a generic version of the Common
Lisp function cl:find-class.

If symbol has a definition as a class in env, then that class
metaobject is returned. Otherwise nil is returned.

(setf find-class) new-class symbol env [GF ]

This generic function is a generic version of the Common
Lisp function (setf cl:find-class).

This function is used in order to associate a class with a
class name in env.

If new-class is a class metaobject, then that class metaobject
is associated with the name symbol in env. If symbol already
names a class in env than that association is lost.

If new-class is nil, then symbol is no longer associated with
a class in env.

If new-class is neither a class metaobject nor nil, then an
error of type type-error is signaled.

setf-expander symbol env [GF ]

This generic function returns the setf expander associated
with symbol in env. If symbol is not associated with any
setf expander in env, then nil is returned.

(setf setf-expander) new-expander symbol env [GF ]

This generic function is used to set the setf expander asso-
ciated with symbol in env.

If symbol is not associated with an ordinary function, a
generic function, or a macro in env, then an error is sig-
naled.

If there is already a setf expander associated with symbol
in env, then the old setf expander is lost.

If a value of nil is given for new-expander, then any current
setf expander associated with symbol is removed. In this
case, no error is signaled, even if symbol is not associated
with any ordinary function, generic function, or macro in
env.

default-setf-expander env [GF ]

This generic function returns the default setf expander, to
be used when the function setf-expander returns nil. This
function always returns a valid setf expander.

(setf default-setf-expander) new-expander env [GF ]

This generic function is used to set the default setf ex-

pander in env.

type-expander symbol env [GF ]

This generic function returns the type expander associated
with symbol in env. If symbol is not associated with any
type expander in env, then nil is returned.

(setf type-expander) new-expander symbol env [GF ]

This generic function is used to set the type expander asso-
ciated with symbol in env.

If there is already a type expander associated with symbol
in env, then the old type expander is lost.

find-package name env [GF ]

Return the package with the name or the nickname name
in the environment env. If there is no package with that
name in env, then return nil. Contrary to the standard
Common Lisp function cl:find-package, for this function,
name must be a string.

package-name package env [GF ]

Return the string that names package in env. If package
is not associated with any name in env, then nil is re-
turned. Contrary to the standard Common Lisp function
cl:package-name, for this function, package must be a pack-
age object.

(setf package-name) new-name package env [GF ]

Make the string new-name the new name of package in env.
If new-name is nil, then package no longer has a name in
env.

package-nicknames package env [GF ]

Return a list of the strings that are nicknames of package
in env. Contrary to the standard Common Lisp function
cl:package-nicknames, for this function, package must be
a package object.

(setf package-nicknames) new-names package env [GF ]

Associate the strings in the list new-names as nicknames of
package in env.
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Woo: a fast HTTP server for Common Lisp

Eitaro Fukamachi
Somewrite Co., Ltd.

Tokyo, Japan
e.arrows@gmail.com

1. INTRODUCTION
HTTP (Hypertext Transfer Protocol) is a successful protocol
that transfers hypertext requests and information between
servers and browsers. It was originally intended for the
World Wide Web, however, these days it is commonly used
for activities that do more than just send HTML documents
between servers.

In the context of increasing information exchange, the impor-
tance of HTTP is raising with each passing day. As the scope
of HTTP gets wider, more robust servers becomes a necessity.
One such server is Woo.

Woo is a high-performance HTTP server written in Common
Lisp. It is designed to be fast and to be able to handle vast
amounts of simultaneous connections.

2. HOW FAST?
Figure 1 is a benchmark graph of several HTTP servers.

Figure 1: Benchmark

The y-axis represents a number of requests processed in 1 sec-
ond when responding with a “Hello, World” to every client,
and the variable “c” on x-axis tells the number of simultane-
ous connections the server is holding at the moment.

Among the HTTP servers, Woo stands second, only next to
Go in performance. It’s approximately 3.5 times faster than
Wookie[1] and 4 times faster than Hunchentoot[2].

The graph indicates that not only Woo can respond faster
than many other HTTP servers but also that the performance

hardly deteriorates even when the number of simultaneous
connections increase.

See https://github.com/fukamachi/woo#benchmark for the
detail.

3. WHY FAST?
3.1 Better architecture
Roughly speaking, all HTTP servers can be classified into 2
groups by their architecture – “Multi-process I/O model” and
“Evented I/O model”.

3.1.1 Multi-process I/O
“Multi-process I/O model” is an architecture that uses mul-
tiple OS processes (or threads) to manage HTTP clients (Fig-
ure 2). Each process handles 1 client at a time. Although
this model is a simple and traditional one, its performance
could drop massively when many client requests arrive at the
server simultaneously, because each process will be blocked
during the process of reading an HTTP request and sending
acknowledging it with a response.

Figure 2: Slow client problem in multi-process I/O model

Hunchentoot, which was also written in Common Lisp, has
this problem. It spawns a thread for each request, but there is
a limit on the thread count, which means, there’s a restriction
on the number of client requests the Hunchentoot server can
handle at a time.
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The default limit is 100. Such a number could be easily ex-
ceeded if there are a lot of slow clients (such as 3G smart-
phones). If the web application uses interactive connections
like WebSocket, the number of connected clients would in-
crease. Besides that, Hunchentoot is vulnerable to DoS at-
tacks like Slowloris[3]. Although the limit can be raised to
1,000,000, we also naturally have a limit on the number of
CPUs. The performance would decrease quickly when the
thread count is higher than a number of processors.

3.1.2 Evented I/O
“Evented I/O model” is another choice for handling a mul-
titude of client request simultaneously (Figure 3). Each pro-
cess has an “event-loop” which allows asynchronous I/O.
Therefore, this kind of HTTP servers can handle more clients
at the same time than multi-process I/O model. As clients
don’t block each other, the server performance doesn’t go
down much even when many requests are sent by numerous
clients at the same time. Slowloris attack isn’t an issue with
this model.

Figure 3: Evented I/O model

3.2 Fast HTTP parsing
As HTTP parsing is executed for every request, it can result
in a bottleneck situation, especially when the HTTP server
is having many parse requests in queue. Woo uses fast-
http[4] for HTTP request parsing. It’s 5 times faster than
http-parser[5], a C equivalent used in Node.js.

Both fast-http and http-parser don’t buffer data and parse
HTTP requests asynchronously. The difficulty here is that
an HTTP chunk that a parser gets could end in the middle.
For handling such a case, most asynchronous HTTP parsers
have an internal state for tracking where it is reading.

Common HTTP parser like http-parser looks like this:

(do ((i 0 (1+ i)))

((= i end))

(let ((byte (aref data i)))

(case (parser-state parser) ;; <- executed for every char

(:parse-method

(cond

((= byte (char-code #\G))

(setf (parser-state parser) :parse-method-get))

((= byte (char-code #\P))

(setf (parser-state parser) :parse-method-post))

...))

(:parse-uri ...) ...)))

It is a character-level state machine. It’s simple and easy
to implement, however, if the performance really matters,
the model would be worse because the “case” condition is
executed for every character. The fast-http also has the state;
it saves it for each line and not for each character. It has
a big advantage of reducing the condition matching though
it would backtrack when a chunk ends in the middle of a
line, because most HTTP request-lines and headers arrive in
a single packet anyway.

The speed of fast-http is a result of not just its architecture, but
also of its many optimization techniques such as – less mem-
ory allocations, choosing the right data types and type dec-
larations. Common Lisp programs can sometimes be faster
than C programs if they have been written in an optimized
manner.

3.3 The libev event library
The libev[6] is a wrapper of Linux’s epoll, BSD’s kqueue,
POSIX select and poll. It enables us to read HTTP requests
and send responses asynchronously. It is thin and fast when
compared to other similar libraries such as – libevent2 and
libuv. Though its Windows support is poor, it’s not a serious
problem since few people want to run an HTTP server on
Windows in production environment. When people want to
run their web applications on Windows, they can use others
like Hunchentoot via Clack[7] without any changes since Woo
is compatible with Clack.

When I mention the use of libev in Woo, some people would
ask “is it fast because of libev, a C library?”. I would say
that it’s not the point. Since libev is only a thin wrapper of
OS system calls, it doesn’t mean that its speed is due to the
C library. The point is that choosing the right event library
sometimes would result in great differences of speed.

APPENDIX
A. REFERENCES

1. http://wookie.beeets.com

2. http://weitz.de/hunchentoot/

3. http://ha.ckers.org/slowloris/

4. https://github.com/fukamachi/fast-http

5. https://github.com/joyent/http-parser

6. http://software.schmorp.de/pkg/libev.html

7. http://clacklisp.org

B. RESOURCES
1. https://github.com/fukamachi/woo

2. http://www.slideshare.net/fukamachi/woo-writing-a-fast-
web-server

3. http://www.slideshare.net/fukamachi/writing-a-fast-http-
parser
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Clasp - A Common Lisp that Interoperates with C++
and Uses the LLVM Backend

Christian E. Schafmeister
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ABSTRACT
Clasp is an implementation of Common Lisp that interop-
erates with C++ and uses LLVM as its backend. It is avail-
able at github.com/drmeister/clasp. The goal of Clasp is
to become a performant Common Lisp that can use C++
libraries and interoperate with LLVM-based tools and lan-
guages. The first sophisticated C++ library with which
Clasp interoperates is the Clang C/C++ compiler front end.
Using the Clang library, Common Lisp programs can be
written that parse and carry out static analysis and au-
tomatic refactoring of C/C++ code. This facility is used
to automatically analyze the Clasp C++ source code and
construct an interface to the Memory Pool System garbage
collector. It could also be used to generate automatically
Foreign Function Interfaces to C/C++ libraries for use by
other Common Lisp implementations.

Categories and Subject Descriptors
D.2.12 [Software and its engineering]: Interoperability;
D.3.4 [Software and Programming Languages]: Incre-
mental compilers

Keywords
Common Lisp, LLVM, C++, interoperation

1. INTRODUCTION
C++ is a popular, multi-paradigm, general-purpose lan-

guage. In order to support sophisticated C++ language fea-
tures (classes, methods, overloading, namespaces, exception
handling, constructors/destructors, etc.), the syntax and ap-
plication binary interface (ABI) of C++ has grown to be
quite complex and difficult for other programming languages
to interoperate with. In past decades, many software li-
braries were written in C++ and it would be valuable to
make these libraries available to Common Lisp.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
ELS’15,April 20-21 2015, London, UK Copyright is held by the authors..

2. PREVIOUS WORK
Clasp is inspired by, and borrows code from, Embedded

Common Lisp (ECL)[1], a Common Lisp implementation
that is both written in and interoperates with C.

3. THE CLASP SOURCE CODE
Clasp consists of about 100,000 logical source lines of C++

code, 50,000 logical source lines of C++ header code, and
33,000 logical source lines of Common Lisp. About 26,000
lines of the Clasp Common Lisp source code are derived
from the ECL Common Lisp source code. About 10% of the
Clasp C++ code is translated from ECL C code.

4. AUTOMATED ANALYSIS OF CLASP C++
CODE FOR COMPACTING GC

Clasp makes it easy for Common Lisp to interoperate with
complex C++ libraries and it uses this capability to inte-
grate a sophisticated compacting garbage collector within
Clasp. In normal operation, garbage collection is carried out
in Clasp by the compacting Ravenbrook Memory Pool Sys-
tem (MPS) garbage collector library[2]. MPS is a copying
garbage collector that treats pointers conservatively on the
stack and precisely on the heap. MPS continuously moves
objects and compacts memory, however, moving of objects
in memory is challenging to reconcile with C++ which pro-
vides access to C-style pointers and pointer arithmetic. In
order to allow the MPS library to work with Clasp’s C++
core, every pointer to every object that will move in mem-
ory needs to be updated whenever that object is moved.
Clasp fully automates the identification of C++ pointers
that need to be updated by MPS, using a static analyzer
written in Clasp Common Lisp. The static analyzer uses
the Clang AST (Abstract Syntax Tree) and ASTMatcher
C++ libraries. The static analyzer uses the Clang C++
compiler front end to parse the 173 C++ source files of
Clasp and uses the Clang ASTMatcher library to search
the C++ Abstract Syntax Tree in order to identify every
class and global pointer that needs to be managed by MPS.
It generates about 18,000 lines of C++ code that provides
a functional interface to the MPS library to update all of
these C++ pointers every time the MPS library carries out
garbage collection. The static analyzer generates C++ code
that updates pointers for 295 C++ classes and 2,625 global
variables that represent Common Lisp types and symbols.
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5. EXPOSING C++ TO COMMON LISP
Clasp was designed to ease interoperation of Common

Lisp with foreign C++ libraries. To facilitate interoper-
ation, Clasp incorporates a C++ template library (called
clbind) that allows C++ library functions and classes to be
exposed within Clasp by binding Common Lisp symbols to
C++ functions, classes, and enumerated types. This ap-
proach is very different from the typical Foreign Function
Interface (FFI) approach found in other Common Lisp im-
plementations. Binding a C++ function to a Common Lisp
symbol requires one C++ function call at Clasp startup,
providing the name of the global Common Lisp symbol to
bind and a pointer to the C++ function to bind to it. A
C++ wrapper function that performs argument and return
value conversions is automatically constructed by the C++
template library. The programmer can add additional value
conversion functions. C++ pointer ownership is controlled
by additional template arguments to def. The clbind li-
brary is based on the boost::python[3] and luabind[4] C++
template libraries.
To illustrate how a C++ class, constructor, method and

function are exposed to Clasp Common Lisp, within the
package VEC, the following example is provided.

// Exposing a C++ class and function to Clasp

#include <stdio.h>

#include "clasp/clasp.h"

class Vec2 {

public:

double x, y;

Vec2(double ax, double ay) : x(ax), y(ay) {};

double dotProduct(const Vec2& o) {

return this->x*o.x+this->y*o.y;

};

};

void printVec(const std::string& s, const Vec2& v) {

std::cout <<s<<"("<<v.x<<","<<v.y<<")";

}

extern "C" {

void CLASP_MAIN() {

using namespace clbind;

package("VEC") [

class_<Vec2>("vec2",no_default_constructor)

. def_constructor("make-vec2"

,constructor<double,double>())

. def("dot-product",&Vec2::dotProduct)

,def("print-vec2",&printVec)

];

}

}

A sample Clasp Common Lisp session that uses the ex-
posed C++ class and function is shown below:

>;;; A sample Common Lisp session.

>;;; "els.bundle" is the library built

>;;; from the source file above.

> (load "els.bundle")

T

> (defvar *a* (vec:make-vec2 1.0 2.0))

*A*

> (defvar *b* (vec:make-vec2 4.0 5.0))

*B*

> (vec:print-vec2 "a" *a*)

a(1,2)

> (vec:dot-product *a* *b*)

14

Notice how two Vec2 GC managed instances are created.
The *a* object is printed and then the dot-product is cal-
culated between the two vectors. An interface constructed
this way between Clasp and a C++ library does not require
either Clasp or the C++ library to be recompiled.

6. C++ RAII AND NON-LOCAL EXITS IN
COMMON LISP

C++ code makes heavy use of a technique called “Re-
source Acquisition Is Initialization” (RAII). RAII requires
that stack unwinding be accompanied by the ordered invo-
cation of C++ destructors. To support interoperation with
C++ and RAII, C++ exception handling is used within
Clasp to achieve stack-unwinding and to implement the Com-
mon Lisp special operators: go, return-from, and throw.
C++ exception handling is “zero runtime cost” when it is
not invoked but can be quite expensive when used. For
this reason the Clasp compiler uses exception handling only
when necessary.

7. CONCLUSIONS AND FUTURE WORK
Towards the goal of developing Clasp as a performant

Common Lisp compiler, the Cleavir[5] compiler, which is
part of the SICL Common Lisp implementation developed
by Robert Strandh, has been incorporated into Clasp. We
are currently extending Cleavir/Clasp to generate source lo-
cation debugging information (as DWARF metadata) and to
incorporate optimizations that enhance performance of the
generated code. We are also working on utilizing immediate
tagged pointers for fixnum, character, and cons Common
Lisp types and garbage collection of LLVM generated code.

8. LICENSE
Clasp is currently licensed under the GNU Library Gen-

eral Public License version 2.

9. ACKNOWLEDGMENTS
Thanks to Robert Strandh for providing Cleavir and for
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