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Message from the Programme Chair

Welcome to the 9thth edition of the European Lisp Symposium!

From language implementation to applications through systems tools, language extensions and
Domain Specific Languages, we have a great variety of contributions. Many dialects of the Lisp
family are represented as well – Common Lisp, Racket, Clojure and Julia – showing the diversity
of the community.
I thank the program committee members for their relevant reviews, their responsiveness and
timeliness. I thank the steering commitee of ELS for entrusting me this task of which I had no
previous experience. I thank Michał Psota for giving life to these contributions in organizing
the conference in Kraków.
Many thanks to Didier Verna who assisted me all along the process, taking care of distributing
calls and helping me whether for practical matters or for scientific decisions.
Finally, thanks to the authors, to all those that submitted contributions, and to the participants
for keeping the community alive.

I hope you have a great time.

Irène Durand, Bordeaux, May 2016
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Message from the Organizing Chair

Welcome to Kraków!
Kraków is one of the oldest cities in Poland, the place where many of the Polish kings lived
and ruled, this was the capital city until the 18th century. According to an old legend the city
was built by ’Krakus’ above a cave occupied by a Dragon. The city is one of the leading centers
of Polish academic, cultural, and artistic life. Today one can discover many attractions here –
walking around the main market square, shopping at the old Cloth Hall, admiring the Wawel
Castle – the residence of Polish Kings, listening to the famous trumpet signal from the top of
St. Mary’s Basilica that’s being transmitted throughout Poland every day at noon through the
national radio.
The AGH University of Science and Technology which is hosting us now, was established in
1919 as the University of Mining and Metallurgy. Today it is a respectable University with
well-qualified staff, doing innovative research.
I am really glad so many people have registered and come to Poland to listen about the Lisp
language family. I hope you will have good time not only at the lecture room, but also outside
wandering around the city.
It would be really hard to organize a symposium without help. I would like to thank Didier
Verna, his experience and patience to guide me through the process was invaluable (This is the
first symposium I’m helping organizing). I would like to also thank "BIT" – a students’ scientific
association which is hosting us together with the Department of Computer Science. Last but not
least I would like to thank all other sponsors for their support: EPITA, Université de Bordeaux,
LispWorks, Franz Inc.
I hope you enjoy your time at the 9th European Lisp Symposium and those few days you are
spending in Poland.
Michał Psota, Kraków, May 2016



Organization





Programme Chair

• Irène Anne Durand, University of Bordeaux, France

Local Chair

• Michał Psota — Emergent Network Defense, Kraków, Poland

Programme Committee

• Antonio Leitao — INESC-ID/IST, Universidade de Lisboa, Portugal

• Charlotte Heerzel — IMEC, Leuven, Belgium

• Christian Queinnec — University Pierre et Marie Curie, Paris 6, France

• Christophe Rhodes — Goldsmiths, University of London, United Kingdom

• Didier Verna — EPITA Research and Development Laboratory, France

• Erick Gallesio — University of Nice-Sophia Antipolis, France

• François-René Rideau, Google, USA

• Giuseppe Attardi — University of Pisa, Italy

• Kent Pitman, HyperMeta Inc., USA

• Leonie Dreschler-Fischer — University of Hamburg, Germany

• Pascal Costanza — Intel Corporation, Belgium

• Robert Strandh — University of Bordeaux, France

Organizing Committee

• Michał Psota — Emergent Network Defense, Kraków, Poland

• Maciej Ciołek — Scientific Society BIT, AGH University of Science and Technology, Kraków,
Poland

ELS 2016 xi



Sponsors

We gratefully acknowledge the support given to the 9thth European Lisp Symposium by the
following sponsors:

AGH
University of Science and Technology
Kraków, Poland
www.agh.edu.pl/en

Kolo Naukowe
Kraków, Poland http://knbit.
edu.pl/en/

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

Université de Bordeaux
Excellence Initiative
Collège Science et Technologie
351 cours de la libération
33405 Talence Cedex
France
www.u-bordeaux.fr

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge, CB4 0WS
England
www.lispworks.com

Franz Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
www.franz.com

xii ELS 2016

www.agh.edu.pl/en
http://knbit.edu.pl/en/
http://knbit.edu.pl/en/
www.epita.fr
www.u-bordeaux.fr
www.lispworks.com
www.franz.com


Invited Contributions





Program Proving with Coq

Pierre Castéran, LaBRI, University of Bordeaux, France
This talk aims to present some aspects of the Coq proof assistant, mainly the possibility of veri-
fying and/or synthesizing correct programs.
The talk will start with an introduction to the main features of Coq, both as a statically typed
functional programming language and as a proof assistant, i.e. a tool for helping its user to
prove theorems, including — but not limited to — correctness statements about his/her pro-
grams.
In the second part of the talk, we propose to use the efficient computation of powers of the
form xn as a pretext for presenting various techniques for obtaining certified programs within
the Coq system, with various levels of automaticity. Besides “classical” proof methods, we will
present briefly some approaches and compare them with respect to their ability to efficiently
return correctness proofs.

• Proof by reflection,

• The “refinement for free” approach,

• Composition of certified components (correctness by construction)

Pierre Castéran is an associate professor at the University of Bordeaux.
His research interests are type theory, interactive theorem proving and
programming language semantics. He co-authored the book on Coq:
"Interactive Theorem Proving and Program Development" with Yves
Bertot, and is the scientific co-organizer of 7 international summer
schools on Coq, 2 in Paris, 4 in China, and 1 in Japan. He also co-
authored two tutorials on advanced features of Coq: inductive and co-
inductive types, type classes and generalized rewriting. Pierre Castéran
is now working on a sequel of the aforementionned book, dedicated to the
presentation of recent trends in using the Coq proof assistant. Pierre
Castéran is one of the nine co-laureates of the ACM Software Systems
Award given to the Coq Proof Assistant (2013).

∗ ∗ ∗ ∗ ∗

Julia: to Lisp or Not to Lisp?

Stefan Karpinski, Julia Computing and New York University, New York, USA
Julia is a general purpose dynamic language, designed to make numerical computing fast and
convenient. Many aspects of Julia should be quite familiar since they are "stolen" straight from
Lisp: it’s expression-oriented, lexically scoped, has closures, coroutines, and macros that oper-
ate on code as data. But Julia departs from the Lisp tradition in other ways. Julia has syntax –
lots of it. Macro invocations look different than function calls. Some dynamic behaviors are sac-
rificed to make programs easier to analyze (for both humans and compilers), especially where
it allows simpler, more reliable program optimization.
Julia’s most distinctive feature is its emphasis on creating lightweight types and defining their
behavior in terms of generic functions. While many Lisps support multiple dispatch as an
opt-in feature, in Julia all function are generic by default. Even basic operators like ‘+‘ are
generic, and primitive types like ‘Int‘ and ‘Float64‘ are defined in the standard library, and their
behavior is specified via multiple dispatch. A combination of aggressive method specialization,
inlining and data-flow-based type inference, allow these layers of abstraction and dispatch to
be eliminated when it counts – Julia generally has performance comparable to static languages.
In the tradition of the great Lisp hackers, this talk will include lots of live coding in the REPL,
with all the excitement, and possibility of failure entailed.
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Stefan Karpinski is one of the co-creators of the Julia programming lan-
guage and a co-founder of Julia Computing, Inc., which provides sup-
port, consulting and training for commercial usage of Julia. He has
previously worked as a software engineer and data scientist at Akamai,
Citrix, andEtsy. He is currently a Research Engineer at NYU as part
of the Moore-Sloan Data Science Initiative.

∗ ∗ ∗ ∗ ∗

Lexical Closures and Complexity

Francis Sergeraert, Institut Fourier, Grenoble, France
The power of Common Lisp for functional programming is well known, the key tool being
the notion of "lexical closure", allowing the programmer to write programs which, during ex-
ecution, dynamically generate functional objects of arbitrary complexity. Using this technology,
new algorithms in Algebraic Topology have been discovered, implemented in Common Lisp,
used, producing homology and homotopy groups so far unreachable. An algorithm is viewed
as "tractable" if its theoretical complexity is not worse than polynomial. The study of this com-
plexity for the aforementioned algorithms of Algebraic Topology requires a lucid knowledge of
the concrete implementation of these lexical closures. The talk is devoted to a report about a re-
sult of polynomial complexity so obtained. The scope of the method is general and in particular
no knowledge in Algebraic Topology is expected in the audience.

Francis Sergeraert got a PhD in Differential Analysis. Since 1984, his
research concern the Algorithmics of Algebraic Topology. The Kenzo
Common Lisp program (public domain) has been written down with
several co-workers ; it is entirely devoted to high level Algebraic Topol-
ogy (homology, homotopy, spectral sequences, ...). Kenzo is currently
the only object having been able to compute some homology and homo-
topy groups.

∗ ∗ ∗ ∗ ∗
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Refactoring Dynamic Languages

Rafael Reia
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

rafael.reia@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Typically, beginner programmers do not master the style
rules of the programming language they are using and, fre-
quently, do not have yet the logical agility to avoid writing
redundant code. As a result, although their programs might
be correct, they can also be improved and it is important
for the programmer to learn about the improvements that,
without changing the meaning of the program, simplify it or
transform it to follow the style rules of the language. These
kinds of transformations are the realm of refactoring tools.
However, these tools are typically associated with sophisti-
cated integrated development environments (IDEs) that are
excessively complex for beginners.

In this paper, we present a refactoring tool designed for be-
ginner programmers, which we made available in DrRacket,
a simple and pedagogical IDE. Our tool provides several
refactoring operations for the typical mistakes made by be-
ginners and is intended to be used as part of their learning
process.

Keywords
Refactoring Tool, Pedagogy, Racket

1. INTRODUCTION
In order to become a proficient programmer, one needs

not only to master the syntax and semantics of a program-
ming language, but also the style rules adopted in that lan-
guage and, more important, the logical rules that allow him
to write simple and understandable programs. Given that
beginner programmers have insufficient knowledge about all
these rules, it should not be surprising to verify that their
code reveals what more knowledgeable programmers call
“poor style,”“bad smells,” etc. As time goes by, it is usually
the case that the beginner programmer learns those rules
and starts producing correct code written in an adequate
style. However, the learning process might take a consid-
erable amount of time and, as a result, large amounts of
poorly-written code might be produced before the end of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

9th ELS May 9–10, 2016, Kraków, Poland
c© 2016 Copyright held by the owner/author(s).

the process. It is then important to speed up this learning
process by showing, from the early learning phases, how a
poorly-written fragment of code can be improved.

After learning how to write code in a good style, program-
mers become critics of their own former code and, whenever
they have to work with it again, they are tempted to take
advantage of the opportunity to restructure it so that it con-
forms to the style rules and becomes easier to understand.
However, in most cases, these modifications are done with-
out complete knowledge of the requirements and constraints
that were considered when the code was originally written
and, as result, there is a serious risk that the modifications
might introduce bugs. It is thus important to help the pro-
grammer in this task so that he can be confident that the
code improvements he anticipate are effectively applicable
and will not change the meaning of the program. This has
been the main goal of code refactoring.

Code refactoring is the process of changing a software sys-
tem in such a way that it does not alter the external behavior
of the code yet improves its internal structure [1]. Nowadays,
any sophisticated IDE includes an assortment of refactoring
tools, e.g., for moving methods along a class hierarchy, to
extract interfaces from classes, and to transform anonymous
classes into nested classes. It is important to note, however,
that these IDEs were designed for advanced programmers,
and that the provided refactorings require a level of code
sophistication that is not present in the programs written
by beginners. This makes the refactoring tools inaccessible
to beginners.

In this paper, we present a tool that was designed to ad-
dress the previous problems. In particular, our tool (1) is
usable from a pedagogical IDE designed for beginners [2, 3],
(2) is capable of analyzing the programmer’s code and in-
form him of the presence of the typical mistakes made by
beginners, and finally (3) can apply refactoring rules that
restructure the program without changing its semantics.

To evaluate our proposal, we implemented a refactoring
tool in DrRacket, a pedagogical IDE [4, 5] used in schools
around the world to teach basic programming concepts and
techniques. Currently, DrRacket has only one simple refac-
toring operation which allows renaming a variable. Our
work significantly extends the set of refactoring operations
available in DrRacket and promotes their use as part of the
learning process.

2. RELATED WORK
There are many refactoring tools available. The large

majority of these tools were designed to deal with large
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statically-typed programming languages such a Java or C++
and are integrated in the complex IDEs typically used for the
development of complex software projects, such as Eclipse
or Visual Studio.

On the other hand, it is a common practice to start teach-
ing beginner programmers using dynamically-typed program-
ming languages, such as Scheme, Python, or Ruby, using
simple IDEs. As a result, our focus was on the dynamic pro-
gramming languages which are used in introductory courses
and, particularly, those that promote a functional program-
ming paradigm.

In the next sections, we present an overview of the refac-
toring tools that were developed for the languages used in
introductory programming courses.

2.1 Scheme
In its now classical work [6], Griswold presented a refac-

toring tool for Scheme that uses two different kinds of in-
formation, namely, an Abstract Syntax Tree (AST) and a
Program Dependence Graph (PDG).

The AST represents the abstract syntactic structure of the
program, while the PDG explicitly represents the key rela-
tionship of dependence between operations in the program.
The graph vertices’s represent program operations and the
edges represent the flow of data and control between opera-
tions. However, the PDG only has dependency information
of the program and relying only in this information to repre-
sent the program could create problems. For example, two
semantically unrelated statements can be placed arbitrarily
with respect to each other. Using the AST as the main rep-
resentation of the program ensures that statements are not
arbitrarily reordered, allowing the PDG to be used to prove
that transformations preserve the meaning and as a quick
way to retrieve needed dependence information. Addition-
ally, contours are used with the PDG to provide scope infor-
mation, which is non existent in the PDG, and to help reason
about transformations in the PDG. With these structures it
is possible to have a single formalism to reason effectively
about flow dependencies and scope structure.

2.2 Python
Rope[7, p. 109] is a Python refactoring tool written in

Python, which works like a Python library. In order to make
it easier to create refactoring operations, Rope assumes that
a Python program only has assignments and function calls.
Thus, by limiting the complexity of the language it reduces
the complexity of the refactoring tool.

Rope uses a Static Object Analysis, which analyses the
modules or scopes to get information about functions. Be-
cause its approach is time consuming, Rope only analyses
the scopes when they change and it only analyses the mod-
ules when asked by the user.

Rope also uses a Dynamic Object Analysis that requires
running the program in order to work. The Dynamic Object
Analysis gathers type information and parameters passed to
and returned from functions. It stores the information col-
lected by the analysis in a database. If Rope needs the infor-
mation and there is nothing on the database the Static ob-
ject inference starts trying to infer it. This approach makes
the program run much slower, thus it is only active when
the user allows it. Rope uses an AST in order to store the
syntax information about the programs.

Bicycle Repair Man1 is another refactoring tool for Python
and is written in Python itself. This refactoring tool can be
added to IDEs and editors, such as Emacs, Vi, Eclipse, and
Sublime Text. It attempts to create the refactoring browser
functionality for Python and has the following refactoring
operations: extract method, extract variable, inline variable,
move to module, and rename.

The tool uses an AST to represent the program and a
database to store information about several program enti-
ties and their dependencies.

Pycharm Educational Edition,2 or Pycharm Edu, is an
IDE for Python created by JetBrains, the creator of IntelliJ.
The IDE was specially designed for educational purposes, for
programmers with little or no previous coding experience.
Pycharm Edu is a simpler version of Pycharm community
which is the free python IDE created by JetBrains. It is very
similar to their complete IDEs and it has interesting features
such as code completion and integration with version control
tools. However, it has a simpler interface than Pycharm
Community and other IDEs such as Eclipse or Visual Studio.

Pycharm Edu integrates a python tutorial and supports
teachers that want to create tasks/tutorials for the students.
However, the refactoring tool did not received the same care
as the IDE itself. The refactoring operations are exactly the
same as the Pycharm Community IDE which were made
for more advanced users. Therefore, it does not provide
specific refactoring operations to beginners. The embedded
refactoring tool uses the AST and the dependencies between
the definition and the use of variables, known as def-use
relations.

2.3 Javascript
There are few refactoring tools for JavaScript but there

is a framework [8] for refactoring JavaScript programs. In
order to guarantee the correctness of the refactoring opera-
tion, the framework uses preconditions, expressed as query
analyses provided by pointer analysis. Queries to the pointer
analysis produces over-approximations of sets in a safe way
to have correct refactoring operations. For example, while
doing a rename operation, it over-approximates the set of
expressions that must be modified when a property is re-
named in a safe manner.

To prove the concept, three refactoring operations were
implemented, namely rename, encapsulate property, and ex-
tract module. By using over-approximations it is possible to
be sure when a refactoring operation is valid. However, this
approach has the disadvantage of not applying every possi-
ble refactoring operation, because the refactoring operations
for which the framework cannot guarantee behavior preser-
vation are prevented. The wrongly prevented operations
accounts for 6.2% of all rejections.

2.4 Analysis
The Table 1 summarizes the data structures of the ana-

lyzed refactoring tools. It is clear that the AST of a program
is an essential part of the refactoring tool information with
every refactoring tool having an AST to represent the pro-
gram. Regarding the PDG and Database it contains mainly
information about the def-use-relation of the program. The
PDG has also control flow information of the program. Our

1https://pypi.python.org/pypi/bicyclerepair/0.7.1
2https://www.jetbrains.com/pycharm-edu/

6 ELS 2016



Table 1: Data Structures
Name AST PDG Database Others

Griswold X X
Rope X X

Bicycle X X
Pycharm Edu X X

Javascript X

implementation uses the same data structures, the AST and
the def-use-relations.

Some tools like the one build by Griswold focus on the
correctness of the refactoring operations and therefore need
more information about the program, such as the informa-
tion provided by the PDG. Others, focus in offering refac-
toring operations for professional or advanced users. How-
ever, the goal of our refactoring tool is to provide refactoring
operations designed for beginners. Therefore we are not in-
terested in refactoring operations formerly proven correct or
provide refactoring operations only used in advanced and
complex use cases.

We intend to have simple, useful, and correct refactoring
operations to correct the typical mistakes made by begin-
ners. With this we exclude from the refactoring tool scope
macros usage, classes, and other complex structures not of-
ten used by beginners.

3. ARCHITECTURE
In this section we present the architecture of our refac-

toring tool. Although the tool can work with different pro-
gramming languages, its main focus is, at this moment, the
Racket programming language and, more specifically, the
DrRacket IDE.

Racket is a language designed to support meta-programming
and, in fact, most of the syntax forms of the language are
macro-expanded into combinations of simpler forms. This
has the important consequence that programs can be ana-
lyzed either in their original form or in their expanded form.

In order to create correct refactoring operations, the refac-
toring tool uses two sources of information, the def-use re-
lations and the AST of the program. The def-use relations
represent the links between the definition of an identifier
and its usage. In the DrRacket IDE these relations are vi-
sually represented as arrows that point from a definition to
its use. The opposite relation, the use-def relation, is also
visually represented as an arrow from the use of an identi-
fier to its definition. The AST is the abstract syntax tree
of the program which, in the case of the Racket language, is
represented by a list of syntax-objecs.

Figure 1 summarizes the workflow of the refactoring tool,
where the Reader produces the non expanded AST of the
program while the Expander expands the AST produced by
the Reader. In order to produce the def-use relations it is
necessary to use the expanded AST produced by the Ex-
pander because it has the correct dependency information.
The Transformer uses the Code Walker to parse the ASTs
and the information of the def-use relations to correctly per-
form the refactoring operations. Then it goes to the Writ-
ing module to produce the output in DrRacket’s definitions
pane.

Reader

Expander

def-use relations

Transformer

Code Walker

Writer

Figure 1: Main modules and information flow be-
tween modules. Unlabeled arrows represent infor-
mation flow between modules.

3.1 Syntax Expressions
The syntax-object list represents the AST, which pro-

vides information about the structure of the program. The
syntax-object list is already being produced and used by
the Racket language and, in DrRacket, in order to provide
error information to the user. DrRacket already provides
functions which computes the program’s syntax-object list
and uses some of those functions in the Background Check
Syntax and in the Check Syntax button callback.

3.1.1 Syntax Expression tree forms
DrRacket provides functions to compute the syntax-object

list in two different formats. One format is the expanded
program, which computes the program with all the macros
expanded. The other format is the non-expanded program
and computes the program with the macros unexpanded.

The expanded program has the macros expanded and the
identifier information correctly computed. However, it is
harder to extract the relevant information when compared
with the non expanded program.

For example, the following program is represented in the
expanded form, and in the non expanded form.

Listing 1: Original Code
(and alpha beta)

Listing 2: Expanded program
#<syntax :2:0

(#%app call -with -values

(lambda ()

(if alpha beta (quote #f)))

print -values)>

Listing 3: Non-expanded program
#<syntax :2:0 (and alpha beta)>

Note that the expanded program transforms the and, or,
when, and unless forms into ifs which makes refactoring
operations harder to implement.

Racket adds internal representation information to the ex-
panded program which for most refactoring operations is
not necessary. In addition, the expanded program has a
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format that is likely to change in the future. Racket is an
evolving language and the expanded form is a low level and
internal form of representation of the program. However,
the expanded program has important information regarding
the binding information that is not available in the non-
expanded form, and this information might be useful, e.g.,
to detect if two identifiers refer to the same binding. Ad-
ditionally, we do not consider macro definitions as part of
the code that needs to be refactored, since the refactoring
tool is targeted at unexperienced programmers and these
programmers typically do not define macros.

Taking the previous discussion into consideration, it be-
comes clear that it is desirable to use the non expanded form
for the refactoring operations whenever possible and use the
expanded form only when needed.

3.2 Def-use relations
Def-use relations hold important information needed in

order to produce correct refactoring operations. They can
be used to check whether there will be a duplicated name or
to compute the arguments of a function that is going to be
extracted.

The def-use-relations is computed by the compiler that
runs in the background. However, it is only computed when
a program is syntactically correct.

3.3 Code-walker
The code-walker is used to parse the syntax tree repre-

sented by a syntax element that is a list of syntax-object
in Racket. A syntax-object can contain either a symbol,
a syntax-pair, a datum (number, boolean or string), or an
empty list. While a syntax-pair is a pair containing a syntax-
object as it first element and either a syntax pair, a syntax
element or an empty list as the second argument. Each
syntax-object has information about the line where they are
defined and this information is used to search for the correct
elements.

Most of the time, the code-walker is used to search for
a specific syntax element and the location information con-
tained in the syntax-object is used to skip the syntax blocks
that are before the syntax element wanted in the first place.

The Code-walker is a core part of the refactoring tool, en-
suring that the selected syntax is correctly fed to the refac-
toring operations.

3.4 Pretty-printer
Producing correct output is an important part of the refac-

toring tool. It is necessary to be careful to produce indented
code and we decided to use a pretty-printer that is already
available in the Racket language. However, it should be
noted that this pretty-printer does not follow some of the
Racket style convention, such as cond clauses surrounded
by square brackets. This is not considered a problem be-
cause Racket supports both representations. One possible
solution is to use a different pretty-printer in order to keep
the language conventions.

3.5 Comments preservation
Preserving the comment information after a refactoring

transformation is an important task of the refactoring tool.
If the comment in determined place of the program changes
its location, affecting a different part of the program, it could
confuse the programmer. However, comment preservation is

not implemented yet, making it a limitation of this proto-
type.

One possible solution is to modify the syntax reader and
add a comment node to the AST. While the new node will
not be used during refactoring transformations it is used dur-
ing the output part of the refactoring operation, preserving
the comment with the correct syntax expression.

3.6 Syntax-Parse
The Syntax-Parse[9] function provided by Racket is very

useful for the refactoring operations. It provides a wide
range of options to help matching the correct syntax, us-
ing backtracking to allow several rules to be matched in the
same syntax parser, which helps to create more sophisticated
rules.

4. REFACTORING OPERATIONS
In this section we explain some of the more relevant refac-

toring operations and some limitations of the refactoring
tool.

4.1 Semantic problems
There are some well-known semantic problems that might

occur after doing a refactoring operation. One of them oc-
curs in the refactoring operation that removes redundant
ands in numeric comparisons. Although rarely known by
beginner programmers, in Racket, numeric comparisons sup-
port more than two arguments, as in (< 0 ?x 9), meaning
the same as (and (< 0 ?x) (< ?x 9), where, we use the
notation ?x to represent an expression. Thus, it is natural
to think about a refactoring operation that eliminates the
and. However, when the ?x expression somehow produces
side-effects, the refactoring operation will change the mean-
ing of the program.

Despite this problem, we support this refactoring opera-
tion because, in the vast majority of the cases, there are no
side-effects being done in the middle of numerical compar-
isons. This is explained by the fact that it is rare to have
the same argument repeated in a comparison and, moreover,
the short-circuit evaluation rule does not guarantee that the
side effects will be done. Therefore, it is usually safe to apply
this refactoring operation.

Another example of a semantic problem occurs when refac-
toring the following if expression.

Listing 4: Code sample
(if ?x

(begin ?y ...)

#f)

There are two different refactoring transformations possible:

Listing 5: Refactoring option 1
(when ?x

?y ...)

Listing 6: Refactoring option 2
(and ?x (begin ?y ...))

Note that the first refactoring option changes the meaning
of the program, because if the test expression, in this case
?x, is false, the result of the when expression is #<void>.
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However, the programmer may still want to choose the first
refactoring option if the return value when the ?x is false is
not important.

4.2 Extract Function
Extract function is an important refactoring operation

that every refactoring tool should have. In order to ex-
tract a function it is necessary to compute the arguments
needed to the correct use of the function. While giving the
name to a function seems quite straightforward, it is nec-
essary to check for name duplication in order to produce a
correct refactoring as having two identifiers with the same
name in the same scope produces an incorrect program. Af-
ter the previous checks, it is straightforward to compute the
function body and replacing the original expression by the
function call.

However, the refactoring raises the problem where should
the function be extracted to. A function can not be defined
inside an expression, but it can be defined at the top-level or
at any other level that is accessible from the current level.

As an example, consider the following program:

Listing 7: Extract function levels
;;top -level

(define (level -0)

(define (level -1)

(define (level -2)

(+ 1 2))

(level -2))

(level -1))

When extracting the (+ 1 2) to a function where should
it be defined? Top-level, Level-0, level-1, or in the current
level, the level-2? The fact is that is extremely difficult
to know the answer to this question because it depends on
what the user is doing and the user intent. Accordingly, we
decided that the best solution is to let the user decide where
the user wants the function to be defined.

4.2.1 Computing the arguments
In order to compute the function call arguments we have

to know in which scope the variables are being defined, in
other words, if the variables are defined inside or outside
the extracted function. The variables defined outside the
function to be extracted are candidates to be the arguments
of that function. However, imported variables, whether from
the language base or from other libraries do not have to be
passed as arguments. To solve this problem, we considered
two possible solutions:

• Def-use relations + Text information

• Def-use relations + AST

The first approach is simpler to implement and more di-
rect than the second one. However, it is less tolerant to
future changes and to errors. The second one combines the
def-use relations information with the syntax information
to check whether it is imported from the language or from
other library.

We choose the second approach in order to provide a more
stable solution to correctly compute the arguments of the
new function.

4.3 Let to Define Function
A let expression is very similar to a function, which may

led the user to mistakenly use one instead of the other.
Therefore we decided to provide a refactoring operation that
would make such transition simpler.

There are several let forms, but since we want to explore
the similarity between the let and the function we are going
to focus in the ones that are more similar to a function,
namely the let and the named let.

There are some differences between them, the named let

can be directly mapped to a named function, using the de-

fine keyword, whereas the let can only be directly mapped
to an anonymous function, lambda. We decided to focus first
in the transformation of a named let to a function.

However, this refactoring operation which transforms a
named let into a define function, could have syntax prob-
lems since a let form can be used in expressions, but the
define can not. In the vast majority of cases this refac-
toring is correct, however, when a named let is used in an
expression it transforms the program in an incorrect one.
e.g.

Listing 8: Let in an expression
(and (let xpto ((a 1)) (< a 2)) (< b c))

Modifying this named let into a define would raise a syn-
tax error since a define could not be used in an expression
context. Encapsulate the define with the local keyword,
which is an expression like the named let, can solve the
problem. However, the local keyword is not used very often
and might confuse the users. Therefore we decided keep the
refactoring operation without the local keyword that works
for most of the cases.

Listing 9: Let example
(let loop ((x 1))

(when (< x 10)

(loop (+ x 1))))

Listing 10: Let to Define Function example
(define (loop x)

(when (< x 10)

(loop (+ x 1))))

(loop 1)

4.4 Wide-Scope Replacement
The Wide-Scope replacement extends the extract function

functionality by replacing the duplicated of the extracted
code with the function call of the extracted function.

The Wide-Scope replacement refactoring operation searches
for the code that is duplicated of the extracted function and
then replaces it for the call of the extracted function and it
is divided in two steps:

• Detect duplicated code

• Replace the duplicated code

Replacing the duplicated code is the easy part, however
the tool might has to compute the arguments for the dupli-
cated code itself.
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Correctly detecting duplicated code is a key part for the
correctness of this refactoring. Even the simplest form of
duplicated code detection, where it only detects duplicated
code when the code is exactly equal, may have some prob-
lems regarding the binding information. For example, if the
duplicated code is inside a let that changes some bindings
that must be taken into consideration. In order to solve the
binding problem we can use functions already provided in
Racket. However, that does not work if we use the program
in the not expanded form to do the binding comparisons be-
cause there is not enough information for those bindings to
work. Therefore, in order to compute the correct bindings,
it is necessary to use the expanded form of the program.

The naive solution is to use the expanded program to de-
tect the duplicated code and then use this information to
do the replacing of the duplicated code. However, when
expanding the program Racket adds necessary internal in-
formation to run the program itself that are not visible for
the user. While this does not change the detecting of the
duplicated code, it adds unnecessary information that would
have to be removed. In order to solve this in a simple way
we can use the expanded code to detect the correctly du-
plicated code and use the non expand program to compute
which code will be replaced.

However, this duplicated code detection is a quadratic al-
gorithm which might have some performance problems for
bigger programs.

5. FEATURES
This section describes some of the features created to im-

prove the usability by providing sufficient feedback to the
user, and way to inform the user of the presence of the typ-
ical mistakes made by beginners.

5.1 User FeedBack
It is important to give proper feedback to the user while

the user is attempting or preforming a refactoring opera-
tion. Previewing the outcome of a refactoring operation is
an efficient form to help the users understand the result of
a refactoring before even applying the refactoring. It works
by applying the refactoring operation in a copy version of
the AST and displaying those changes to the user.

5.2 Automatic Suggestions
Beginner programmers usually do not know which refac-

toring operations exist or which can be applied. By having a
automatic suggestion of the possible refactoring operations
available the beginner programmer can have an idea what
refactoring operations can be applied or not.

In order to detect possible refactoring operations it parses
the code from the beginning to the end and tries to check if
a refactoring is applicable. To do that it tries to match every
syntax expression using syntax parse. In other words it uses
brute force to check whether a expression can be applied a
refactoring operation or not.

To properly display this information it highlights the source-
code indicating that there is a possible refactoring. This
feature could be improved by having a set of colors for the
different types of refactoring operations. Moreover, the color
intensity could be proportional to the level of suggestion. e.g
the recommended level to use extract function refactoring
increases with the number of duplicated code found.

6. EVALUATION
In this section we present some code examples written by

beginner programmers in their final project of an introduc-
tory course and their possible improvements using the refac-
toring operations available in our refactoring tool. The ex-
amples show the usage of some of the refactoring operations
previously presented and here is explained the motivation
for their existence.

The first example is a very typical error made by beginner
programmers.

1 (if (>= n_plays 35)
2 #t
3 #f)

It is rather a simple refactoring operation, but nevertheless
it improves the code.

1 (>= n_plays 35)

The next example is related with the conditional expres-
sions, namely the and or or expressions. We decided to
choose the and expression to exemplify a rather typical us-
age of this expression.

1 (and
2 (and
3 (eq? #t (correct-movement? player play))
4 (eq? #t (player-piece? player play)))
5 (and
6 (eq? #t (empty-destination? play))
7 (eq? #t (empty-start? play))))

Transforming the code by removing the redundant and ex-
pression makes the code cleaner and simpler to understand.

1 (and (eq? #t (correct-movement? player play))
2 (eq? #t (player-piece? player play))
3 (eq? #t (empty-destination? play))
4 (eq? #t (empty-start? play)))

However, this code can still be improved, the (eq? #t

?x) is a redundant way of simple writing ?x.

1 (and (correct-moviment? player play)
2 (player-piece? player play)
3 (empty-destination? play)
4 (empty-start? play))

While a student is still learning, it is common to forget
whether or not a sequence of expressions need to be wrapped
in a begin form. The when, cond and let expressions have
a implicit begin and as a result it is not necessary to add
the begin expression. Moreover, sometimes they still keep
the begin keyword because they often use a trial and error
approach in writing code. Our refactoring tool checks for
those mistakes and corrects them.

1 (if (odd? line-value)
2 (let ((internal-column (sub1 (/ column 2))))
3 (begin
4 (if (integer? internal-column)
5 internal-column
6 #f)))
7 (let ((internal-column (/ (sub1 column) 2)))
8 (begin
9 (if (integer? internal-column)
10 internal-column
11 #f))))

This is a simple refactoring operation and it does not have
a big impact, however it makes the code clear and helps the
beginner programmer to learn that a let does not need a
begin.
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1 (if (odd? line-value)
2 (let ((internal-column (sub1 (/ column 2))))
3 (and (integer? internal-column)
4 internal-column))
5 (let ((internal-column (/ (sub1 column) 2)))
6 (and (integer? internal-column)
7 internal-column)))

The next example shows a nested if. Nested ifs are diffi-
cult to understand, error prone, and a debugging nightmare.

1 (define (search-aux? board line column piece)
2 (if (> column 8)
3 #f
4 (if (= line 1)
5 (if (eq? (house-board board 1 column) piece)
6 #t
7 (search-aux? board line (+ 2 column) piece))
8 (if (= line 2)
9 (if (eq? (house-board board 2 column) piece)
10 #t
11 (search-aux? board line (+ 2 column) piece))
12 (if (= line 3)
13 (if (eq? (house-board board 3 column) piece)
14 #t
15 (search-aux? board line (+ 2 column) piece))
16 (if (= line 4)
17 (if (eq? (house-board board 4 column) piece)
18 #t
19 (search-aux? board line (+ 2 column) piece))
20 (if (= line 5)
21 (if (eq? (house-board board 5 column) piece)
22 #t
23 (search-aux? board line (+ 2 column) piece))
24 (if (= line 6)
25 (if (eq? (house-board board 6 column) piece)
26 #t
27 (search-aux? board line (+ 2 column) piece))
28 (if (= line 7)
29 (if (eq? (house-board board 7 column) piece)
30 #t
31 (search-aux? board line (+ 2 column) piece))
32 (if (= line 8)
33 (if (eq? (house-board board 8 column) piece)
34 #t
35 (search-aux? board line (+ 2 column) piece))
36 null))))))))))

It is much simpler to have a cond expression instead of the
nested if. In addition, every true branch of this nested
if contains if expressions that are or expressions and by
refactoring those if expressions to ors it makes the code
simpler to understand.

1 (define (search-aux? board line column piece)
2 (cond [(> column 8) #f]
3 [(= line 1)
4 (or (eq? (house-board board 1 column) piece)
5 (search-aux? board line (+ 2 column) piece))]
6 [(= line 2)
7 (or (eq? (house-board board 2 column) piece)
8 (search-aux? board line (+ 2 column) piece))]
9 [(= line 3)
10 (or (eq? (house-board board 3 column) piece)
11 (search-aux? board line (+ 2 column) piece))]
12 [(= line 4)
13 (or (eq? (house-board board 4 column) piece)
14 (search-aux? board line (+ 2 column) piece))]
15 [(= line 5)
16 (or (eq? (house-board board 5 column) piece)
17 (search-aux? board line (+ 2 column) piece))]
18 [(= line 6)
19 (or (eq? (house-board board 6 column) piece)
20 (search-aux? board line (+ 2 column) piece))]
21 [(= line 7)
22 (or (eq? (house-board board 7 column) piece)
23 (search-aux? board line (+ 2 column) piece))]
24 [(= line 8)
25 (or (eq? (house-board board 8 column) piece)
26 (search-aux? board line (+ 2 column) piece))]
27 [else null]))

Table 2: Refactoring Operations
Code # 1 2 3 4 5 6 7 8 Total

Initial LOC 582 424 332 1328 810 569 798 614 4045
Final LOC 545 373 300 1259 701 527 733 457 3705
Difference 37 51 32 69 109 42 65 140 340
Percentage -6.36 -12.03 -9.64 -5.19 -13.46 -7.38 -8.14 -22.80 -10.63

Remove
Begin

11 4 6 9 5 2 0 7 44

If to When 4 0 0 0 0 7 0 0 11
If to And 3 1 0 0 0 2 0 0 6
If to Or 6 6 1 13 20 3 2 0 51

Remove If 0 3 7 6 3 5 0 2 26
Remove

And
0 2 0 4 0 0 0 0 6

Remove
Eq

0 4 0 0 0 0 0 0 4

Extract
function

0 3 0 0 4 0 1 5 13

If to Cond 0 0 0 2 3 0 1 0 6

However, this code could still be further improved by
refactoring it into a case.

The examples presented above appear repeatedly in al-
most every code submission of this final project supporting
the need to proper support to beginner programmers.

As seen in Table 2 the average reduction in LOC is 10.63%
which shows how useful are these refactoring operations. It
also shows how many refactoring operations were applied.
This tool is not only for beginners, during the development
of the tool we already used some of the refactoring opera-
tions, namely the extract function, in order to improve the
structure of the code.

6.1 Refactoring Python
Python is being promoted as a good replacement for Scheme

and Racket in science introductory courses. It is an high-
level, dynamically typed programming language and it sup-
ports the functional, imperative and object oriented paradigms.
Using the architecture of this refactoring tool and the capa-
bilities offered by Racket combined with an implementation
of Python for Racket[10] [11] it is also possible to provide
refactoring operations in Python.
Using Racket’s syntax-objects to represent Python as a meta-
language [12] it is possible use the same structure used for
the refactoring operations in Racket to parse and analyze
the code in Python.

However, there are some limitations regarding the refac-
toring operations in Python. Since Python is a statement
base language instead of expression base, it raises some prob-
lems regarding the possibility of some refactoring operations.

Example of removing an If expression:

1 True if (alpha < beta) else False

1 (alpha < beta)
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The next one shows an extract function:

1 def mandelbrot(iterations, c):
2 z = 0+0j
3 for i in range(iterations+1):
4 if abs(z) > 2:
5 return i
6 z = z*z + c
7 return i+1

1 def computeZ(z, c):
2 return z*z + c
3
4 def mandelbrot(iterations, c):
5 z = 0+0j
6 for i in range(iterations+1):
7 if abs(z) > 2:
8 return i
9 z = computeZ( z,c)
10 return i+1

It is important to note that this refactoring operations for
Python are just only a prototype and the work is still in
progress.

7. CONCLUSION
A refactoring tool designed for beginner programmers would

benefit them by providing a tool to restructure the pro-
grams and improve what more knowledgeable programmers
call “poor style,” “bad smells,” etc. In order to help those
users it is necessary to be usable from a pedagogical IDE, to
inform the programmer of the presence of the typical mis-
takes made by beginners, and to correctly apply refactoring
operations preserving semantics.

Our solution tries to help those users to improve their
programs by using the AST of the program and the def-use-
relations to create refactoring operations that do not change
the program’s semantics. This structure is then used to an-
alyze the code to detect typical mistakes using automatic
suggestions and correct them using the refactoring opera-
tions provided.

There are still some improvements that we consider im-
portant for the user. Firstly, the detection of duplicated
code is still very naive and improving the detection in order
to understand if two variables represent the same even if the
names are different or even if the order of some commutative
expressions is not the same would make a huge improvement
on the automatic suggestion. Then it is possible to improve
the automatic suggestion of refactoring operations by having
different colors for different types of refactoring operations.
With a lower intensity for low ”priority” refactoring opera-
tions and a high intensity for higher ”priority”. Thus giving
the user a better knowledge of what is a better way to solve
a problem or what is a strongly recommendation to change
the code. Lastly it would be interesting to detect when a
developer is refactoring in order to help the developer finish
the refactoring by doing it automatically [13].
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Schäfer, and Frank Tip. Tool-supported refactoring for
javascript. ACM SIGPLAN Notices, 46(10):119–138,
2011.

[9] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan
Culpepper, Matthew Flatt, and Matthias Felleisen.
Languages as libraries. In ACM SIGPLAN Notices,
volume 46, pages 132–141. ACM, 2011.

[10] Pedro Palma Ramos and António Menezes Leitão. An
implementation of python for racket. In 7 th European
Lisp Symposium, 2014.

[11] Pedro Palma Ramos and António Menezes Leitão.
Reaching python from racket. In Proceedings of ILC
2014 on 8th International Lisp Conference, page 32.
ACM, 2014.
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ABSTRACT
We introduce the abstract concept of rational type expres-
sion and show its relationship to rational language theory.
We further present a concrete syntax, regular type expres-
sion, and a Common Lisp implementation thereof which al-
lows the programmer to declaratively express the types of
heterogeneous sequences in a way which is natural in the
Common Lisp language. The implementation uses tech-
niques well known and well founded in rational language
theory, in particular the use of the Brzozowski derivative
and deterministic automata to reach a solution which can
match a sequence in linear time. We illustrate the concept
with several motivating examples, and finally explain many
details of its implementation.

CCS Concepts
•Theory of computation → Regular languages; Au-
tomata extensions; •Software and its engineering →
Data types and structures; Source code generation;

Keywords
Rational languages, Type checking, Finite automata

1. INTRODUCTION
In Common Lisp [15] a type is identically a set of (poten-

tial) values at a particular point in time during the execution
of a program [15, Section 4.1]. Information about types pro-
vides clues for the compiler to make optimizations such as
for performance, space (image size), safety or debuggability
[10, Section 4.3] [15, Section 3.3]. Application programmers
may as well make explicit use of types within their programs,
such as with typecase, typep, the etc.

While the programmer can specify a homogeneous type for
all the elements of a vector [15, Section 15.1.2.2], or the type
for a particular element of a list, [15, System Class CONS],
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two notable limitations, which we address in this article, are
1) that there is no standard way to specify heterogeneous
types for different elements of a vector, 2) neither is there
a standard way to declare types (whether heterogeneous or
homogeneous) for all the elements of a list.

We introduce the concept of rational type expression for
abstractly describing patterns of types within sequences.
The concept is envisioned to be intuitive to the program-
mer in that it is analogous to patterns described by regular
expressions, which we assume the reader is already familiar
with.

Just as the characters of a string may be described by
a rational expression such as (a · b∗ · c), which intends to
match strings such as "ac", "abc", and "abbbbc", the ratio-
nal type expression (string · number∗ · symbol) is intended
to match vectors like #("hello" 1 2 3 world) and lists
like ("hello" world). Rational expressions match charac-
ter constituents of strings according to character equality.
Rational type expressions match elements of sequences by
element type.

We further introduce an s-expression based syntax, called
regular type expression to encode a rational type expres-
sion. This syntax replaces the infix and post-fix operators
in the rational type expression with prefix notation based
s-expressions. The regular type expression (:1 string (:*
number) symbol) corresponds to the rational type expres-
sion (string · number∗ · symbol). In addition, we provide
a parameterized type named rte, whose argument is a reg-
ular type expression. The members of such a type are all
sequences matching the given regular type expression. Sec-
tion 2 describes the syntax.

While we avoid making claims about the potential utility
of declarations of such a type from the compiler’s perspec-
tive [1], we do suggest that a declarative system to describe
patterns of types within sequences has great utility for pro-
gram logic, code readability, and type safety.

A discussion of the theory of rational languages in which
our research is grounded, may be found in [9, Chapters 3,4].
This article avoids many details of the theory, and instead
emphasizes examples of problems this approach helps to
solve and explains a high level view of its implementation.
A more in-depth report of the research including the source
code is provided in [11].

2. THE REGULAR TYPE EXPRESSION
We have implemented a parameterized type named rte

(regular type expression), via deftype. The argument of
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:* match zero or more times.
:+ match one or more times.
:? match zero or one time.
:1 match exactly once.
:or match any of the regular type expressions.
:and match all of the regular type expressions.

Table 1: Regular type expression keywords

rte is a regular type expression.
A regular type expression is defined as either a Common

Lisp type specifier, such as number, (cons number), (eql
12), or (and integer (satisfies oddp)), or a list whose
first element is one of a limited set of keywords shown in
Table 1, and whose trailing elements are other regular type
expressions.

As a counter example, (rte (:1 (number number))) is
invalid because (number number) is neither a valid Common
Lisp type specifier, nor does it begin with a keyword from
Table 1. Here are some valid examples.

(rte (:1 number number number))
corresponds to the rational type expression (number ·
number · number) and matches a sequence of exactly
three numbers.

(rte (:or number (:1 number number number)))
corresponds to (number+(number ·number ·number))
and matches a sequence of either one or three numbers.

(rte (:1 number (:? number number)))
corresponds to (number · (number · number)?) and
matches a sequence of one mandatory number followed
by exactly zero or two numbers. This happens to be
equivalent to the previous example.

(rte (:* cons number))
corresponds to (cons · number)∗ and matches a se-
quence of a cons followed by a number repeated zero
or more times, i.e., a sequence of even length.

The rte type can be used anywhere Common Lisp expects
a type specifier as the following examples illustrate. The
point slot of the class C expects a sequence of two numbers,
e.g., (1 2.0) or #(1 2.0).

(defclass C ()
((point :type (and list (rte (:1 number number))))
...))

The Common Lisp type specified by (cons number) is
the set of non-empty lists headed by a number, as specified
in [15, System Class CONS]. The Y argument of the func-
tion F must be a possibly empty sequence of such objects,
because it is declared as type (rte (:* (cons number))).
E.g., #((1.0) (2 :x) (0 :y "zero")).

(defun F (X Y)
(declare

(type (rte (:∗ (cons number)))
Y))

...)

3. APPLICATION USE CASES
The following subsections illustrate some motivating ex-

amples of regular type expressions.

lambda−list :=
(var∗
[&optional

{var | (var [init−form [supplied−p−parameter]])}∗]
[&rest var]
[&key {var | ({var | (keyword−name var)}

[init−form [supplied−p−parameter]]) }∗
[&allow−other−keys]]

[&aux {var | (var [init−form])}∗]
)

Figure 1: CL specification syntax for the ordinary
lambda list

3.1 RTE based string regular expressions
Since a string in Common Lisp is a sequence, the rte

type may be used to perform simple string regular expres-
sion matching. Our tests have shown that the rte based
string regular expression matching is about 35% faster than
CL-PPCRE [16] when restricted to features strictly sup-
ported by the theory of rational languages, thus ignoring
CL-PPCRE features such as character encoding, capture
buffers, recursive patterns, etc.

The call to the function remove-if-not, below, filters a
given list of strings, retaining only the ones that match an
implicit regular expression "a*Z*b*". The function, regexp-to-rte
converts a string regular expression to a regular type expres-
sion.

(regexp−to−rte "(ab)∗Z∗(ab)∗")
==>

(:1 (:∗ (member #\a #\b))
(:∗ (eql #\Z))
(:∗ (member #\a #\b)))

(remove−if−not
(lambda (str)

(typep str
‘(rte ,(regexp−to−rte "(ab)∗Z∗(ab)∗"))))

’("baZab"
"ZaZabZbb"
"aaZbbbb"
"aaZZZZbbbb"))

==>
("baZab"
"aaZbbbb"
"aaZZZZbbbb")

The regexp-to-rte function does not attempt the daunt-
ing task of fully implementing Perl compatible regular ex-
pressions as provided in CL-PPCRE. Instead regexp-to-rte
implements a small but powerful subset of CL-PPCRE whose
grammar is provided by [4]. Starting with this context free
grammar, we use CL-Yacc [5] to parse a string regular ex-
pression and convert it to a regular type expression.

3.2 DWIM lambda lists
As a complex yet realistic example we use a regular type

expression to test the validity of a Common Lisp lambda
list, which are sequences which indeed are described by a
pattern.

Common Lisp specifies several different kinds of lambda
lists, used for different purposes in the language. E.g.., the
ordinary lambda list is used to define lambda functions, the
macro lambda list is for defining macros, and the destructur-
ing lambda list is for use with destructuring-bind. Each
of these lambda lists has its own syntax, the simplest of
which is the ordinary lambda list (Figure 1). The following
code shows examples of ordinary lambda lists which obey
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the specification but may not mean what you think.

(defun F1 (a b &key x &rest other−args)
...)

(defun F2 (a b &key ((Z U) nil u−used−p))
...)

The function F1, according to careful reading of the Com-
mon Lisp specification, is a function with three keyword ar-
guments, x, &rest, and other-args, which can be refer-
enced at the call site with a bizarre function calling syntax
such as (F1 1 2 :x 3 :&rest 4 :other-args 5). What
the programmer probably meant was one keyword argument
named x and an &rest argument named other-args. Ac-
cording to the Common Lisp specification [15, Section 3.4.1],
in order for &rest to have its normal rest-args semantics in
conjunction with &key, it must appear before not after the
&key lambda list keyword. The specification makes no pre-
vision for &rest following &key other than that one name
a function parameter and the other have special seman-
tics. This issue is subtle. In fact, SBCL considers this such
a bizarre situation that it diverges from the specification
and flags a SB-INT:SIMPLE-PROGRAM-ERROR during compi-
lation: misplaced &REST in lambda list: (A B &KEY X
&REST OTHER-ARGS)

The function F2 is defined with an unconventional &key
parameter which is not a symbol in the keyword package but
rather in the current package. Thus the parameter U must
be referenced at the call-site as (F2 1 2 ’Z 3) rather than
(F2 1 2 :Z 3).

These situations are potentially confusing, so we define
what we call the dwim ordinary lambda list. Figure 2 shows
an implementation of the type dwim-ordinary-lambda-list.
A Common Lisp programmer might want to use this type
as part of a code-walker based checker. Elements of this
type are lists which are indeed valid lambda lists for defun,
even though the Common Lisp specification allows a more
relaxed syntax.

The dwim ordinary lambda list differs from the ordinary
lambda list, in the aspects described above and also it ignores
semantics the particular lisp implement may have given to
additional lambda list keywords. It only supports seman-
tics for: &optional, &rest, &key, &allow-other-keys, and
&aux.

3.3 destructuring-case
(defun F3 (obj)

(typecase obj
((rte (:1 symbol (:+ (eql :count) integer)))
(destructuring−bind (name &key (count 0)) obj

...))
((rte (:1 symbol list (:∗ string)))
(destructuring−bind (name data

&rest strings) obj
...))))

Notice in the code above that each rte clause of the typecase
includes a call to destructuring-bind which is related and
hand coded for consistency. The function F3 is implemented
such that the object being destructured is certain to be of the
format expected by the corresponding destructuring lambda
list.

We provide a macro destructuring-case which combines
the capability of destructuring-bind and typecase. More-
over, destructuring-case constructs the rte type specifiers
in an intelligent way, taking into account not only the struc-

(deftype var ()
‘(and symbol

(not (or keyword
(member t nil)
(member ,@lambda−list−keywords)))))

(deftype dwim−ordinary−lambda−list ()
(let∗ ((optional−var

’(:or var
(:and list

(rte
(:1 var

(:? t
(:? var)))))))

(optional
‘(:1 (eql &optional)

(:∗ ,optional−var)))
(rest ’(:1 (eql &rest) var))
(key−var
’(:or var

(:and list
(rte (:1

(:or var
(cons keyword

(cons var
null)))

(:? t
(:? var)))))))

(key
‘(:1 (eql &key)

(:∗ ,key−var)
(:?

(eql &allow−other−keys))))
(aux−var

’(:or var
(:and list

(rte (:1 var (:? t))))))
(aux ‘(:1 (eql &aux)

(:∗ ,aux−var))))
‘(rte

(:1 (:∗ var)
(:? ,optional)
(:? ,rest)
(:? ,key)
(:? ,aux)))))

Figure 2: The dwim-ordinary-lambda-list type

ture of the destructuring lambda list but also any given type
declarations.

(defun F4 (obj)
(destructuring−case obj

((name &key count)
(declare (type symbol name)

(type integer count))
...)

((name data &rest strings)
(declare (type name symbol)

(type data list)
(type strings

(rte (:∗ string))))
...)))

This macro is able to parse any valid destructuring lambda
list and convert it to a regular type expression. Supported
syntax includes &whole, &optional, &key, &allow-other-keys,
&aux, and recursive lambda lists such as:

(&whole llist a (b c)
&key x ((:y (c d)) ’(1 2))
&allow−other−keys)

A feature of destructuring-case is that it can construct
regular type expressions much more complicated than would
be practical by hand. Consider the following example which
includes two destructuring lambda lists, whose computed
regular type expressions pretty-print to about 20 lines each.
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(:1 (:1 fixnum (:and list (rte (:1 fixnum fixnum))))
(:and

(:∗ keyword t)
(:or

(:1 (:? (eql :x) symbol (:∗ (not (member :y :z)) t))
(:? (eql :y) string (:∗ (not (eql :z)) t))
(:? (eql :z) list (:∗ t t)))

(:1 (:? (eql :y) string (:∗ (not (member :x :z)) t))
(:? (eql :x) symbol (:∗ (not (eql :z)) t))
(:? (eql :z) list (:∗ t t)))

(:1 (:? (eql :x) symbol (:∗ (not (member :y :z)) t))
(:? (eql :z) list (:∗ (not (eql :y)) t))
(:? (eql :y) string (:∗ t t)))

(:1 (:? (eql :z) list (:∗ (not (member :x :y)) t))
(:? (eql :x) symbol (:∗ (not (eql :y)) t))
(:? (eql :y) string (:∗ t t)))

(:1 (:? (eql :y) string (:∗ (not (member :x :z)) t))
(:? (eql :z) list (:∗ (not (eql :x)) t))
(:? (eql :x) symbol (:∗ t t)))

(:1 (:? (eql :z) list (:∗ (not (member :x :y)) t))
(:? (eql :y) string (:∗ (not (eql :x)) t))
(:? (eql :x) symbol (:∗ t t))))))

Figure 3: Regular type expression matching de-
structuring lambda list Case-1

An example of the regular type expression matching Case-1
is shown in Figure 3.

(destructuring−case data

;; Case−1
((&whole llist

a (b c)
&rest keys
&key x y z
&allow−other−keys)

(declare (type fixnum a b c)
(type symbol x)
(type string y)
(type list z))

...)

;; Case−2
((a (b c)
&rest keys
&key x y z)
(declare (type fixnum a b c)

(type symbol x)
(type string y)
(type list z))

...))

4. IMPLEMENTATION OVERVIEW
Using an rte involves several steps. The following subsec-

tions describe these steps.

1. Convert a parameterized rte type into code that will
perform run-time type checking.

2. Convert the regular type expression to DFA (determin-
istic finite automaton, sometimes called a finite state
machine).

3. Decompose a list of type specifiers into disjoint types.

4. Convert the DFA into code which will perform run-
time execution of the DFA.

4.1 Type definition
The rte type is defined by deftype.

(deftype rte (pattern)
‘(and sequence

(satisfies ,(compute−match−function
pattern))))

As in this definition, when the satisfies type specifier is
used, it must be given a symbol naming a globally callable
unary function. In our case compute-match-function ac-
cepts a regular type expression, such as (:1 number (:*
string)), and computes a named unary predicate. The
predicate can thereafter be called with a sequence and
will return true or false indicating whether the sequence
matches the pattern. Notice that the pattern is usually pro-
vided at compile-time, while the sequence is provided at
run-time. Furthermore, compute-match-function ensures
that given two patterns which are EQUAL, the same function
name will be returned, but will only be created and compiled
once. An example will make it clearer.

(deftype 3−d−point ()
‘(rte (:1 number number number)))

The type 3-d-point invokes the rte parameterized type
definition with argument (:1 number number number). The
deftype of rte assures that a function is defined as follows.
The function name, |(:1 number number number)| even if
somewhat unusual, is so chosen to improve the error message
and back-trace that occurs in some situations.

(defun rte::|(:1 number number number)|
(input−sequence)

(match−sequence input−sequence
’(:1 number number number)))

The following back-trace occurs when attempting to eval-
uate a failing assertion.

CL−USER> (the 3−d−point (list 1 2))

The value (1 2)
is not of type

(OR (AND #1=(SATISFIES |(:1 NUMBER NUMBER NUMBER)|)
CONS)

(AND #1# NULL) (AND #1# VECTOR)
(AND #1# SB−KERNEL:EXTENDED−SEQUENCE)).

[Condition of type TYPE−ERROR]

It is also assured that the DFA corresponding to (:1
number number number) is built and cached, to avoid un-
necessary re-creation at run-time. Finally, the type specifier
(rte (:1 number number number)) expands to the follow-
ing.

(and sequence
(satisfies |(:1 number number number)|))

A caveat of using rte is that the usage must obey a restric-
tion posed by the Common Lisp specification [15, Section
DEFTYPE]. A self-referential type definition is not valid.
Common Lisp specification states: Recursive expansion of
the type specifier returned as the expansion must terminate,
including the expansion of type specifiers which are nested
within the expansion.

As an example of this limitation, here is a failed attempt
to implement a type which matches a unary tree, i.e. a type
whose elements are 1, (1), ((1)), (((1))), etc.

CL−USER> (deftype unary−tree ()
‘(or (eql 1)

(rte unary−tree)))
UNARY−TREE
RTE> (typep ’(1) ’unary−tree)
Control stack exhausted (no more space for function call
frames). This is probably due to heavily nested or
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∂a∅ = ∅
∂aε = ∅
∂aa = ε

∂ab = ∅ for b 6= a

∂a(r ∪ s) = ∂ar ∪ ∂as

∂a(r · s) =

{
(∂ar) · s, if r is not nullable

(∂ar) · s ∪ ∂as, if r is nullable

∂a(r ∩ s) = ∂ar ∩ ∂as

∂a(r∗) = (∂ar) · r∗

∂a(r+) = (∂ar) · r∗

Figure 4: Rules for the Brzozowski derivative

infinitely recursive function calls, or a tail call that
SBCL cannot or has not optimized away.

PROCEED WITH CAUTION.
[Condition of type SB−KERNEL::CONTROL−STACK−EXHAUSTED]

4.2 Constructing a DFA
In order to determine whether a given sequence matches a

particular regular type expression, we conceptually execute
a DFA with the sequence as input. Thus we must convert
the regular type expression to a DFA. This need only be
done once and can often be done at compile time.

4.2.1 Rational derivative
In 1964, Janusz Brzozowski [3] introduced the concept of

the Rational Language Derivative, and provided a theory for
converting a regular expression to a DFA. Additional work
was done by Scott Owens et al. [12] which presented the
algorithm in easy to follow steps.

To understand what the rational expression derivative is
and how to calculate it, first think of a rational expression in
terms of its language, i.e. the set of sequences the expression
generates. For example, the language of ((a|b) · c∗ · d) is the
set of words (finite sequences of letters) which begin with
exactly one letter a or exactly one letter b, end with exactly
one letter d and between contain zero or more occurrences
of the letter c.

The derivative of the language with respect to a given
letter is the set of suffixes of words which have the given
letter as prefix. Analogously the derivative of the rational
expression is the rational expression which generates that
language. E.g., ∂a((a|b) · c∗ · d) = (c∗ · d).

The Owens [12] paper explains a systematic algorithm
for symbolically calculating such derivatives. The formu-
las listed in Figure 4 detail the calculations which must be
recursively applied to calculate the derivative.

4.2.2 DFA for regular expressions
Another commonly used algorithm for constructing a DFA

was inspired by Ken Thompson [18, 17] and involves decom-
posing a rational expression into a small number of cases
such as base variable, concatenation, disjunction, and Kleene
star, then following a graphical template substitution for
each case. While this algorithm is easy to implement, it has
a serious limitation. It is not able to easily express automata

resulting from the intersection or complemention of rational
expressions. We rejected this approach as we would like to
support regular type expressions containing the keywords
:and and :not, such as in (:and (:* t integer) (:not
(:* float t))).

We chose the algorithm based on Brzozowski derivatives.

Initial state Create the single initial state, and label it
with the original rational expression. Seed a to-do list
with this initial state. Seed a visited list to ∅.

States While the to-do list is non empty, operate on the
first element as follows:

1. Move the state from the to-do list to the visited
list.

2. Get the expression associated with the state.

3. Calculate the derivative of this expression with
respect to each letter of the necessarily finite al-
phabet.

4. Reduce each derivative to a canonical form.

5. For each canonical form that does not correspond
to a state in the to-do nor visited list, create a
new state corresponding to this expression, and
add it to the to-do list.

Transitions Construct transitions between states as fol-
lows: If S1 is the expression associated with state P1

and S2 is the expression associated with state P2 and
∂aS1 = S2, then construct a transition from state P1

to state P2 labeled a.

Final states If the rational expression labeling a state is
nullable, i.e. if it matches the empty word, label the
state a final state.

Brzozowski argued that this procedure terminates because
there is only a finite number of derivatives possible, modulo
multiple equivalent algebraic forms. Eventually all the ex-
pressions encountered will be algebraically equivalent to the
derivative of some other expression in the set.

4.2.3 DFA for regular type expressions
The set of sequences of Common Lisp objects is not a

rational language, because for one reason, the perspective
alphabet (the set of all possible Common Lisp objects) is
not a finite set. Even though the set of sequences of objects
is infinite, the set of sequences of type specifiers is a ratio-
nal language, if we only consider as the alphabet, the set of
type specifiers explicitly referenced in a regular type expres-
sion. With this choice of alphabet, sequences of Common
Lisp type specifiers conform to the definition of words in a
rational language.

There is a delicate matter when the mapping of sequence
of objects to sequence of type specifiers: the mapping is
not unique. This issue is ignored for the moment, but is
discussed in Section 4.4.

Consider the extended rational type expression P0 =
(symbol · (number+ ∪ string+))+ . We wish to construct
a DFA which recognizes sequences matching this pattern.
Such a DFA is shown in Figure 5.

First, we create a state P0 corresponding to the given
rational type expression.
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P0 P1

P2

P3

symbol

number

string

symbol

number

symbol

string

Figure 5: Example DFA

Next we proceed, to calculate the derivative with respect
to each type specifier mentioned in P0 and construct states
P1, P2, and P3 as those are the unique derivative forms which
are obtained by the calculation. We discard the ∅ value.

∂numberP0 = ∅
∂stringP0 = ∅
∂symbolP0 = (number+ ∪ string+)

· (symbol · (number+ ∪ string+))∗

= P1

∂numberP1 = number∗

· (symbol · (number+ ∪ string+))∗

= P2

∂stringP1 = string∗ · (symbol · (number+ ∪ string+))∗

= P3

∂symbolP1 = ∅
∂numberP2 = P2

∂stringP2 = ∅
∂symbolP2 = P1

∂numberP3 = ∅
∂stringP3 = P3

∂symbolP3 = P1

Next, we label the transitions between states with the
type specifier which was used in the derivative calculation
between those states. We ignore transitions from any state
to the ∅ state.

Finally, we label the final states. They are P2 and P3

because only those two states are nullable. I.e. (number∗ ·
(symbol · (number+ ∪ string+))∗) can match the empty
sequence, and so can (string∗ · (symbol · (number+ ∪
string+))∗)

4.3 Optimized code generation
The mechanism we chose for implementing the execution

(as opposed to the generation) of the DFA was to generate
specialized code based on typecase, block, and go. As an
example, consider the DFA shown in Figure 5. The code in
Figure 6 was generated given this DFA as input.

The code is organized according to a regular pattern. The
typecase, commented as OUTER-TYPECASE switches on the
type of the sequence itself. Whether the sequence, seq,
matches one of the carefully ordered types list, simple-vector,
vector, or sequence, determines which functions are used
to access the successive elements of the sequence: svref,
incf, pop, etc.

The final case, sequence, is especially useful for applica-

(lambda (seq)
(declare

(optimize (speed 3) (debug 0) (safety 0)))
(block check

(typecase seq ; OUTER−TYPECASE
(list
(tagbody
0

(when (null seq)
(return−from check nil)) ; rejecting

(typecase (pop seq) ; INNER−TYPECASE
(symbol (go 1))
(t (return−from check nil)))

1
(when (null seq)

(return−from check nil)) ; rejecting
(typecase (pop seq) ; INNER−TYPECASE

(number (go 2))
(string (go 3))
(t (return−from check nil)))

2
(when (null seq)

(return−from check t)) ; accepting
(typecase (pop seq) ; INNER−TYPECASE

(number (go 2))
(symbol (go 1))
(t (return−from check nil)))

3
(when (null seq)

(return−from check t)) ; accepting
(typecase (pop seq) ; INNER−TYPECASE

(string (go 3))
(symbol (go 1))
(t (return−from check nil)))))

(simple−vector
...)

(vector
...)

(sequence
...)

(t nil))))

Figure 6: Generated code recognizing an RTE

tions which wish to exploit the SBCL feature of Extensible
sequences [10, Section 7.6] [13]. One of our rte based appli-
cations uses extensible sequences to view vertical and hor-
izontal slices of 2D arrays as sequences in order to match
certain patterns within row vectors and column vectors.

While the code is iterating through the sequence, if it en-
counters an unexpected end of sequence, or an unexpected
type, the function returns nil. These cases are commented
as rejecting. Otherwise, the function will eventually en-
counter the end of the sequence and return t. These cases
are commented accepting in the figure.

Within the inner section of the code, there is one label per
state in the state machine. In the example, the labels P0,
P1, P2, and P3 are used, corresponding to the states in the
DFA in Figure 5. At each step of the iteration, a check is
made for end-of-sequence. Depending on the state either t
or nil is returned depending on whether that state is a final

P0

P2

P3

P1

integer

number ∩ integer integer

number

Figure 7: Example DFA with disjoint types
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state of the DFA or not.
The next element of the sequence is examined by the

INNER-TYPECASE, and depending of the type of the object
encountered, control is transferred (via go) to a label corre-
sponding to the next state.

One thing to note about the complexity of this function
is that the number of states encountered when the function
is applied to a sequence is equal or less than the number of
elements in the sequence. Thus the time complexity is linear
in the number of elements of the sequence and is independent
of the number of states in the DFA.

In some cases the same type may be specified with ei-
ther the rte syntax or with the Common Lisp native cons
type specifier. For example, a list of three numbers can
be expressed either as (cons number (cons number (cons
number null))) or as (rte (:1 number number number)).

Should the rte system internally exploit the cons speci-
fier when possible, thus avoiding the creation of finite state
machines? We began investigating this possibility, but aban-
doned the investigation on discovering that it lead to signif-
icant performance degradation for long lists. We measured
roughly a 5% penalty for lists of length 5. The penalty grew
for longer lists: 25% with a list length of 10, 40% with a list
length of 20.

4.4 The overlapping types problem
In the example in Section 4.2.3, all the types considered

(symbol, string, and number) were disjoint. If the same
method is naively used with types which are intersecting,
the resulting DFA will not be a valid representation of the
rational expression. Consider the rational expression in-
volving the intersecting types integer and number: P0 =
((number · integer) ∪ (integer · number)). The sequences
which match this expression are sequences of two numbers,
at least one of which is an integer. Unfortunately, when we
calculate ∂numberP0 and ∂integerP0 we arrive at a different
result.

∂numberP0 = ∂number( (number · integer)
∪ (integer · number))

= ∂number(number · integer)
∪ ∂number(integer · number)

= (∂numbernumber) · integer
∪ (∂numberinteger) · number

= ε · integer ∪ ∅ · number
= integer ∪ ∅
= integer

Without continuing to calculate all the derivatives, it is
already clear that this result is wrong. If you start with the
set of sequences of two numbers one of which is an integer,
and out of that find the subset of sequences starting with a
number, we get back the entire set. The set of suffixes of
this set is not the set of singleton sequences of integer.

To address this problem, we augment the algorithm of Br-
zozowski with an additional step. Rather than calculating
the derivative at each state with respect to each type men-
tioned in the regular type expression, some of which might
be overlapping, instead we calculate a disjoint set of types.
More specifically, given a set A of overlapping types, we cal-
culate a set B which has the properties: Each element of B
is a subtype of some element of A, any two elements B are
disjoint from each other, and ∪A = ∪B.

Figure 7 illustrates such a disjoint union. The set of over-
lapping types A = {number, integer} has been replaced
with the set of disjoint types B = {number∩integer, integer}.

This extra step has two positive effects on the algorithm.
1) it assures that the constructed automaton is determin-
istic, i.e., we assure that all the transitions leaving a state
specify disjoint types, and 2) it forces our treatment of the
problem to comply with the assumptions required by the the
Brzozowski/Owens algorithm.

The algorithm for decomposing a set of types into a set
of disjoint types is an interesting research topic in its own
right. While this topic is still under investigation, we have
several algorithms which work very well for a small number
of types (i.e. lists of up to 15 types). At the inescapable
core of each algorithm is Common Lisp function subtypep
[2]. This function is crucial not only in type specifier simplifi-
cation, needed to test equivalence of symbolically calculated
Brzozowski derivatives, but also in deciding whether two
given types are disjoint. For example, we know that string
and number are disjoint because (and string number) is a
subtype of nil.

We explicitly omit further discussion of that algorithm in
this article. We will consider it for future publication. For a
complete exposition of our ongoing research into this topic,
see the project report on the LRDE website [11].

5. RELATED WORK
Attempts to implement destructuring-case are numer-

ous. We mention three here. R7RS Scheme provides case-lambda
[14, Section 4.2.9] which appears to be syntactically similar
construct, allowing argument lists of various fixed lengths.
However, according to the specification nothing similar to
Common Lisp style destructuring is allowed.

The implementation of destructuring-case provided in
[6] does not have the feature of selecting the clause to be
executed according to the format of the list being destruc-
tured. Rather it uses the first element of the given list as a
case-like key. This key determines which pattern to use to
destructure the remainder of the list.

The implementation provided in [7], named destructure-case,
provides similar behavior to that which we have developed.
It destructures the given list according to which of the given
patterns matches the list. However, it does not handle de-
structuring within the optional and keyword arguments.

(destructuring−case ’(3 :x (4 5))
((a &key ((:x (b c))))
(list 0 a b c)) ;; this clause should be taken

((a &key x)
(list 2 a x))) ;; not this clause

In none of the above cases does the clause selection con-
sider the types of the objects within the list being destruc-
tured. Clause selection also based on type of object is a
distinguishing feature of the rte based implementation of
destructuring-case.

The rte type along with destructuring-bind and type-case
as mentioned in Section 3.3 enables something similar to
pattern matching in the XDuce language [8]. The XDuce
language allows the programmer to define a set of functions
with various lambda lists, each of which serves as a pat-
tern available to match particular target structure within
an XML document. Which function gets executed depends
on which lambda list matches the data found in the XML
data structure.
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XDuce introduces a concept called regular expression types
which indeed seems very similar to regular type expressions.
In [8] Hosoya et al. introduce a semantic type approach to
describe a system which enables their compiler to guarantee
that an XML document conform to the intended type. The
paper deals heavily with assuring that the regular expression
types are well defined when defined recursively, and that
decisions about subtype relationships can be calculated and
exploited.

A notable distinction of the rte implementation as op-
posed to the XDuce language is that our proposal illustrates
adding such type checking ability to an existing type system
and suggests that such extensions might be feasible in other
existing dynamic or reflective languages.

The concept of regular trees, is more general that what rte
supports, posing interesting questions regarding apparent
shortcomings of our approach. The semantic typing concept
described in [8] indeed seems to have many parallels with
the Common Lisp type system in that types are defined by
a set of objects, and sub-types correspond to subsets thereof.
These parallels would suggest further research opportunities
related to rte and Common Lisp. However, the limitation
that rte cannot be used to express trees of arbitrary depth
as discussed in Section 4.1 seems to be a significant limita-
tion of the Common Lisp type system. Furthermore, the use
of satisfies in the rte type definition, seriously limits the
subtypep function’s ability to reason about the type. Con-
sequently, programs cannot always use subtypep to decide
whether two rte types are disjoint or equivalent, or even if
a particular rte type is empty. Neither can the compiler
dependably use subtypep to make similar decisions to avoid
redundant assertions in function declarations.

It is not clear whether Common Lisp could provide a way
for a type definition in an application program to extend
the behavior of subtypep. Having such a capability would
allow such an extension for rte. Rational language the-
ory does provide a well defined algorithm for deciding such
questions given the relevant rational expressions [9, Sections
4.1.1, 4.2.1]. It seems from the specification that a Com-
mon Lisp implementation is forbidden from allowing self-
referential types, even in cases where it would be possible to
do so.

6. CONCLUSIONS
In this paper we presented a Common Lisp type definition,

rte, which implements a declarative pattern based approach
for declaring types of heterogeneous sequences illustrating it
with several motivating examples. We further discussed the
implementation of this type definition and its inspiration
based in rational language theory. While the total compu-
tation needed for such type checking may be large, our ap-
proach allows most of the computation to be done at compile
time, leaving only an O(n) complexity calculation remaining
for run-time computation.

Our contributions are

1. recognizing the possibility to use principles from ratio-
nal theory to address the problem dynamic type check-
ing of sequences in Common Lisp,

2. adapting the Brzozowski derivative algorithm to se-
quences of lisp types by providing an algorithm to sym-
bolically decompose a set of lisp types into an equiva-
lent set of disjoint types,

3. implementing an efficient O(n) algorithm to pattern
match an arbitrary lisp sequence, and

4. implementing concrete rte based algorithms for recog-
nizing certain commonly occurring sequence patterns.

For future extensions to this research we would like to ex-
periment with extending the subtypep implementation to
allow application level extensions, and therewith examine
run-time performance when using rte based declarations
within function definitions.

Another topic we would like to research is whether the
core of this algorithm can be implemented in other dynamic
languages, and to understand more precisely which features
such a language would need to have to support such imple-
mentation.
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ABSTRACT
Many applications and libraries contain a data structure for
storing and editing text. Frequently, this data structure is
chosen in a somewhat arbitrary way, without taking into
account typical use cases and their consequence to perfor-
mance. In this paper, we present a data structure in the
form of a CLOS protocol that addresses these issues. In
particular, the protocol is divided into an edit protocol and
an update protocol, designed to be executed at different fre-
quencies. The update protocol is based on the concept of
time stamps allowing multiple views without any need for
observers or similar techniques for informing the views of
changes to the model (i.e., the text buffer).

In addition to the protocol definition, we also present two
different implementations of the definition. The main im-
plementation uses a splay tree of lines, where each line is
represented either as an ordinary vector or as a gap buffer,
depending on whether the line is being edited or not. The
other implementation is very simple and supplied only for
the purpose of testing the main implementation.

CCS Concepts
•Applied computing → Text editing;

Keywords
CLOS, Common Lisp, Text editor

1. INTRODUCTION
Many applications and libraries contain a data structure

for storing and editing text. In a simple input editor, the
content can be a single, relatively short, line of text, whereas
in a complete text editor, texts with thousands of lines must
be supported.

In terms of abstract data types, one can think of an editor
buffer as an editable sequence. The problem of finding a good
data structure for such a data type is made more interesting
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because a data structure with optimal asymptotic worst-
case complexity would be considered as having too much
overhead, both in terms of execution time, and in terms of
memory requirements.

For a text editor with advanced features such as keyboard
macros, it is crucial to distinguish between two different con-
trol loops:

• The innermost loop consists of inserting and deleting
individual items1 in the buffer, and of moving one or
more cursors from one position to an adjacent posi-
tion.

• The outer loop consists of updating the views into the
buffer. Each view is typically an interval of less than
a hundred lines of the buffer.

When the user inserts or deletes individual items, the in-
ner loop performs a single iteration for each iteration of the
outer loop, i.e., the views are updated for each elementary
operation issued by the user.

When operations on multiple items are issued, such as
the insertion or deletion of regions of text, the inner loop
can be executed a large number of iterations for a single
iteration of the outermost loop. While such multiple itera-
tions could be avoided in the case of regions by providing
operations on intervals of items, doing so does not solve the
problem of keyboard macros where a large number of small
editing operations can be issued for a single execution of a
macro. Furthermore, to avoid large amounts of special-case
code, it is preferable that operations on regions be possible
to implement as repeated application of elementary editing
operations.

Roughly speaking, we can say that each iteration of the
outer loop is performed for each character typed by the user.
Given the relatively modest typing speed of even a very fast
typist, as long as an iteration can be accomplished in a few
tens of milliseconds, performance will be acceptable. This is
sufficient time to perform a large number of fairly sophisti-
cated operations.

An iteration of the inner loop, on the other hand, must be
several orders of magnitude faster than an iteration of the
outer loop.

1In a typical editor buffer, the items it contains are individ-
ual characters. Since our protocols and our implementations
are not restricted to characters, we refer to the objects con-
tained in it as “items” rather than characters. An item is
simply an object that occupies a single place in the editable
sequence that the buffer defines.
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Figure 1: Gap buffer.

In this paper, we propose a data structure that has fairly
low overhead, both in terms of execution time and in terms
of storage requirements. More importantly, our data struc-
ture is defined as a collection of CLOS protocols each one
aimed either at the inner or the outer control loop.

In Section 2, we provide an overview of existing represen-
tations of editor buffers, along with the characteristics of
each representation. We give examples of existing editors
with respect to which representation each one uses.

2. PREVIOUS WORK

2.1 Representing items in a buffer
There are two basic techniques for representing the items

in an editor buffer, namely gap buffer and line oriented.

2.1.1 Gap buffer
A gap buffer can be thought of as a vector holding the

items of the buffer but with some additional free space. In a
typical gap-buffer implementation, a possibly empty prefix
of the buffer content is stored at the beginning of the vector,
and a possibly empty suffix of the content is stored at the
end of the vector, leaving a possibly empty gap between the
prefix and the suffix. This representation is illustrated in
Figure 1.

Buffer items are moved from the end of the prefix to the
beginning of the suffix, and vice-versa, in order to position
the gap where an item is about to be inserted or deleted.
The typical use case for text editing has a very high prob-
ability that two subsequent editing operations will be close
to each other (in terms of the number of items between the
two). Therefore, in most cases, few items will have to be
moved, making this data structure very efficient for editing
operations corresponding to this use case.

Clearly, in the worst case, all buffer items must be moved
for every editing operation. This case happens when editing
operations alternate between the beginning of the buffer and
the end of the buffer. Even so, moving all the items even
in a very large buffer does not represent a serious perfor-
mance problem. For example, on a 64-bit 3MHz2 Intel-based
GNU/Linux system purchased in 2010 and runing SBCL,
using the Common Lisp function replace to move 108 full
words in a vector takes less than a second, and that num-
ber of words is several orders of magnitude larger than most

2For this experiment, memory latency is of course much
more important than CPU clock frequency. We intend this
experiment to provide a rough idea of the expected perfor-
mance, rather than exact number, which is why detailed
information on the system is omitted.

files being edited. Furthermore, the pathological case can be
largely avoided by considering the vector holding the items
as being circular (as Flexichain [6] does).

The gap-buffer representation has one great advantage,
namely that a large region of text can be treated as a single
interval, even when the region covers several lines of text.
Newlines are handled just like any other character, making
operations on a region simple no matter how large that re-
gion is.

Perhaps the main disadvantage of representing the en-
tire buffer as a single gap buffer is that it is difficult to
associate additional information with specific points in the
buffer. One might, for instance, want to associate some state
of an incremental parser that keeps track of the buffer con-
tent in a more structured form. One possible solution to this
problem is to introduce a cursor3 at the points where it is
desirable to attach information.

Another difficulty with the gap-buffer representation has
to do with updating possibly multiple views. As we discussed
in Section 1, views are updated at the frequency of the event
loop, whereas the manipulation of regions of items and es-
pecially the use of keyboard macros may make the frequency
of editing operations orders of magnitude higher.

Finally, using a gap buffer for the entire buffer makes it
more difficult to handle multiple threads of control that si-
multaneously update different parts of the buffer, such as in
a scenario with collaborative editing, or when the buffer is
updated by a running program while a user is editing that
same buffer.

2.1.2 Line oriented
Another common way of representing the editor buffer

recognizes that text is usually divided into lines, where each
line typically has a very moderate number of items in it.

In a line-oriented representation, we are dealing with a
two-level sequence. At the outer level, we have a sequence
of lines, and each element of that sequence is a sequence
of items. Every possible combination of representations of
these two sequences is possible. However, since the number
of items in an individual line is usually small, most existing
editors do not go to great lengths to optimize the represen-
tation of individual lines. Furthermore, while the number
of lines in a buffer is typically significantly greater than the
number of items in a line, a typical buffer may contain at
most a few thousand lines, making the representation of the
outer sequence fairly insignificant as well.

Perhaps the main disadvantage of a line-oriented repre-
sentation compared to a gap-buffer representation is that
transferring items to and from a file is slower. With a gap-
buffer representation, the representation in memory and the
representation in a file are very similar, making the transfer
almost trivial. With a line-oriented representation, when a
buffer is created from the content of a file, each line separa-
tor must be handled by the creation of a new representation
of a line.

However, with modern processors, the time to load and
store a buffer is likely to be dominated by the input/output
operations. Furthermore, the number of lines in a typi-
cal buffer is usually very modest. For that reason, a line-
oriented representation does not incur any serious perfor-
mance penalty compared to a gap buffer.

3What we call a cursor in this paper is called a point in
GNU Emacs terminology.
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Another disadvantage with a line-oriented representation
is that operations on regions that span over several lines
become more difficult. For example, deleting such a region,
may involve deleting one or more lines, and modifying the
contents of the line where the region starts as well as the
one where it ends.

2.2 Updating views
When interactive full-display text editors first started to

appear, the main issue with updating a view was to min-
imize the number of bytes that had to be sent to a CRT
terminal; this issue was due to the relative slowness of the
communication line between the computer and the terminal.
To accomplish this optimization, the redisplay function com-
pared the previous view to the next one, and attempted to
issue terminal-specific editing operations to turn the screen
content into the updated version. Of course, most of the
time, the task consisted of positioning the cursor and insert-
ing a single character.

Today, there is no need to minimize the number of editing
operations on a terminal; it is perfectly feasible to redraw
the entire view for each iteration of the event loop. However,
today we have many more requirements on a text editor. In
the most advanced cases, we would like for an incremental
parser in the view to keep a structured version of the buffer
content, for various purposes, such as syntax highlighting,
language-specific completion and parsing, etc. An incremen-
tal parser may require considerable computing power. It is
therefore of utmost importance that as little work as possi-
ble is done each time around the event loop. Representing
the entire editor buffer as a gap buffer does not lend itself
to such advanced incremental processing.

In fact, most existing editors have very primitive parsers,
mainly because the buffer representation does not necessar-
ily lend itself to efficient incremental parsing.

2.3 Existing editors

2.3.1 GNU Emacs
GNU Emacs [1, 4] uses a gap buffer for the entire buffer

of text, as described in Section 2.1.1.
Creating sophisticated parsers for the content of a buffer

in GNU Emacs is not trivial. For that reason, existing
parsers are typically fairly simple. For example, the parser
for Common Lisp source code is unable to recognize the role
of symbols in different contexts, such as the use of a Com-
mon Lisp symbol as a lexical variable. As a result, syntax
highlighting can become confusing, and indentation is some-
times incorrect.

2.3.2 Multics Emacs
Multics Emacs4 [3] was the first Emacs implementation

written in Lisp, specifically, Multics MacLisp. It therefore
pre-dates GNU Emacs.

Multics Emacs used a doubly linked list of lines, with the
line content itself separate from the linked structure. All
but a single line were said to be closed, and the content of a
closed line was represented as a compact character string.

For the current line, a new MacLisp data type was added
to the Multics MacLisp implementation, and it was called a
rplacable string. Such a string could be seen as an ordinary

4The description in this section is a summary of the infor-
mation found here: http://www.multicians.org/mepap.html

MacLisp string, but could also have characters inserted or
deleted through the use of primitives written in assembler
and using special instructions on the GE 645 processor.

2.3.3 Climacs
Like GNU Emacs, Climacs5 uses a gap buffer for the entire

buffer. It avoids the bad case by using a circular buffer. In
fact, it uses Flexichain [6].

Climacs is able to accommodate fairly sophisticated parsers
for the buffer content. But in order to avoid a complete anal-
ysis of the entire buffer content for each view update, such
parsers must be incremental.

Information about the state of such parsers at various po-
sitions in the buffer must be kept and compared between
view updates. Unfortunately, the gap-buffer representation
does not necessarily lend itself to storing such information.
The workaround used in Climacs is to define a large num-
ber of cursors to hold parser state at various places in the
buffer, but managing these cursors is a non-trivial task.

2.3.4 Others
Hemlock6 uses a doubly linked list of lines. Each line is

a struct containing a reference to the previous line and a
reference to the next line. No more than one line is open at
any point in time, and then the content is stored separately
in a gap buffer. The gap-buffer data is contained in special
variables and not encapsulated in a class or a struct.

Goatee7 was written to be the input editor of McCLIM.
Like Hemlock, it uses a doubly linked list of lines, with the
difference that the line content itself is separate from the
doubly linked structure. Lines are represented by a gap
buffer. The gap buffer is encapsulated in a library called
Flexivector, which was later extended to become the Flexi-
chain library.

To take one example that is not a member of the Emacs
family, VIM8 represents the buffer contents as a tree of
blocks. A block contains one or more lines of text. A line
can not span block boundaries. Most blocks are exactly one
page (as defined by the operating system) in size. Only a
block containing a (single) line that is larger than one page
can be larger than a page. Blocks are file backed, making
it possible to represent text buffers that are larger than the
swap space of the computer.

3. OUR TECHNIQUE

3.1 Protocols
Recall from Section 1 the existence of two nested control

loops, the inner control loop in which each iteration is ex-
ecuting a single edit operation, and the outer control loop
for the purpose of updating views.

The inner control loop is catered to by two different proto-
cols; one containing operations on individual lines of items
and one containing operations at the buffer level, concerning
mainly the creation and deletion of lines. While we supply
reasonable implementations of both these protocols, we also
allow for sophisticated clients to substitute specific imple-
mentations of each one.
5https://common-lisp.net/project/climacs/
6https://www.cons.org/cmucl/hemlock/index.html
7Goatee is part McCLIM which can be found at this loca-
tion: https://github.com/robert-strandh/McCLIM
8https://github.com/vim/
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Although the protocol containing operations one individ-
ual lines and the protocol containing operations at the buffer
level are independent, some high-level operations may in-
volve both protocols simultaneously. For example, as men-
tioned in Section 2.1.2, deleting a region that spans several
lines may require deleting several lines and editing the two
lines at the beginning and the end of the region. Deleting a
line is an operation that belongs to the buffer-level protocol,
whereas editing a line is an operation that belongs to the
line-level protocol.

The outer control loop is catered to by the update proto-
col. This protocol is based on the concept of time stamps.
In order to request an update, client code supplies the time
stamp of the previous similar request in addition to four dif-
ferent functions (sync, skip, modify, and create). These
functions can be thought of as representing editing opera-
tions on the lines of the buffer. Our protocol implementation
calls these functions in an order that will update the buffer
content from its previous to its current state. The imple-
mentations of these functions are supplied by client code
according to its own representation of the buffer content.

Presumably, client code maintains a sequence of lines and
some kind of index into that sequence. The function skip

is called with a positive integer argument, indicating that
client code should increment the sequence index by that
amount. The function create is called with a single line
as an argument and it indicates that the line should be in-
serted at the place indicated by the sequence index. The
function modify is also called with a single line as an argu-
ment. If the sequence index does not refer to the line of the
argument, client code must firsts delete lines at the sequence
index until the modified line becomes the one at the index.
The sync function is called with a single unmodified line as
an argument. It is called after a sequence of calls to the
functions modify and create. Again, client code responds
by deleting lines until the one passed as an argument become
the one at the sequence index.

There are two main challenges that are addressed by the
update protocol. The first one is that it has to be efficient
when there is little or no modification to the buffer between
two calls to the update function by client code. Our protocol
handles this case by calling the skip function with a number
of consecutive unmodified lines, as described above.

The second challenge has to do with deleted lines. The
buffer does not hold on to deleted lines, but the protocol
does not contain a function for deleting a line. Instead, it
requires the contents of a line to be joined at the end of the
preceding line. With this technique, a sequence of deleted
lines leaves a trace in the form of an updated time stamp on
the line immediately preceding the sequence of deleted ones.
The sync operation allows for client code to be informed
about the end of the sequence of deleted lines.

Figure 2 illustrates the relationship between these proto-
cols.

The protocols illustrated in Figure 2 are related to one
another by the protocol classes that they operate on. The
buffer-edit protocol operates on instances of the protocol
class named buffer. The line-edit protocol operates on in-
stances of the two protocol classes line and cursor. These
protocols are tied together by classes and other code, serv-
ing as glue to hold the two protocols together. Figure 3
illustrates the participation of these protocol classes in the
different protocols, omitting the update protocol.

update

Update

Edit

Buffer

Line

item−count

line−count

split−line

...

insert−item

forward−item

...

Figure 2: External protocols.

glue code

buffer

line

cursor

Buffer edit

Line edit

Internal

Figure 3: Participation of classes in protocols.
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The internal protocol contains generic functions for which
methods must be created that specialize to different im-
plementations of the buffer-edit and the line-edit protocols.
Client code using the library is not concerned with the ex-
istence of the internal protocol.

3.2 Supplied implementations
For the line protocol, we supply two different implemen-

tations, the standard line implementation and the simple
line implementation. Similarly, for the buffer protocol, we
supply two different implementations, the standard buffer
implementation and the simple buffer implementation.

3.2.1 Simple line implementation
We supply an implementation, called the simple line, for

the line editing protocol. The main purpose of this imple-
mentation is to serve as a reference for random tests. The
idea here is that the implementation of the simple line is triv-
ial, so that the correctness of the implementation is mostly
obvious from inspecting the code, and in any case, it is un-
likely that a defect in the simple line and another defect in
the standard line will result in the same external behavior
on a large body of randomly generated operations.

In addition to serving as a reference implementation for
testing the standard line, this implementation can also serve
as a reference for programmers who would like to create their
own implementation of the line editing protocol.

The simple line implementation provides a single line ab-
straction, implemented as a Common Lisp simple vector.
Each editing operation is implemented as reallocation of a
new vector followed by calls to replace to copy items from
the original line content to the one resulting from the edit-
ing operation. Clearly, this technique is very inefficient. For
that reason, it is not recommended to use the simple imple-
mentation in client code.

3.2.2 Standard line implementation
The standard line implementation is the one that a typical

application would always use, unless an application-specific
line implementation is desired.

To appreciate the design of the standard line, we need
to distinguish between two different categories of operations
on a line. We call these categories editing operations and
content queries, respectively. An editing operation is one in
which the content of the line is modified in some way, and is
the result of the interaction of a user typing text, inserting
or removing a region of text, or executing a keyboard macro
that results in one or more editing operations. A content
query happens as a result of an event loop or a command
loop updating one or more views of the content.

A crucial observation related to these categories is that
content queries are the result of events (typically, the user
typing text or executing commands). The frequency of such
events is fairly low, giving us ample time to satisfy such a
query. Editing operations, on the other hand, can be ar-
bitrarily more frequent, simply because a single keystroke
on the part of the user can trigger a very large number of
editing operations.9

9It is of course possible to supply aggregate operations that
alleviate the problem of frequent editing operations. In par-
ticular, it is possible to supply operations that insert a se-
quence of items, and that delete a region of items. However,
such operations complicate the implementations of the pro-

This implementation supplies two different representations
of the line that we call open and closed respectively. A line
is open if the last operation on it was an editing operation.
It is closed if the last operation was a content query in the
form of a call to the generic function items. Accordingly,
a line is changed from being open to being closed whenever
there is a content query, and from closed to open when there
is a call to an editing operation.

A closed line is represented as a Common Lisp simple
vector. An open line is represented as a gap buffer. (See
Section 2.) The protocol specifically does not allow for the
caller of a content query to modify the vector returned by
the query. This restriction allows us to return the same
vector each time there is a content query without any inter-
vening editing operation, thus making it efficient for views
to query closed lines repeatedly. Similarly, repeated editing
operations maintain the line open, making such a sequence
of operations efficient as well.

Clearly, the typical use case when a user issues keystrokes,
each one resulting in a simple editing operation such as in-
serting or deleting an item, followed by an update of one or
more views of the buffer content is not terribly efficient. The
reason for this inefficiency is that this use case results in a
line being alternately opened (as a result of the editing op-
eration) and closed (as a result of the view update) for each
keystroke. However, this use case does not have to be very
efficient, again because the costly operations are invoked at
the frequency of the event loop. The use case for which the
standard line design was optimized is the one where a single
keystroke results in several simple editing operations, i.e.,
the exact situation in which performance is crucial.

3.2.3 Simple buffer implementation
As with the implementations of the line-edit protocol, we

supply an implementation, called the simple buffer, for the
buffer editing protocol as well. Again, the main purpose of
this implementation is to serve as a reference for random
tests. As with the simple line implementation, the imple-
mentation of the simple buffer is trivial, so that the correct-
ness of the implementation is mostly obvious from inspecting
the code.

The simple buffer implementation represents the buffer as
a Common Lisp vector of nodes, where each node contains
a line and time stamps indicating when a line was created
and last modified.

3.2.4 Standard buffer implementation
The main performance challenge for the buffer implemen-

tation is to obtain acceptable performance in the presence
of multiple views (into a single buffer) that are far apart,
and that both issue editing operations in each interaction.
The typical scenario would be a user having two views, one
close to the beginning of the buffer and one close to the end
of the buffer, while executing a keyboard macro that deletes
from one of the views and inserts into the other.

This time, the performance challenge has to do with the
update protocol rather than with the edit protocols. A naive
buffer implementation would have to iterate over all the lines
each time the update protocol is invoked.

To obtain reasonable performance in the presence of mul-

tocol. Worse, there are still cases where many simple editing
operations need to be executed, in particular as a result of
executing keyboard macros.
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tiple views, the standard buffer implementation uses a splay
tree [5] with a node for each line in the buffer. A splay tree
is a self-adjusting binary tree, in that nodes that are fre-
quently used migrate close to the root of the tree. Although
the typical use of splay trees and other tree types is to serve
as implementations of dictionaries, an often overlooked fact
is that all trees can be used to implement editable sequences;
that is how we use the splay tree here.

In addition to containing a reference to the associated
line, each node in the splay tree contains time stamps corre-
sponding to when the line was created and last modified. In
addition, each node also contains summary information for
the entire subtree rooted at this node. This summary infor-
mation is what allows us to skip entire subtrees when a view
requests update information and no node in the subtree has
been modified since the last update request.

Finally, each node contains both a line count and an item
count for the entire subtree, so that the offset of a particular
line or a particular item can be computed efficiently, at least
for nodes that are close to the root of the tree.

4. BENEFITS OF OUR TECHNIQUE
There are several advantages to our technique compared

to other existing solutions.
First, most techniques expose a more concrete represen-

tation of the buffer to client code, such as a doubly linked
list of lines. Our technique is defined in terms of an abstract
CLOS protocol that can have several potential implementa-
tions.

Furthermore, our update protocol based on time stamps
provides an elegant solution to the problem of updating mul-
tiple views at different times and with different frequencies.
As opposed to the technique of using observers preferred
in the object-oriented literature [2], time stamps require no
communication from the model to the views as a result of
modifications; indeed, such communication would be unde-
sirable because of the high frequency of modifications to the
model compared to the frequency of view updates. Instead,
view updates are at the initiative of the views that need up-
dating, and only when they need to be updated. The stan-
dard buffer implementation provided by our library provides
an efficient implementation of the update protocol.

Because of the way the line-editing protocol is designed, a
line can contain any Common Lisp object, and therefore any
characters. The standard implementation of the line editing
protocol uses simple vectors10 to store the data. But the
standard implementation in no way restricts the contents of
a line to be characters. Client code can store any object in
a line that it is prepared to receive when the contents of a
line is asked for.

Our technique can be customized by the fact that the
buffer editing protocol and the line-editing protocol are in-
dependent. Client code with specific needs can therefore re-
place the implementation of one or the other or both accord-
ing to its requirements. Thanks to the existence of the CLOS
protocol, such customization can be done gradually, start-
ing with the supplied implementations and replacing them
as requirements change. A typical customization might be
to optimize the implementation of the line-editing protocol
so that when every object in a particular line is an ASCII

10A simple vector is a Common Lisp one-dimensional array,
capable of storing any Common Lisp object.

character, an efficient string representation is used instead
of a simple vector.

The standard line implementation supplied makes it pos-
sible to obtain reasonable performance for aggregate editing
operations even when these operations are implemented as
iterative calls to elementary editing operations. This quality
makes it possible for client code to be simpler, for obvious
benefits.

A reasonable question that one might ask is whether the
additional abstraction layer in the form of generic functions
will have a negative impact on overall performance of an ed-
itor that uses our technique, especially since the protocols
allow for the buffer to contain not only characters, but ar-
bitrary objects. One important reason for designing these
protocols was that we are convinced that the performance
bottleneck is not in the communication between the buffer
and the views, in particular given the design of the update
protocol. Instead, the main performance challenge lies in
how the views organize the data supplied by our protocols
and how they interpret and display the data, and such design
decisions are independent of the buffer protocols.

Finally, our technique is not specific to the abstractions of
any particular existing editor, making our library useful in a
variety of potential clients. In fact, we are already aware of
one project for using our library in order to create a VIM-like
editor.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have defined a CLOS protocol for ma-

nipulating text editor buffers. The protocol is divided into
several sub-protocols, so that sophisticated clients can pro-
vide specific implementations according to the requirements
of the application.

The update sub-protocol was designed to be used by an
arbitrary number of views. The implementation we supply
is fast so that this protocol can be invoked for events such
as keystrokes, exposures, and changes of window geometry.

The features provided by CLOS are invaluable for the de-
sign of protocols like these. These features allow for partial
or total customization of a large number of the details of
the protocols while still providing reasonable default design
choices that are workable for the majority of clients.

Our technique will have very little influence on the harder
parts of editor design, such as managing variable-size fonts
and the mixture of text and other objects to be displayed.
The objective of our technique is more modest, namely to
eliminate the necessity for creators of editors to make deci-
sions about the organization of the buffer, and as a conse-
quence also diminish the maintenance requirements on the
code for buffer management.

In the remainder of this section, we outline future plans
for the library.

5.1 Layer for Emacs compatibility
We plan to define a protocol layer on top of the edit pro-

tocols with operations that have the same semantics as the
buffer protocol of GNU Emacs. Mainly, this work involves
hiding the existence of individual lines, and treating the sep-
aration between lines as if it contained a newline character.

When a cursor is moved forward beyond the end of a line,
or backward beyond the beginning of a line, this compati-
bility layer will have to detach the cursor from the line that
it is currently attached to and re-attach it to the following
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or preceding line as appropriate.
Other minor operations need to be adapted, such as com-

puting the item count of the entire buffer. This calculation
will have to consider the separation of each pair of lines to
contribute another item to the item count of the buffer.

5.2 Incremental Common Lisp parser
One of the essential reasons for the present work is to

serve as an intermediate step towards the creation of a fully
featured editor for Common Lisp code, entirely written in
Common Lisp. Such an editor must be able to analyze the
buffer content at least at the same frequency as that of the
update of a view.

To that end, we plan to create a framework that allows the
incremental parsing of the buffer content as Common Lisp
code. Such a framework should allow for features such as
syntax highlighting and automatic code indentation. Prefer-
ably, it should have a fairly accurate representation of the
code such that the role of various code fragments can be
determined. For example, it would be preferable to distin-
guish between a symbol in the common-lisp package when
it is used to name a Common Lisp function and when (as
the Common Lisp standard allows) it is used as a lexical
variable with no relation to the standard function.

The first step of this incremental parser framework will
be to adapt an implementation of the Common Lisp read

function so that it can be used for incremental parsing, and
so that the interpretation of tokens can take into account
the specific situation of an editor buffer.

To take into account the different roles of symbols, the
framework needs to include a code walker so that the occur-
rence of macro calls will not hamper the analysis.

5.3 Thread safety
The current implementation assumes that access is single-

threaded. We plan to make multi-threaded access possible
and safe. Implementing thread safety is not particularly
difficult in itself. The interesting part would be to deter-
mine whether it is possible to achieve multi-threaded access
without using a global lock for the entire buffer for every
elementary operation. Clearly some high-level operations
such as deleting a region that spans several lines may re-
quire a global lock, since such an operation involves several
elementary operations involving both the buffer-level and
the line-level editing protocols.

Since each line is a separate object, it would appear that
locking a single line would be sufficient for most operations
such as inserting or deleting a single item. However, the cur-
rent implementation also keeps the item count of the entire
buffer up to date for each such operation.

Fortunately, the item count for the entire buffer is typi-
cally asked for only at the frequency of the update protocol,
for instance, in order to display this information to the end
user. Other situations exist when this information is needed,
for example when an operation to go to a particular item off-
set is issued. But such operations are relatively rare.

This analysis suggests that it may be possible to update
the global item count lazily. Each line would be allowed to
have a different item count from what is currently stored in
the buffer data structure, and the buffer itself would main-
tain a set of lines with modified item counts. When the
global item count of the buffer is needed, this set is first
processed so that the global item count is up to date.
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APPENDIX
A. PROTOCOL

In this section, we describe the protocols that are imple-
mented by our library.

For each class, generic function, and condition type, we
include only a brief description. In particular, we do not
include a complete description of the exceptional situations
possible. For a complete description, see the Documentation

subdirectory in the repository at GitHub.11

A.1 Classes
buffer [Protocol Class]

This class is the base class of all buffers. Each different buffer
implementation defines specific implementation classes to be
instantiated by client code.
line [Protocol Class]

This class is the base class of all lines. Each different line
implementation defines specific implementation classes to be
instantiated by client code.
cursor [Protocol Class]

This class is the base class of all cursors. Each different line
implementation defines specific implementation classes to be
instantiated by client code.

A.2 Generic functions
item-count entity [GF ]

If entity is a line, then return the number of items in that
line. If entity is a cursor, return the number of items in the
line in which cursor is located. If entity is a buffer, then
return the number of items in the buffer.
item-at-position line position [GF ]

Return the item located at position in line.
insert-item-at-position line item position [GF ]

Insert item into line at position.
After this operation completes, what happens to cursors

located at position before the operation depends on the class
of the cursor and of line.
delete-item-at-position line position [GF ]

Delete the item at position in line.
cursor-position cursor [GF ]

Return the position of cursor in the line to which it is at-
tached.
(setf cursor-position) new-position cursor [GF ]

Set the position of cursor to new-position in the line to which
cursor is attached.
insert-item cursor item [GF ]

Calling this function is equivalent to calling insert-item-

at-position with the line to which cursor is attached, item,
and the position of cursor.
delete-item cursor [GF ]

Delete the item immediately after cursor.
Calling this function is equivalent to calling delete-item-

at-position with the line to which cursor is attached and
the position of cursor.

11https://github.com/robert-strandh/Cluffer
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erase-item cursor [GF ]
Delete the item immediately before cursor.

Calling this function is equivalent to calling delete-item-

at-position with the line to which cursor is attached and
the position of cursor minus one.
cursor-attached-p cursor [GF ]

Return true if and only if cursor is currently attached to
some line.
detach-cursor cursor [GF ]

Detach cursor from the line to which it is attached.
attach-cursor cursor line &optional (position 0) [GF ]

Attach cursor to line at position.
beginning-of-line-p cursor [GF ]

Return true if and only if cursor is located at the beginning
of the line to which cursor is attached.
end-of-line-p cursor [GF ]

Return true if and only if cursor is located at the end of the
line to which cursor is attached.
beginning-of-line cursor [GF ]

Position cursor at the very beginning of the line to which it
is attached.
end-of-line cursor [GF ]

Position cursor at the very end of the line to which it is
attached.
forward-item cursor [GF ]

Move cursor forward one position.
backward-item cursor [GF ]

Move cursor backward one position.
update buffer time sync skip modify create [GF ]

This generic function is the essence of the update protocol.
The time argument is a time stamp that can be nil (mean-
ing the creation time of the buffer) or a value returned by
previous invocations of update. The arguments sync, skip,
modify, and create, are functions. The sync function is called
with the first unmodified line following a sequence of mod-
ified lines. The skip function is called with a number indi-
cating the number of lines that have not been altered. The
modify function is called with a line that has been modi-
fied. The create function is called with a line that has been
created.
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ABSTRACT
Model-free statistical tests are purely data-driven approaches
to assess correlations and other interdependencies between
observable quantities. The few, distinct patterns how to
perform these tests on the myriad of potentially different
interdependence measures prompted us to use (Common)
Lisp’s macro capabilities for the development of a general,
domain-specific language (DSL) of expectation values under
so-called resampling techniques. Herein, we give an intro-
duction into this statistical approach to big data, describe
our solution, and report on application as well as on further
research opportunities in statistical DSLs. We illustrate the
results based on a toy example.
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•Computing methodologies → Symbolic and alge-
braic manipulation; Shared memory algorithms; •Software
and its engineering → Domain specific languages;
•Mathematics of computing → Nonparametric statis-
tics; Statistical software;

Keywords
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1. INTRODUCTION
Data analysis relies heavily on statistical tests. For exam-

ple, in the traditional frequentist approach such procedures
test, e.g., the significance under a null hypothesis (shortened
to “the null”). In some cases, one cannot or does not want
to formulate a (rather involved) null, but rather relies on
a completely data-driven, model-free approach – so called
parameter-free statistics1

1In contrast to parameter statistics: here, an explicit model
and its respective parameters are fitted to the data and the
significance is judged on the fitting outcome.
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Then the test is often carried out under so-called resam-
pling. This avoids the need for knowledge of the underlying
probability distribution of any test statistic. Resampling
techniques can be distinguished based on the sample of the
available data that they create and thus by the underlying
question to be answered:

Jackknifing is capable of estimating variance and bias in
a test statistic [15]. Here, we take the original data
and delete d many entries from it, recompute the test
statistic. Upon repetition we get a quantification of the
sensitivity of the test statistic under finite-size effects.
The parameter d characterizes the procedure.

Bootstraping creates an approximate distribution of the
test statistic [6]. To this end, one draws random sam-
ples from the test data repeatedly with replacement.

Permutation Tests have a long tradition [5]. Here, one
shuffles different data columns randomly in order to
destroy potential correlations. This procedure is there-
fore able to assess correlation in the original data on
the background of uncorrelated data via permutation-
s/shuffles.

Typically, one is interested in the distribution of expec-
tation values over a (resampled) data set (under any of the
above procedures). The resampling procedure then com-
putes a function – the test statistic – of the entries in the
original data set first. Then, within a loop, we compute
the same function over and over again over the resampled
data set and obtain a collection of function values. This
collection is what we are interested in: a computational ap-
proximation of the underlying, real distribution of function
values. With respect to this distribution, we can then as-
sess the “relevance”2 of the function value for the original,
un-sampled data set. Note, that the three methods above
are the “basic” variants with a lot of variations in domain-
specific applications; thus, a general framework to allow for
easy implementation of variants is desirable – begging for a
DSL.

1.1 Notation
In the subsequent part, we will deal with real-valued ma-

trices X where the columns contain observations or measure-
ments of different variables and each row ~xi is one measure-
ment of all the variables simultaneously. Note, that time

2significance in statistical parlance
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series analysis for, e.g., auto-correlation is possible by copy-
ing a time-lagged version from one column of the matrix into
another.

A frequently employed notation for expectation values
over a sample is

〈
f
(
X̃
)〉

=
1

Nσ

Nσ∑

i=1

f
(
~̃xσ(i)

)
(1)

The sampling function contained in the functions σ(i) → j

and X → X̃ implements the three procedures (permutation
test, jackknife, bootstrap) from above. Some procedures –
such as the jackknife – might change the number of data
points from N to Nσ.

1.2 Related Work
First, there was a package for Lisp implementing gen-

eral statistical methods called XLISP-STAT. This system was,
however, abandoned by the proponents [4]. The main reason
as discussed in the cited paper lies in the fact that a shift
in the user community was recognized; eventually favoring
R. Although we also employ R frequently, it has become ap-
parent since the 90s that it is too much a compromise; on
the surface you can be object-orientated, functional, even
macros are (somewhat) possible. But in the end, neither of
these traits is implemented thoroughly, not to speak about
performance issues. Thus, the motivation [4] to abandon
XLISP-STAT might have been in the light of the 90’s a good
one, our experience tells us otherwise in the meantime. Es-
pecially for prototyping computational procedures by (semi-
)experts a new, more expressive and computational efficient
technology needs to be employed.

Then, there exists some code [2] that implements statisti-
cal procedures and methods or interfaces to external systems
like R [13]. Note, however, that this package implements con-
crete procedures, rather than a macro-based, general frame-
work that automatically creates (Lisp-)code for any conceiv-
able test statistic. Another attempt on parameter statistics
[12] seems to have been abandoned.

Furthermore, several software packages outside the Lisp
ecosystems are available, that follow the same, traditional,
procedure-orientated lines: implementing resampling tech-
niques but without any notion of domain-specific language
that allows for the automatic generation of resampling for
a novel or user-defined measure to work with. The most
prominent ones are R [11], Julia [3] and (I)python [10].
While these languages are capable of self-introspection of
code and Julia has a macro facility similar to Lisp-like lan-
guages they are all, however, not homoiconic to the extent of
Common Lisp. Julia is the only language converging to the
capabilities of Lisp. Thus, almost all these language lack the
ability to mix code fragments of a domain specific language
(DSL) for resampling as well as standard mathematical ex-
pressions of that language.

Work on DSLs in general has a long history [1] – eventually
being strongly interwoven with the history of Lisp [7, 9] A
full review is beyond the scope of the present work but it is
fair to say, that quite a lot of work in the realm of software
engineering has be done using DSLs. Most of this focus
on one special question and thus is barely related to the
concrete question on resampling procedures we address.

1.3 Our Contribution

We have implemented a general framework for resampling
techniques. The data randomization and sampling proce-
dure can be easily replaced by any function coherent to the
interface of existing procedures. We will illustrate this in
Sec. 2.1.

Our framework consists mainly of two macros that expand
nested expectation values of expressions which implement
any conceivable, real-valued function f in Eq. 1. By this,
we can now easily write “statistical formulas” that contain
results from resampling procedures.

We illustrate this by implementing and applying a tradi-
tional measure (covariance) to a multi-dimensional, dynamic
system that produces synthetic data (cmp. Sec. 3.1) for test
purposes, see Sec. 3.

2. LISP TO THE RESCUE: MACROS FOR
PERMUTATION TESTS

Above, we have described how permutation tests show
a repeated pattern: iterating several times over (partially)
mixed choices from an underlying data set, each time recal-
culating a particular measure.

This pattern could potentially be applied to any code that
implements such a measure f of Eq. 1 – as long as this pat-
tern can access and introspect the code of the measure and
“program the program code” to rewrite itself to implement
this pattern again and again for each user-/programmer-
supplied pattern – the realm in which Lisp excels due to
this inherent macro capabilities. To this end, we define here
a domain specific language that describes how a code frag-
ment - namely a function uses data – and thus makes the
measure accessible to a macro implementing any of the above
discusses resampling approaches.

Formulas for a user-provided f in Eq. 1 need to refer to
data elements contained in the (resampled) data set to per-
form their computations. We introduce a notation to this
end that is motivated by the dataframe syntax of the sta-
tistical language R. In our DSL we make the data entry of
any row i of the full data set X̃ available as D$i where i is
a string or a number serving as a “name” for a particular
column.

Thus, we are able to write a measure, e.g., f = xa ·xb as a
form (* D$a D$b). The macro needs then to expand this to
a combination of columns a and b. Note, that in practice we
are always interested in all pairings (a, b) of columns in the
data set. Therefore, D$1 does not refer to the first column
of the data, but rather represents the first column index
currently under investigation.

Following Peter Seibel’s suggestion [14] to first write down
what a macro needs to achieve, we illustrate here how the
resampling of a covariance 〈(D$a− 〈D$a〉) · (D$b− 〈D$b〉)〉
between any pair of columns should be implemented:

( with−resampling test−dataframe 100
#’permutation−test
expectat ion−value

(∗
(− D$a ( expectat ion−value D$a ) )
(− D$b ( expectat ion−value D$b ) ) ) )

Here test-dataframe is an array with test data for the
model in Sec. 3.1. The function permutation-test is de-
scribed in Sec. 2.1.

We achieve this by the macro with-resampling (shown in
Algorithm 1) that first 1) extracts all D$x symbols, 2) sets up
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iterators over the combination of columns to be combined in
the abstract syntax tree (AST) implementing the user’s f ,
and 3) returns an array with the values of f for the original
data and for the resampled ones.

While we could have implemented with-resampling as
a function we took the deliberate design decision to imple-
ment it as a macro: we hope to accommodate future exten-
sion such as user-provided aggregation function (histogram
building, for example) beyond the simple expectation value
with this step and make the procedure more widely applica-
ble.

Within the resampling procedure we need to parse the
AST of f and insert appropriate code for expectation value
computations.

To this end, we implement parse-ev-calls as a macro to
make the current, looped-over indices of the sampled data
set available to any formula internal to its respective macro
invocation. We show in Algorithm 2 the concrete implemen-
tation for the expectation value. Thus a code fragment like
above can be converted to an expression in which D$a and
D$b are replaced by respective arefs to the resampled data.

Note, that we cannot naively use subst, subst-if, and
similar facilities to walk the AST tree3 : we must not substi-
tute D$x symbols at different levels of nesting of expectation-
value occurrences. One could achieve this by a rather in-
volved predicate definition, but we decided to achieve the
same result by an appropriate base case in the recursive def-
inition of our parse-ev-calls macro.

2.1 Implementing Sampling Variants
We show in Algorithms 3, 4, 5, and 6 the implementations

of the permutation test, the jackknife, and the bootstrap
with a shared interface.

Furthermore, we have implemented the identity-sample

function, which is a permutation-test without shuffling at
all – thus we are able to compute the test statistic for the
original data using identity-sample. Later on, we will il-
lustrate the usefulness of this detail and the necessary re-
dundancy in identity-sample.

Note, the subtle differences in the argument list between
identity-sample, bootstraping, identity-sample on the
one hand and jackknifing on the other: jackknifing needs
an additional parameter d. We can, however, easily have a
concrete jackknife for a fixed value of d conforming to the
common parameter pattern by employing a lexical closure
as in, e.g.,

1 (defun jack2 ( idxs n)
2 ( let ( ( d 2) )
3 ( j a c k k n i f i n g idxs n d ) ) )

3. RESULTS
All tests were run on a machine under Linux Kernel ver-

sion 4.3.3, SBCL 1.3.1.

3.1 Test Data
To apply our package we created synthetic data4 for a

3as, e.g., suggested at listips.com webpage
4Note, that for illustration purposes the used data set is
irrelevant; we have, however, opted for a system under our
complete control to be able to distinguish, e.g., spurious
correlations from real ones (a ↔ x(1) and e.g. x(2) ↔ x(1),
respectively).
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Figure 1: The 3D embedding of the time series(
x(1);x(2);x(3)

)
. Clearly each pair of variables covary,

but also the 3-tupel of all three variables shows rich
dynamics and interdependence.

system of three coupled dynamic variables with complex dy-
namics:

f(x) = 4 · x · (1− x) (2)

ai+1 = 0.5 · f (ai) + f (ai−3)

x
(1)
i+1 = f

(
x
(1)
i

)

x
(2)
i+1 = 0.8 · f

(
x
(2)
i

)
+ 0.2 · f

(
x
(1)
i

)

x
(3)
i+1 = 0.5 · f

(
x
(3)
i

)
+ 0.25 · f

(
x
(2)
i

)
+ 0.25 · f

(
x
(1)
i

)

(3)

The function f is the logistic equation in the chaotic regime.
Therefore, the series of x(1) and a values are independent,
chaotic trajectories. At the same time, x(2) and x(3) are
coupled instantaneously to the driving system x(1) and thus
should show correlaction to x(1). We simulated the dynamics
for i ∈ [1 . . . 500]. A embedding plot of the trajectory for

the three components x(1), x(2), x(3) is shown in Fig. 1. The
trajectory of a serves as an example to which the other values
x(1), x(2), x(3) cannot be correlated and thus any metric
must vanish and/or be insignificant. Initial condition were
chosen by a random generator.

3.2 An Example : Covariance
As an example we show the covariance between two data

vectors ~X = (X1, . . . XN ) and ~Y = (Y1, . . . YN ) defined as

covar
(
~X, ~Y

)
:=

1

N

N∑

i=1

(
Xi − X̄

)
·
(
Yi − Ȳ

)
(4)

with X̄ =
∑

i

Xi and Ȳ =
∑

i

Yi.

~X and ~Y are any pairs of columns in the data set created
in Sec. 3. We demanded above from our DSL this to be
implementable with the code

1 ( with−resampling test−dataframe 100
2 #’permutation−test
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Algorithm 1 The macro implementing the“frame”for calling general AST representing a measure f . multi-dim-homogenous-
iter is a CLOS-class that iterates over a regular, multi-dimensional grid of column indices (eventually the ones represented be
the a, b, c, . . . in the D$x terminals present within the AST). This mapping of a, b, c, . . . to real column numbers is done via
a hash table that is modified by modify-hash-table. We omit several utility functions for brevity here, such as repetition,
. . .

1 (defmacro with−resampling ( data N method &rest as t )
2 ‘ ( let ∗ ( ( arr−dims ( array−dimensions , data ) )
3 ( dimens ( cadr arr−dims ) )
4 ( idxs ( from−zero−to ( car arr−dims ) ) )
5 ( i n d i c e s ( ident ity−sample idxs dimens ) ) )
6 ( multiple−value−bind (Ds data−hash−table ) ( extract−ds ’ , a s t )
7 ( let ∗ ( ( g r id ( r e p e t i t i o n Ds dimens ) )
8 ( z ( make−array (append g r id ( l i s t (1+ ,N) ) ) : i n i t i a l− e l e m e n t 0 . 0 ) ) )
9 ( loop f o r nn from 0 to ,N do

10 ( let ( ( i dx− i t e r a to r ( make−instance ’ multi−dim−homogenous−iter
11 : d imens i ona l i t y Ds :N dimens ) ) )
12 ( loop whi le (not ( donep idx− i t e r a to r ) ) do
13 ( let ( ( idx ( next idx− i t e r a to r ) ) )
14 ( setf data−hash−table
15 ( modify−hash−table data−hash−table idx ) )
16 ( let ( (w ( parse−ev−cal l s data−hash−table i n d i c e s , data , @ast ) ) )
17 ( setf (apply #’aref z
18 (append ( coerce idx ’ l i s t ) ( l i s t nn ) ) )
19 w) ) ) ) )
20 ( setf i n d i c e s ( funcall , method idxs dimens ) ) )
21 ( values z ) ) ) ) )

Algorithm 2 A macro implementing the DSL-specific keyword expectation-value. Note, how we access the data set
elements via an array of (sampled) indices and craft an S-expression in line numbers 7-9 to access those elements. We traverse
the abstract syntax tree (AST) recursively.

1 (defmacro parse−ev−cal l s ( Dsht i n d i c e s data &body as t )
2 ( labels ( ( walk ( Dsht i d en runID tra fo−ast )
3 (cond ( ( null en ) t ra fo−ast )
4 ( (atom en ) ( i f (and (symbolp en )
5 ( start−with−D$p en ) )
6 ( let ( ( IDX (gensym ) ) )
7 (append ‘ ( let ( ( , IDX ( gethash ’ , en , Dsht ) ) )
8 ( aref , d ( aref , i , runID ,IDX) ,IDX) )
9 t ra fo−ast ) )

10 ( i f (eq en ’ quote )
11 t ra fo−ast
12 ( cons−non−nil en t ra fo−ast ) ) ) )
13 ( ( l i s tp en )
14 ( i f (and
15 (symbolp ( car en ) )
16 (eq ( car en ) ’ expectat ion−value ) )
17 ( let ∗ ( ( runID2 (gensym ) )
18 ( cont ( walk Dsht i d ( cdr en ) runID2 tra fo−ast ) ) )
19 ( concatenate ’ l i s t ‘ ( let ( ( r 0 . 0 )
20 ( I I ( car ( array−dimensions , i n d i c e s ) ) ) )
21 (dotimes ( , runID2 I I ) ( incf r , @cont ) )
22 (/ r I I ) ) t ra fo−ast ) )
23 (mapcar #’( lambda ( x )
24 ( walk Dsht i d x runID n i l ) ) en ) ) ) ) ) )
25 ( let ( ( runID (gensym ) ) )
26 ( walk Dsht i n d i c e s data as t runID n i l ) ) ) )
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Algorithm 3 The identity mapping of indices – here, redundancy is necessary to easily implement the permutation test later
on.

1 (defun ident ity−sample ( idxs n)
2 ( let ∗ ( ( rowMax ( coerce ( length i dxs ) ’ number ) )
3 ( dims ( l i s t rowMax n ) )
4 ( cur r ent ( coerce i dxs ’ vector ) )
5 ( z ( make−array dims : i n i t i a l− e l e m e n t 0 ) ) )
6 ( loop f o r j from 0 to (1− rowMax) do
7 ( loop f o r i from 0 to (1− n) do
8 ( set f ( aref z j i ) ( aref cur rent j ) ) ) )
9 ( values z ) ) )

Algorithm 4 Mapping of indices under the permutation test – each column is shuffled individually to destroy potential
correlations. nshuffle implements Knuth’s shuffling procedure.

1 (defun permutation−test ( idxs n)
2 ( let ∗ ( ( z ( ident ity−sample idxs n ) ) ; i n i t i a l i z e wi th i d e n t i t y
3 (rowMax ( coerce ( length i dxs ) ’ number ) )
4 ( cur r ent ( coerce i dxs ’ vector ) ) )
5 ( loop f o r i from 1 to (1− n) do ; s h u f f l e a l l but the f i r s t column
6 ( set f cur rent ( n s h u f f l e cur rent ) )
7 ( loop f o r j from 0 to (1− rowMax) do
8 ( set f ( aref z j i ) ( aref cur rent j ) ) )
9 f i n a l l y ( return z ) ) ) )

Algorithm 5 The bootstrap – indices are drawn randomly and might occur several times in the created index array.

1 (defun boot s t rap ing ( idxs n)
2 ( let ∗ ( ( rowMax ( coerce ( length i dxs ) ’ number ) )
3 ( dims ( l i s t rowMax n ) )
4 ( cur r ent ( coerce i dxs ’ vector ) )
5 ( z ( make−array dims : i n i t i a l− e l e m e n t 0) )
6 (w 0) )
7 ( loop f o r j from 0 to (1− rowMax) do
8 ( set f w (random rowMax ) )
9 ( loop f o r i from 0 to (1− n) do

10 ( set f ( aref z j i ) ( aref cur rent w) ) )
11 f i n a l l y ( return z ) ) ) )

Algorithm 6 Jackknifing – d many, randomly chosen samples need to be omitted in this procedure.

1 (defun j a c k k n i f i n g ( idxs n d)
2 ( let ∗ ( ( rowMax (− ( coerce ( length i dxs ) ’ number ) d ) )
3 ( dims ( l i s t rowMax n ) )
4 ( cur r ent ( n s h u f f l e ( coerce i dxs ’ vector ) ) )
5 ( z ( make−array dims : i n i t i a l− e l e m e n t 0 ) ) )
6 ( loop f o r j from 0 to (1− rowMax) do
7 ( loop f o r i from 0 to (1− n) do
8 ( set f ( aref z j i ) ( aref cur rent j ) ) )
9 f i n a l l y ( return z ) ) ) )
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Figure 2: Tree-representation of the S-expression
for the covariance in Eq. 4. The data vectors X and
Y are used several times.

a x(1) x(2) x(3)

a 0.0667 0.0660 0.0056 -0.0006

x(1) -0.0001 -0.0003 0.0009 0.0029

x(2) 0.0056 -0.0005 0.1323 0.1323

x(3) 0.0395 -0.0066 0.0462 0.0026

Table 1: Covariance values for the original data
from Eq. 2. Note, that parse-ev-calls was ex-
panded so that a and b in D$a and D$b took on all

the combinations of columns, e.g.,
(
a = a, b = x(1)

)
;

(
a = x(3), b = x(2)

)
; and so forth.

3 expectat ion−value
4 (∗
5 (− D$a ( expectat ion−value D$a ) )
6 (− D$b ( expectat ion−value D$b ) ) ) )

which is illustrated in Fig. 2. For brevity, we cannot show
the full macro-expansion here, but publish it on the WWW5.
The length and complexity clearly shows the benefits of a
DSL. Furthermore, one can see in the macro-expanded code
that no local variables other than the ones generated via
gensyms exist, so no variable capture can occur.

When we apply our system to the four-dimensional test
system from above we obtain the resulting covariance matrix
between all variables in Tab. 1.

From the covariance alone we cannot judge on the influ-
ence of any variable onto the other. Eventually, we must
find no connection between a and any of the xs as they are
independent in Eq. 2.

Applying the permutation test with 100 repetitions we ob-
tain the covariance values for 100 shuffled data sets. From
this we can compute the (one-sided6) percentile as the frac-

5http://www.kay-hamacher.de/macro-expanded.lisp
6a one-sided test tests for original data to be larger or
smaller than the resampling ensemble; a two-sided test
would test for the absolute value to be smaller.

tion of covariance matrix entries that turned out to be smaller
in the permutation test than for the original data. We obtain
the output

a x(1) x(2) x(3)

a 0.04 0.92 0.44 0.53

x(1) 0.92 0.54 1.00 1.00

x(2) 0.44 1.00 0.80 1.00

x(3) 0.53 1.00 1.00 0.76

in which we marked the statistic insignificant results under
a one-sided test in red. For significance we apply Fisher’s
well-known criterion of a so-called p-value smaller than 5%
(or a percentile of larger than 0.95). Our permutation test
based assessment shows, that we cannot find a statistically
significant covariance between a and and any of the xs vari-
ables7.

4. OUTLOOK
Above we have demonstrated the first development of a

DSL for statistical resampling technqiues. We motivated
our choice and described the used macros as well as their
rationale. We applied it to a test problem and illustrated
the necessity of such involved resampling techniques as oth-
erwise one might attribute wrongly dependencies between
variables obtained from stochastic processes.

Although our system is at present slower for simple mea-
sures like the covariance in comparison to manually tuned
code like the ones we published for statistics using GPUs
[16], we have with the present work laid ground for a gen-
eral system for prototyping, interactive data science, and hy-
pothesis generating. These steps are increasingly necessary
in the realm of big data as their might be high-dimensional
correlations present for which one cannot always hand-craft
individual solutions. Rather, one can rely on Lisp’s macro
to do the job. At present, our contribution enables data sci-
entists to implement general measures and their resampling
tests easily and fast, with – at present – costs in perfor-
mance.

As this approach is work in progress, several improve-
ments will be implemented and researched in the future. In
particular, we hope to encourage participation of the larger
Lisp community on these issues:

Parallelization the resampling procedures laid out above
are all data-parallel in the columns of a a dataframe.
The iterator over those columns in Algo. 1 is thus “em-
barrassingly parallel” [8], begging for parallelization
via, e.g., the lparallel library.

Sampling variants The implemented algorithms 4, 5, and
6 have a common pattern, but also some subtle differ-
ences. It seems to be promising find at an abstract
level a macro to implement any conceivable resam-
pling/reshuffling technique. Furthermore, in the lit-
erature all three resampling techniques can be found
in variants; thus a DSL is no overkill, but rather a first
step to offer a general framework.

User-provided aggregation mechanisms The expecta-
tion value as a sum over samples as in Eq. 1 is the

7For the diagonal entries: as this a degenerated case, we
compute the variance of a variable that does not change
under the permutation test, thus we can – by construction
of the test – not obtain any significant values.

36 ELS 2016



predominant procedure in statistics. It aggregates the
function values of a measure over a randomized sample
into the arithmetic mean. This is, at present, hard-
coded into the macro parse-ev-calls. Still, other
aggregation procedures are also conceivable. We will
extend the package to provide for any user-provided
mechanism.

Auto-generation of measures On can use Lisp S-express-
ions and Lisp’s ability to modify these to“evolve”ASTs
implementing an appropriate f via, e.g., genetic pro-
gramming.

Caching / Memoization The AST representing the mea-
sure f to be evaluated might be a rather complex,
time-consuming function. Here, memoization techniques
are one way to cope with this; this route will be taken
in the future development of our system.

A first version of the package is made available on the web
under http://www.kay-hamacher.de/Software/Resampling
Lisp.tar.gz.

5. ACKNOWLEDGMENTS
The author gratefully acknowledges financial support by

the LOEWE projects iNAPO & compuGene of the Hessen
State Ministry of Higher Education, Research and the Arts.
This work was also supported by the German Federal Min-
istry of Education and Research (BMBF) within CRISP.

6. REFERENCES
[1] IEEE Transactions on Software Engineering (TSE),

special issue, volume 25, number 3, may/june 1999.

[2] S. D. Anderson, A. Carlson, D. L. Westbrook, D. M.
Hart, and P. R. cohen. Common lisp analytical
statistics package: User manual. Technical report,
Amherst, MA, USA, 1993.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B.
Shah. Julia: A fresh approach to numerical
computing. November 2014.

[4] J. de Leeuw. On abandoning XLISP-STAT. Journal of
Statistical Software, 13(1):1–5, 2005.

[5] M. Dwass. Modified randomization tests for
nonparametric hypotheses. Ann. Math. Statist.,
28(1):181–187, 03 1957.

[6] B. Efron. Bootstrap methods: Another look at the
jackknife. Ann. Statist., 7(1):1–26, 01 1979.

[7] P. Graham. ANSI Common LISP. Prentice Hall, Nov.
1995.

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 1 edition, Mar.
2008.

[9] D. Hoyte. Let Over Lambda. 2008.
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ABSTRACT
Over the last decade a number of high performance, domain-
specific languages (DSLs) have started to grow and help
tackle the problem of ever diversifying hard- and software
employed in fields such as HPC (high performance comput-
ing), medical imaging, computer vision etc. Most of those
approaches rely on frameworks such as LLVM for efficient
code generation and, to reach a broader audience, take input
in C-like form. In this paper we present a DSL for image
processing that is on-par with competing methods, yet its de-
sign principles are in strong contrast to previous approaches.
Our tool chain is much simpler, easing the burden on imple-
mentors and maintainers, while our output, C-family code, is
both adaptable and shows high performance. We believe that
our methodology provides a faster evaluation of language
features and abstractions in the domains above.

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Source code generation; Preprocessors; Macro
languages;

Keywords
Domain Specific Langauges, Generative Programming, Com-
mon Lisp, Meta Programming

1. INTRODUCTION
Image processing is a wide field with diverse applications rang-
ing from high performance computing (e.g. fluid simulation)
and computer vision to medical imaging and post-processing
of computer generated imagery (in games and movies). For
many of these applications efficient execution is crucial and
the tools provided should be accessible to users that are not
hardware experts. Therefore, approaches based on domain-
specific languages are very popular in image processing (see
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Section 2), especially when the applications are intended to
run on different target platforms, possibly at the same time.
To satisfy the performance demands of these applications,

image processing DSLs usually generate output in the form
of C or C++, or even lower level representations such as
LLVM [10] bytecode. Targeting more closed systems even
requires generating code in vendor-specific languages, such
as CUDA [13], or the lower level PTX [14]. Additionally,
many DSLs are embedded in low level host languages, such
as C++, to exploit the already existing parser front-end and
AST construction.
In this paper we propose to use a Lisp-based design ap-

proach to DSL construction in the high-performance domain
and demonstrate our DSL, Chipotle. Chipotle is heav-
ily inspired by HIPAcc1 [11], a Clang-based, high-perfor-
mance image processing DSL that targets heterogeneous
applications. For instance, Chipotle incorporates efficient
execution-patterns for GPU kernels that were found to per-
form well in HIPAcc.
In contrast to HIPAcc, our DSL builds on C-Mera2 [17], a

lightweight S-Expression to C-style transcompiler embedded
in Common Lisp. The benefit of using C-Mera, espe-
cially as compared to Clang, is that it carries much smaller
overhead and is more easily extensible. This argument indi-
cates that for Chipotle it was a simple task to experiment
with different notations, whereas HIPAcc is strictly tied to
valid C++ syntax. Providing more concise syntax would
require changes to the C++ parser front-end, which is a
highly non-trivial task. Using C-Mera’s simple internal
representation, extracting information from the input code
is straightforward, as the input program itself is a (semanti-
cally annotated) syntax tree. With these two characteristics
the task of expanding upon HIPAcc’s feature-set (e.g. adding
heterogeneous scheduling) is very problem-oriented and a
correspondingly fast process. It should be noted, however,
that Clang is a very powerful tool and provides, amongst
others, complete syntactic and semantic analysis and ensures
type safety in the input program. While our goal is not to
detract from such commodities, we rather propose that a
more lightweight and flexible solution benefits research and
exploration, and that using a full C++ compiler toolchain
might be excessive for the rather limited code generation
involved in our target domain. When fully type-checked and
deeply implicit information is required, choosing Clang in
favour of C-Mera may prove reasonable.
1hipacc-lang.org 2github.com/kiselgra/c-mera
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The remainder of this paper is structured as follows: In
Section 2 we present an overview of the field of image pro-
cessing DSLs and related approaches. Section 3 gives a
short introduction to C-Mera, and our DSL is described
in Section 4. In Section 5 we show two real-world examples
of practical image processing operators, and compare our
method’s performance (in terms of executing time, appli-
cation development time and DSL development effort) to
a competing approach in Section 6. We conclude with a
description of limitations and future work in Section 7.
The specific contributions of our work are:
— We present a new, high-performance image processing

DSL targeting heterogeneous setups, Chipotle, that
follows a Lisp-based methodology. The implementation
is available and showcases an automatic generation of
high-performance CUDA and AVX code from a single
algorithm specification.

— We show how this language can be extended to auto-
matically provide a schedule that employs GPUs and
CPUs together, based on simple user input.

— We also show how easily these tasks are accomplished
using powerful, but lightweight and flexible tools.

— Finally, we provide working examples that go beyond
the simple filter setups commonly found in literature.

2. RELATED WORK
The feature set and optimization techniques of the presented
Chipotle DSL are primarily inspired by HIPAcc [11]. The
HIPAcc framework embodies a DSL for image processing, em-
bedded into C++, and a source-to-source compiler, mainly
focusing on point, local, and global operators. HIPAcc’s com-
piler generates highly optimized code for different target
architectures and languages, including CPUs, GPUs, and
FPGAs through CUDA, OpenCL, Android’s Renderscript,
and VivadoHLS. HIPAcc is based on the Clang/LLVM com-
piler infrastructure and performs AST-level optimizations
based on domain and architecture knowledge. Architecture-
specific optimizations include image padding for suitable
memory alignment, the use of shared and texture memory,
and thread-coarsening for GPUs. Furthermore, the auto-
matic vectorization for common instruction sets of CPUs is
supported, as well as the generation of a streaming pipeline
for FPGAs. Optimizations based on domain knowledge, for
instance, include the efficient handling of boundary condi-
tions for local operators.
Halide [15] is also a DSL for image processing, based on

the Clang/LLVM infrastructure, similar to HIPAcc. Instead
of imperatively describing image filters, a functional pro-
gramming paradigm is applied, which enables additional
sophisticated features, such as kernel fusion. Halide is ca-
pable of generating code for various target architectures,
namely CUDA, OpenCL, PNaCL, as well as C++. Yet, this
is not an entirely automatic process. The developer needs
to specify a schedule that defines how the algorithm should
be mapped onto the target architecture in order to obtain
efficient code. Halide’s schedule has to be manually specified
and requires the developer to have a certain degree of archi-
tecture and domain knowledge. However, as the schedule is
evaluated dynamically by the compiler, it can be altered or
even entirely replaced at run time.
DeVito et al. [4] present Orion (and its source language,

Terra), a stencil DSL for processing images, which is mainly

inspired by Halide and makes use of mathematical operators
that are implicitly evaluated on the whole image. This results
in a very dense image processing pipeline representation.
Although the DSL does not support the generation of code for
different architectures, the vectorization module from its host
language Terra can be used to map the stencil operations to
vector instructions. Additionally, Orion adopted the ability
to define a schedule for a filter pipeline from Halide, which
led to very efficient results.
PolyMage [12] is a DSL for image processing where the

image processing pipeline is represented as a directed, acyclic
graph. Similar to our representation, this graph implicitly
contains the data relationships between different operators
and allows extracting this information to implement parallel
scheduling for certain computations.
Patus [3] is a DSL and code generation framework for

parallel stencil computations based on a C-like syntax. It
follows a heterogeneous approach and is capable of generating
code for CPU and GPU execution. Its auto-tuner is fed with
a user-defined strategy to produce optimized code.
Native Common Lisp image processing libraries that target

high-performance, such as Opticl3, are, in contrast to the
aforementioned methods, not DSLs themselves, but might
be applicable as a basis for Lisp-only image processing DSL
approaches. Targeting heterogeneous architectures might,
however, prove problematic in such a setup.
A more general approach is proposed with frameworks

for DSLs that can be used to create entirely new languages.
Well-known representatives of this class are Delite [2], Asp [7],
Terra [4] and AnyDSL [8]. Here, the framework performs
generic, parallel and domain-specific optimizations for a new
DSL without the necessity of starting development from
scratch. Thereby, the effort to create DSLs can be drastically
reduced. In a broader sense, C-Mera can also be attributed
to this class of frameworks.

3. BRIEF REVIEW OF C-Mera
C-Mera is a simple transcompiler embedded in Common
Lisp. It allows writing programs in an S-Expression syntax
that is transformed to C-style code. This means that very
simple extensions for languages with similar syntax are pro-
vided on top of the core C support. For example, the C-Mera
distribution provides modules for C++, CUDA, GLSL and
OpenCL. The main goal of providing an S-Expression syntax
is to write the compiler such that it evaluates this syntax
to construct a syntax tree when the input program is read,
thereby allowing interoperability with the Common Lisp-
system, most importantly by providing support for Lisp-style
macros. To keep this part short we refer to the original C-
Mera paper [17] for a more detailed description of the system
and its implementation.
With the use of macros the input program no longer repre-

sents a plain syntax tree, but a semantically annotated tree
that is transformed according to the implementation of the
semantic nodes (macros). The utility of such a system ranges
from simple, ad-hoc abstractions and programmer-centric
simplifications [17] to providing otherwise hard to achieve
programming paradigms for C-like languages [16] and even
to fully fledged domain-specific languages.
The following example, taken from our domain, shows the

definition of a simple image filter:
3github.com/slyrus/opticl
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(a) Input image (b) Laplace filtered (c) Blur & Laplace (d) Blur, Laplace & blur

Figure 1: Input image and results from using edge detection via a Laplace operator.

1 (function filter ((float *data) (float *mask) (int filter-w)
2 (int filter-h) (int w) (int h)) -> void
3 (for ((int y 0) (< y h) ++y)
4 (for ((int x 0) (< x w) ++x)
5 (decl ((float accum 0.0f))
6 (for ((int dy 0) (< dy filter-h) ++dy)
7 (for ((int dx 0) (< dx filter-w) ++dx)
8 (set accum
9 (+ accum

10 (* (aref mask (+ (* filter-w dy) dx))
11 (aref data
12 (+ (* (+ y (- (/ filter-h 2)) dy)
13 w)
14 x (- (/ filter-w 2)) dx)))))))
15 (set (aref data (+ (* y filter-w) x))
16 accum)))))

This describes a C function that takes an array as its in-
put (e.g. a grayscale image) and applies a dimensional filter
mask. Filtering proceeds by iterating over the input image.
The weighted average is computed for each pixel using the
provided filter mask (centered at the current pixel). Using
C-Mera it is easy to reduce the code for this algorithm to a
simplified description, as presented in the following listing.
1 (defilter filter (data mask (w h) (filter-w filter-h))
2 (loop2d (x y w h)
3 (decl ((float accum 0.0f))
4 (loop2d (dx dy filter-w filter-h)
5 (set accum (* (mask dx dy)
6 (cell (+ x (- (/ filter-w 2)) dx)
7 (+ y (- (/ filter-h 2)) dy)))))
8 (set (cell x y) accum))))

This is achieved by a set of simple macrolets:
1 (defmacro defilter
2 (name (data mask (w h) (filter-w filter-h)) &body body)
3 ‘(function ,name
4 ((float* ,data) (float* ,mask)
5 ,@(loop for x in (list w h filter-w filter-h)

collect ‘(int ,x))) -> void
6 (macrolet
7 ((loop2d ((x y w h) &body body)
8 ‘(for ((int ,y 0) (< ,y ,h) (+= ,y 1))
9 (for ((int ,x 0) (< ,x ,w) (+= x 1))

10 ,@body)))
11 (mask (x y) ‘(aref ,’,mask (+ (* ,’,filter-w ,y) ,x)))
12 (cell (x y) ‘(aref ,’,data (+ (* ,’,w ,y) ,x))))
13 ,@body)))

Naturally, further shorthands and simplifications can be
incorporated into this kind of macro. Section 4 shows the
language that evolved from these considerations and Section 5
shows to more advanced examples.

Figure 2: Illustration of point operators (left) and
local filters (right).

1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge laplacian (:input base :output lapla :arch cuda)
5 (deflocal
6 :mask ((-1 -1 -1)
7 (-1 8 -1)
8 (-1 -1 -1))
9 :aggregator +

10 :operator *
11 :finally (set accum.x (- 255 (fabs accum.x))
12 accum.y (- 255 (fabs accum.y))
13 accum.z (- 255 (fabs accum.z)))))
14 (edge store-ublapla (:input lapla)
15 (store-image :file "out.png")))

Figure 3: A simple, but complete, Chipotle-program
that filters an input image using a Laplace operator.

4. THE Chipotle-DSL
In this section we describe Chipotle, our domain-specific
language for image processing. Chipotle provides a very
concise notation, is easily extensible and expands into high-
performance code for both GPUs (using CUDA) and CPUs
(using SSE and AVX). It furthermore provides heterogeneous
scheduling based on simple tagging.
As already mentioned, Chipotle is heavily inspired by

HIPAcc. HIPAcc is based on the Clang/LLVM infrastructure,
which introduces two major drawbacks. First of all the DSL
syntax is restricted to its host language C++ and causes the
DSL to be rather verbose. Secondly, extending the DSL with
new language constructs is a very time consuming process.
HIPAcc uses the Clang-AST to substitute certain nodes with
domain-specific variants. This AST, however, is generated
after a complete semantic analysis of the input C++ code
and is thus extremely detailed. Filtering the relevant nodes
to extend and adapt the AST for a particular domain is a
cumbersome task. Therefore, Chipotle was designed to
counter these complications by providing a very concise and
declarative style that aims to be easily extensible.

4.1 Notation
As a running example, we will consider the definition of
a simple Laplace operator (see Figure 1 (b)). In image
processing, the Laplace operator is a simple filter that can
be used for edge detection. The code listed in Figure 3 shows
how this operator can be expressed using Chipotle. The
principal component of a Chipotle-program is the filter
graph. The contents of a filter graph are nodes that represent
(intermediate) images and edges that specify transformations
on those images. In the code given in Figure 3 there are
three image operations: loading an existing image from disk,
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1 (edge box (:input base :output filtered :arch cuda)
2 (deflocal
3 :extent (5 5)
4 :grayscale t
5 :accum-name val
6 :codelet (set val (+ val (local-ref base rel-x rel-y)))
7 :finally (set val (/ val 25))))

Figure 4: A box-filter stage illustrating the use of
codelet. The same operation can be implemented by
using a filter mask of all ones.

filtering it with a local operator and finally storing it back to
disk. The images themselves are implicit in the connection
information given with the edges (e.g. laplacian takes input
from base and stores its result in lapla).
The largest part of the laplacian graph is the description

of the local operator. A local operator (see Figure 2), L, is a
function on an image, I, mapping a neighborhood, N , of a
given pixel of to an single output pixel value [1]:

L(x, y) = ⊕(i,j)∈N fI(x, y, i, j)

The most common case of this is discrete convolution using
a convolution matrix M (as mask in the example above):

L(x, y) =
∑i,j<n

i,j=0 MijIx+i−bn/2c,y+j−bn/2c

Inspired by HIPAcc’s implementation we provide an implicit
looping mechanism where only the operator and aggregator,
⊗ and ⊕, respectively, must be specified and we assume

fI(x, y, i, j) = Mij ⊗ Ix+i−bn/2c,y+j−bn/2c.

The result of the local filter can be further adapted via the
:finally clause. In the example above we use this clause to
store the absolute value of the result. It is also possible to
specify an arbitrary function for f by providing a :codelet,
as with the simple box filter shown in Figure 4. There, the
relative positions during the iteration are available in rel-x

and rel-y (naturally, the names of such generator-defined
variables, as found throughout this section, can be specified
explicitly, too). For a more elaborate example see Section 5.1.
In accordance with Bankman [1] and HIPAcc we also pro-

vide a simpler form, the point operator (see Figure 2). Instead
of mapping a region of the input image to an output pixel,
point operators map input pixels to output pixels without
considering the pixel’s neighborhood. The following frag-
ment is part of the well-known Harris corner detector [5] that
determines whether a pixel is part of a corner in the input.
The computation depends on the two input images xd and
yd, which hold the gradients of the original input in x and y
direction.
1 (edge hcd (:input (xd yd) :output out :arch cuda)
2 (defpoint (:grayscale t)
3 (decl ((float xx (* xd xd))
4 (float xy (* xd yd))
5 (float yy (* yd yd))
6 (float M (abs (- (- (* xx yy) (* xy xy))
7 (* 0.04 (+ xx yy) (+ xx yy)))))
8 (float res 0))
9 (if (< threshold M) (set res 255))

10 (set out res))))

Since, for point operators, the neighborhood should not
be available the names of the input images are mapped to
reference the current pixel-location in the respective images.

1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge gauss (:input base :output blurred :arch cuda)
5 (deflocal
6 :mask #.(sample-filter #’gaussian 5 :sigma 1.5)
7 :aggregator +
8 :operator *))
9 (edge laplacian (:input blurred :output lapla :arch cuda)

10 (deflocal
11 :mask ((-1 -1 -1)
12 (-1 8 -1)
13 (-1 -1 -1))
14 :aggregator +
15 :operator *
16 :finally (set accum.x (- 255 (fabs accum.x))
17 accum.y (- 255 (fabs accum.y))
18 accum.z (- 255 (fabs accum.z)))))
19 (edge to-grayscale (:input lapla :output gray :arch cuda)
20 (defpoint ()
21 (decl ((float out (+ (* 0.2126 (lapla 0))
22 (* 0.7152 (lapla 1))
23 (* 0.0722 (lapla 2)))))
24 (set (gray 0) out
25 (gray 1) out
26 (gray 2) out))))
27 (edge gauss2 (:input gray :output output :arch cuda)
28 (deflocal
29 :mask #.(sample-filter #’gaussian 7 :sigma 4)
30 :grayscale t
31 :aggregator +
32 :operator *))
33 (edge store-out (:input output)
34 (store-image :file "out.png")))

Figure 5: The complete filter graph that transforms
the image shown in Figure 1 (a) to that of (d).

4.2 Filter Graphs
As visible in the short graph given in Figure 3, the body of a
filter graph consists of the edges that describe how images are
transformed. Note that the body of the graph is evaluated
and thus can also hold arbitrary forms, for example a set of
user- or subdomain-specific macrolets (see below).
In our current implementation the roots of the graph (load

operations) are found and used as a seed for topological
sorting. Inconsistent graphs (e.g. containing unavailable
input nodes) are rejected. Input and output is meant to be
executed on the host-CPU, however this is by no means a
systematic restriction and, in a future version, we plan on
being able to connect Chipotle to hardware-rendered input
images or interactive display using OpenGL.
Expanding on the example of using a Laplace operator at

the outset of Section 4.1 the filtered version of Figure 1 (a),
shown in (b), exhibits strong noise. This is due to the
fact that the detection operator picks up very fine detail.
Therefore it is common to pre-process images with a low-pass
filter to remove small-scale detail prior to detection operators.
Figure 1 shows further versions where the image (c) has been
filtered with a Gaussian kernel before edge detection (and
converted to grayscale) and (d) with an additional low-pass
filter applied after edge detection to obtain a smoother image.
Figure 5 shows the complete filter graph for this process.
Note how the weights for the Gaussian kernels are computed
beforehand (line 6 and 29). Figure 6 lists the same algorithm,
but with a few convenience macros provided externally. For
an example with proper macros in a filter graph see Section 5.
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1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (simple-filter base blurred
5 (:arch cuda :mask #.(sample-filter #’gauss 5 :sigma 1.5)))
6 (simple-abs-filter blurred lapla
7 (:arch cuda :mask ((-1 -1 -1)
8 (-1 8 -1)
9 (-1 -1 -1))))

10 (grayscale-conversion
11 lapla gray :arch cuda)
12 (simple-filter gray output
13 (:arch cuda :mask #.(sample-filter #’gauss 7 :sigma 4))
14 :grayscale t)
15 (edge store-out (:input output)
16 (store-image :file "out.png")))

Figure 6: The same graph as shown in Figure 5,
however with a few convenience macros.
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Figure 7: Boundary checks are required to ensure
that only valid pixel locations are queried (left). To
remove irrelevant bounds checks (e.g. for the inner
part of the image, labelled NO) the image is parti-
tioned (right).

4.3 Checked Memory Access
The local operators shown above are notationally very simple
and do not contain explicit boundary checks. These checks
are automatically introduced for the iteration over the filter
mask such that, for example, when accessing pixels to the
right of the target pixel’s location Chipotle only inserts
checks for the right image border (see Figure 7).
For accessing locations outside the image I(x, y) (i.e. x 6∈
{0, . . . , w−1}∨y 6∈ {0, . . . , h−1}) different modes for chang-
ing the input coordinates, inspired by OpenGL’s texture
wrapping functions [19], are provided. The keyword param-
eter :wrap can be used to this end to compute x′, y′ with
mirror (x′ = w − x), wrap (x′ = x mod w) and clamp (x′ =
min(w−1, max(0, x))). Furthermore, border (I(x, y) = const)
provides a constant border color.
In order to efficiently compute a filter over large images,

it is also possible to partition the input image into areas
requiring different boundary checks [11]. Since local filters
usually employ a very small filter mask compared to the im-
age size this ensures that no boundary checks are performed
at all for the inner, and largest, part of the image. This
combines well with generating border conditions based on
the location in the filter mask: a check is only generated if
the position in the filter mask is, for example, to the left
and the active region after partitioning includes the left im-
age edge. In the setting shown in Figure 7 (left), the local
operator requires checked accesses only towards the right.
Figure 7 (right) shows the different regions. Inspired by
HIPAcc’s implementation we provide a single function that
checks for the appropriate boundary-handling scheme to be
used and jumps to it. The benefit of this scheme is that

load-base
[arch: cpu]

base
[storage: cpu]

to-grayscale

[arch: cuda]

out
[storage: ?]

store-base
[arch: cpu]

load-base
[arch: cpu]

base
[storage: cpu]

to-gpu

[arch: memcpy]
transition

[storage: cuda]

to-cpu

[arch: memcpy]
transition

[storage: cpu]

to-grayscale

[arch: cuda]

out
[storage: cuda]

store-base
[arch: cpu]

Figure 8: Top: Execution plan for the trivial graph
shown in Figure 9 (top). Images are rectangular
nodes, operators rounded. Bottom: Plan for the
same graph, but with :arch cuda for the point operator,
including transition edges and images.

it maps well to our target architectures (CUDA, SSE and
AVX) as long as it does not introduce divergence, which is
easily ensured (see Section 4.4).

4.4 Heterogeneous Image Processing
Chipotle allows transforming its input programs to SSE
and AVX with multi-threading as well as to CUDA. The
target architecture of an image operation can be specified via
the :arch parameter (see Figure 3). Note that different target
architectures can be mixed freely in the same program.
For SSE and AVX the operations map to multi-threaded,

two dimensional iterations over the input image. The speci-
fied operation (for local operators including the iteration over
the filter mask) is then executed in groups of 4 (SSE) or 8
(AVX) pixels. This is achieved by automatically vectorizing
of the provided code. To this end we map the content of
declarations ((decl (...)...) to appropriate vectorized types
and transform the user-provided arithmetic operations to
corresponding vectorized versions. We also sequentialize
conditional statements and track the masks of the true and
false cases to ensure correct merging. Figure 9 shows an
example of these operations for a very simple point operator,
converting a color image to grayscale.
For operators to be instantiated for CUDA we generate a

kernel function and a host-stub that addresses appropriate
parameter forwarding. Transferring image data to the GPU
and back to the host memory is implicit in the graph. Host-
only operations such as loading and storing images (see
Section 4.2 on this limitation) force the initial and final
locations of image data. Furthermore, edges that operate
on CUDA require that their input and output be present
on the GPU. This is resolved by traversing the filter graph
in order and introducing transition edges and images where
appropriate. The location of images is propagated through
the graph and only switches on the previously introduced
transition nodes. For operators that do not specify a target
architecture it is propagated similarly, to avoid expensive
host/device transfers.
When targeting CPU vector instructions (SSE or AVX)

or parallel GPU code (CUDA) we take care to incorporate
the execution width in boundary handling conditions. For
example, with AVX the generated code executes an 8 × 1
image region using a single control flow. If different paths
of control flow are to be applied within such a group the
code must be sequentialized. Therefore, bounds checks are
conservatively clamped to multiples of 8 in the x direction
for AVX. For CUDA, where the execution configuration is
more flexible, borders are adjusted accordingly.
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1 (filter-graph example
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge gray (:input base :output out :arch sse)
5 (defpoint ()
6 (decl ((const float r (base 0))
7 (const float g (base 1))
8 (const float b (base 2))
9 (const float luma (+ (* 0.2126 r) (* 0.7152 g)

10 (* 0.0722 b)))
11 (float res))
12 (if (> luma .5)
13 (set res luma)
14 (set res 0))
15 (set (out 0) res))))
16 (edge store (:input out)
17 (store-image :file "out.png")))

1 void gray(unsigned char *base, unsigned char *out, unsigned int w, unsigned int h)
2 {
3 unsigned int vecLength = (w * h) - ((w * h) % 4);
4 const __m128 xmm_constant_0_5__165 = _mm_set1_ps(5.00000000e-1);
5 const __m128 xmm_constant_0_0722__164 = _mm_set1_ps(7.22000000e-2);
6 const __m128 xmm_constant_0_7152__163 = _mm_set1_ps(7.15200000e-1);
7 const __m128 xmm_constant_0_2126__162 = _mm_set1_ps(2.12600000e-1);
8 const __m128 xmm_constant_1_0__161 = _mm_set1_ps(1.00000000e+0);
9 for (unsigned int i = 0; i < vecLength; i += 4) {

10 //Load: (base 2) to xmm290
11 const __m128i xmm291 = _mm_cvtsi32_si128((*((const int*)
12 &base[(i + (2 * w * h))])));
13 const __m128i xmm292 = _mm_unpacklo_epi8(xmm291, _mm_setzero_si128());
14 const __m128i xmm293 = _mm_unpacklo_epi16(xmm292, _mm_setzero_si128());
15 const __m128 xmm290 = _mm_cvtepi32_ps(xmm293);
16 //Load: (base 1) to xmm289
17 const __m128i xmm294 = _mm_cvtsi32_si128((*((const int*)
18 &base[(i + (1 * w * h))])));
19 const __m128i xmm295 = _mm_unpacklo_epi8(xmm294, _mm_setzero_si128());
20 const __m128i xmm296 = _mm_unpacklo_epi16(xmm295, _mm_setzero_si128());
21 const __m128 xmm289 = _mm_cvtepi32_ps(xmm296);
22 //Load: (base 0) to xmm288
23 const __m128i xmm297 = _mm_cvtsi32_si128((*((const int*)
24 &base[(i + (0 * w * h))])));
25 const __m128i xmm298 = _mm_unpacklo_epi8(xmm297, _mm_setzero_si128());
26 const __m128i xmm299 = _mm_unpacklo_epi16(xmm298, _mm_setzero_si128());
27 const __m128 xmm288 = _mm_cvtepi32_ps(xmm299);
28 const __m128 r = xmm288;
29 const __m128 g = xmm289;
30 const __m128 b = xmm290;
31 const __m128 luma = _mm_add_ps(
32 _mm_add_ps(_mm_mul_ps(xmm_constant_0_2126__162, r),
33 _mm_mul_ps(xmm_constant_0_7152__163, g)),
34 _mm_mul_ps(xmm_constant_0_0722__164, b));
35 __m128 res;
36 const __m128 cond395 = _mm_cmpgt_ps(luma, xmm_constant_0_5__165);
37 const __m128 mask396 = cond395;
38 res = _mm_or_ps(_mm_and_ps(mask396, luma), _mm_andnot_ps(mask396, res));
39 const __m128 mask397 = _mm_andnot_ps(cond395,
40 _mm_set1_ps(xmm_constant_1_0__161));
41 res = _mm_or_ps(_mm_and_ps(mask397, 0), _mm_andnot_ps(mask397, res));
42 //Store: (out 0)
43 const __m128i xmm1129 = _mm_cvtps_epi32(res);
44 const __m128i xmm1130 = _mm_packs_epi32(xmm1129, xmm1129);
45 const __m128i xmm1131 = _mm_packus_epi16(xmm1130, xmm1130);
46 (*((int*)&out[(i + (0 * w * h))])) = _mm_cvtsi128_si32(xmm1131);
47 }
48 for (unsigned int i = vecLength; i < (w * h); ++i){
49 const float r = base[i + (0 * w * h)];
50 const float g = base[i + (1 * w * h)];
51 const float b = base[i + (2 * w * h)];
52 const float luma = (2.12600000e-1 * r) + (7.15200000e-1 * g)
53 + (7.22000000e-2 * b);
54 float res;
55 if (luma > 5.00000000e-1)
56 res = luma;
57 else
58 res = 0;
59 out[i + (0 * w * h)] = res;
60 }
61 }

Figure 9: Top: Chipotle input graph for converting
a color image to grayscale. Bottom: Generated SSE
code for the gray edge.
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Figure 10: À-Trous filtering: Iterative application of
a small filter with increasing gap between samples.

5. EXAMPLES
In this section we provide two examples of using Chipo-
tle and describe further language features and practical
considerations that arise.

5.1 Edge-Avoiding À-Trous Filter
Many image processing algorithms (e.g. the night filter fol-
lowing this example) require an image smoothing step that
does not filter across edges, that is, a filter that smoothes
regions that are similar, but maintains the sharpness of the
image. This effect can be achieved by using a bilateral fil-
ter [21]. Such filters do not only weight pixel values by their
spatial distance (such as the previous local fiters, e.g. the
Gauss kernel), but also by difference in value. However, due
to non-linearity, these filters are not separable and are thus
very expensive to compute for large regions.

A common way to accelerate the computation of this filter
is using the À-Trous (with holes) algorithm [18], where a
filter with small support is iteratively applied while increasing
the image-space gap between the sample locations in each
iteration. Figure 10 illustrates this for a one-dimensional
filter. Such a filter is easily constructed by filling in the
appropriate number of zero-entries in the filter mask and
it can then be used as a simple local operator. The large
neighborhood introduced by this is easily reduced when
checking for zero-coefficients while unrolling the loop over
the local filter. Thus, for a Gaussian 3× 3 À-Trous filter at
iteration 3 the filter mask is 17× 17 but the actual number
of operations (and bounds checks, if appropriate) is still 9.
Our macro, which provides the code for the edge-avoiding

À-Trous filter, is given in Figure 11. It shows how more
complicated operators can be made available to various filter
graphs (see the next example, for instance). As the bilateral
filter is not a simple accumulation we exploit the flexibility
of our deflocal implementation. After fixing parameter and
filter names at the beginning, we set up our accumulators and
reference values in line 12. There, r0 references the red color
component at the pixel of the filter’s center. We accumulate
color to r, g and b and also accumulate the weight, W, by
which the result must normalized. The provided :codelet is
then evaluated for the non-zero entries of the filter mask
and combines the weights in the domain (i.e. the mask’s
value) and in the range (i.e. weighted by similarity, e.g. by
an exponential term). Finally, we normalize the result and
write it back to memory.

5.2 Night Tonemapping
The standard method of transforming images taken under
daytime lighting conditions to look as if taken by night is by
reducing brightness, blurring similar colors (reducing acuity),
and shifting the colors towards more bluish tones [20]. In
our implementation of such an algorithm we first blur similar
regions in the input image by using the bilateral filter shown
in the previous example. After a few iterations of this local
operator we compute the actual scotopic image by applying
a blue shift. To this end we follow Jensen et al. [6] and
first convert the image to the XY Z color space, reduce the
brightness, Y , compute the scotopic luminance [9], V , and
use it to compute a darkened image that is shifted to a more
bluish tone. Finally, we convert the image back to the RBG
color space. Figure 12 shows the effect computed by the
filter graph given in the lower part of Figure 11.
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1 (defmacro atrous-step (n &key (pre "atrous") input output arch)
2 (let ((in (cl:if input input
3 (cintern (format nil "~a~a" pre (cl:1- n)))))
4 (out (cl:if output output
5 (cintern (format nil "~a~a" pre n)))))
6 ‘(edge ,(cintern (format nil "compute-~a~a" pre n))
7 (:input ,in :output ,out :arch ,arch)
8 (deflocal
9 :mask ,(atrous ’((0.057118 0.124758 0.057118)

10 (0.124758 0.272496 0.124758)
11 (0.057118 0.124758 0.057118)) n)
12 :initially ((float r0 (/ (,in 0 0 0) 255.0f))
13 (float g0 (/ (,in 0 0 1) 255.0f))
14 (float b0 (/ (,in 0 0 2) 255.0f))
15 (float r 0) (float g 0) (float b 0)
16 (float W 0))
17 :codelet
18 (decl ((float R (/ (,in rx ry 0) 255.0f))
19 (float G (/ (,in rx ry 1) 255.0f))
20 (float B (/ (,in rx ry 2) 255.0f))
21 (float w0 (mask rx ry))
22 (float rd (- R r0))
23 (float gd (- G g0))
24 (float bd (- B b0))
25 (float w1 (+ (^2 rd) (^2 gd) (^2 bd))))
26 (set w1 (* (fminf 1.0f (expf (- (* w1 1)))) w0))
27 (set W (+ W w1))
28 (set r (+ r (* R w1))
29 g (+ g (* G w1))
30 b (+ b (* B w1)))))
31 :finally (set (,out 0) (* 255.0f (/ r W))
32 (,out 1) (* 255.0f (/ g W))
33 (,out 2) (* 255.0f (/ b W)))))))

1 (defmacro nightvision-filter (&key (iterations 3))
2 ‘(filter-graph blub
3 (edge load-base (:output base) (load-image :file "test.jpg"))
4
5 (atrous-step 0 :input base)
6 (atrous-step 1)
7 ,@(loop for i from 1 to (cl:1- iterations)
8 collect ‘(atrous-step ,i))
9 (atrous-step ,iterations :output prefiltered)

10
11 (edge scoto (:input prefiltered :output scotopic :arch cuda)
12 (defpoint ()
13 (decl ((float r (prefiltered 0))
14 (float g (prefiltered 1))
15 (float b (prefiltered 2))
16 (float X (to-X r g b)
17 (float Y (* (to-Y r g b) 0.33f))
18 (float Z (to-Z r g b))
19 (float V (scotopic-luminance X Y Z))
20 (float W (+ X Y Z))
21 (float s (* Y 0.2))
22 (float xl (/ X W))
23 (float yl (/ Y W))
24 (const float xb 0.25)
25 (const float yb 0.25))
26 (set xl (+ (* (- 1.0f s) xb) (* s xl))
27 yl (+ (* (- 1.0f s) yb) (* s yl))
28 Y (+ (* V 0.4468f (- 1 s)) (* s Y))
29 X (/ (* xl Y) yl)
30 Z (- (/ X yl) X Y))
31 (decl ((float rgb_r (to-r X Y Z))
32 (float rgb_g (to-g X Y Z))
33 (float rgb_b (to-b X Y Z)))
34 (set (scotopic 0) (fminf 255.0f (fmaxf 0.0f rgb_r)))
35 (set (scotopic 1) (fminf 255.0f (fmaxf 0.0f rgb_g)))
36 (set (scotopic 2) (fminf 255.0f (fmaxf 0.0f rgb_b)))))))
37
38 (edge store-scotopic (:input scotopic)
39 (store-image :file "night.jpg"))))
40
41 (nightvision-filter :iterations 3)

Figure 11: Top: Our macro that generates different
iterations of the edge-avoiding À-Trous blur filter.
Bottom: The filter is used as a pre-process for the
night filter.

Figure 12: Input image (left) and night-filtered ver-
sion (right). Note how not only the tone changed,
but also many details are blurred out while edges
(such as the roof, columns and the balcony) are still
clearly visible.

6. EVALUATION
In the following we give a brief evaluation of implementing
filter graphs using our DSL, Chipotle, and compare them
to HIPAcc. We focus on the night filter with three iterations
of edge-avoiding À-Trous filtering (see Section 5.1) followed
by night tonemapping (see Section 5.2). This corresponds to
evaluating line 41 in the lower part of Figure 11.
In terms of filtering performance CUDA code generated by

HIPAcc takes 14.7 ms to filter the 1754×1280 image shown in
Figure 12 (left) on a Nvidia Geforce GTX 680 graphics card.
HIPAcc’s SSE2 version takes 400 ms running on a Intel Xeon
E5-1620 processor running at 3.50 GHz, using OpenMP
for parallelization. Our code generated by Chipotle runs
equally fast at 14.9 ms on CUDA, while our SSE2 version
lags behind at 901 ms, with the same hardware. Due to the
use of domain knowledge and the ability to generate code for
special cases (e.g. for border handling) these computation
times are hard to achieve with hand-written code [11].
Regarding code size there are two factors we consider:

firstly the size of the code written in the DSL, and secondly
the size of the DSL’s code base itself, which is of particular
importance when considering extensions and maintenance of
the DSL. The HIPAcc-version of the night-filter shown in Fig-
ure 11 (bottom) consists of 264 lines of code. The complete
code for use with Chipotle, including the expansion of a
simple input mask to an À-Trous filter (atrous, see line 9 in
Figure 11 (top)) and the edge-avoiding filter, totals 85 lines.
This is mainly due to the fact that our notation contains
almost no boilerplate code.
The HIPAcc distribution we used to take the above mea-

surements consists of 48941 lines of code. As described
earlier this includes a number of additional back-ends that
are not available for Chipotle (most notably Renderscript
and VivadoHLS for which there is no support in C-Mera).
However, even with the additional back-ends the code base
appears immense when compared to Chipotle’s 978 lines of
code (as-is, and including vectorization).

7. CONCLUSION
In this paper we presented our new image processing DSL,
Chipotle, and showed how easily it is constructed using
an existing, Common Lisp-based tool chain. At only 2% of
the code size of competing methods our DSL yields highly
optimized code that runs on-par with the state of the art on
GPUs using CUDA. Our SSE2 version runs at around 50%
the performance of HIPAcc’s vectorized output. It should be
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noted that, even in this case, our performance is significantly
faster than results from using a compiler’s auto-vectorization
routines as these cannot rely on domain knowledge. However,
we believe that this performance gap is an artefact of our not
yet fully matured vectorization routines and that Chipotle
will catch up with HIPAcc shortly. We further believe that
extensions to our DSL are much simpler as its implementation
is very short and uses higher-level programming paradigms,
most notably Common Lisp macros and feature-oriented
programming [16].
We also showed that the implementation of a filter graph

using Chipotle is only around 33% of the code size of the
corresponding HIPAcc implementation and that the DSL code
itself is still amenable to further abstractions and simplifica-
tions using macros. Thus, we are confident that Chipotle
can compete with state of the art image processing DSLs
while increasing productivity both on the level of the DSL
users and implementors.
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ABSTRACT
Most Common Lisp [1] implementations seem to use a deriva-
tive of MIT loop [4]. This implementation predates the
Common Lisp standard, which means that it does not use
some of the features of Common Lisp that were not part of
the language before 1994. As a consequence, the loop im-
plementation in all major Common Lisp implementation is
monolithic and therefore hard to maintain and extend.

Furthermore, MIT loop is not a conforming loop imple-
mentation, in that it produces the wrong result for certain
inputs. In addition, MIT loop accepts sequences of loop

clauses with undefined behavior according to the standard,
though whether such extended behavior is a problem is de-
batable.

We describe a modern implementation of the Common
Lisp loop macro. This implementation is part of the SICL1

project. To make this implementation of the macro modular,
maintainable, and extensible, we use combinator parsing to
recognize loop clauses, and we use CLOS generic functions
for code generation.

CCS Concepts
•Software and its engineering → Control structures;

Keywords
CLOS, Common Lisp, Iteration, Combinator parsing

1. INTRODUCTION
The loop macro is part of the Common Lisp standard [1],

so every conforming Common Lisp implementation contains
an implementation of this macro. Appendix A contains the
part of the syntax of the loop macro that is relevant for this
paper.

The loop macro is frequently criticized as un-Lispy since
it does not use S-expressions for its clauses, and for being

1See https://github.com/robert-strandh/SICL
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impossible to extend, at least by using only features available
in the Common Lisp standard. In addition, advocates of
purely-functional programming also criticize it, along with
all other iteration constructs that can not be explained in
terms of recursion.

Despite all this criticism, the loop macro is an essential
and widely used part of any non-trivial Common Lisp pro-
gram. It is able to satisfy the vast majority of iteration
needs. In addition, it is far easier to understand than equiv-
alent loops using other iteration constructs such as dotimes,
dolist, and do.

Most current implementations of Common Lisp seem to
use an implementation of the loop macro that was largely
written before the Common Lisp standard was adopted.
Consequently, some of the interesting features of the stan-
dardized Common Lisp language are not used in the im-
plementation of the loop macro in these implementations.
In particular, the use of generic functions is typically mini-
mal. As a result, the implementation of this macro is quite
monolithic, making it hard to maintain, whether in order to
remove defects or to extend it.

We present a modern implementation of the loop macro.
This implementation was written as part of the SICL project,
of which one of the explicit goals is to use improved coding
techniques.

We are able to obtain a more modular loop implementa-
tion by using two key techniques. The first one is to parse the
clauses using a parsing technique that allows for individual
clause parsers to be textually separated according to clause
type. The second modularity technique is to use generic
functions for semantic analysis and code generation. By
defining clause types as standard classes, we are able to tex-
tually separate processing according to clause type through
the use of methods specialized to these clause classes.

2. PREVIOUS WORK

2.1 MIT LOOP with variations
One of the first implementations of the Common Lisp loop

macro is the one that is often referred to as “MIT loop”
[4]. A popular variation of this implementation includes
modifications by Symbolics Inc.2

This implementation of the loop macro is sometimes more
permissive than the Common Lisp standard. For example,
the standard requires all variable clauses to precede all main

2Symbolics Inc was a company that sold Lisp machines. See
https://en.wikipedia.org/wiki/Symbolics for a thorough de-
scription of the company and its products.
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clauses. (See Appendix A.) Code such as the one in this
example:

(loop until (> i 20)

for i from 0

do (print i))

is thus not conforming according to the standard, since until
is a main clause whereas for is a variable clause. However,
MIT loop and its variation accepts the code in the example.

Another example of non-conforming behavior is illustrated
by the following code:

(loop for i from 0 below 10

sum i

finally (print i))

The Common Lisp standard clearly states that the loop
variable does not take on the value of the upper limit, here
10, so the value printed in the finally clause should be
9. However, loop implementations derived from MIT loop

print 10 instead.
Notice that the two examples above are non-conforming

in two different ways, as explained in section 1.5 of the Com-
mon Lisp standard.

In the first case, we have an example of a non-conforming
program as explained in section 1.5.2 for the simple reason
that the standard does not specify what an implementation
must do when the clause order is violated. By default, then,
the behavior is said to be undefined, meaning that the im-
plementation is free to reject the non-conforming program
or to accept it and interpret it in some (perhaps unexpected)
way. The MIT loop implementation is therefore conforming
in this respect.

In the second case, we have an example of a non-conforming
implementation as explained in section 1.5.1. The reason is
that the standard clearly stipulates that every implementa-
tion must print 9, whereas MIT loop prints 10.

In addition to the non-conforming problems, MIT loop

has issues with modularity, in that the implementation is
monolithic, and that holds true for its variations too. The
code is contained in a single file with around 2000 lines of
code in it.

Code generation uses a significant number of special vari-
ables holding various pieces of information that are ulti-
mately assembled into the final expansion of the macro.

2.2 ECL and Clasp
ECL3 includes two implementations of the loop macro,

namely the initial MIT loop with only minor modifications,
and a variation of MIT loop that also includes code written
by Symbolics Inc also with minor modifications.

Clasp4 is a recent implementation of Common Lisp. It is
derived from ECL in that the C [2] code of ECL has been
translated to C++ [3] whereas most of the Common Lisp
code has been included with no modification, including the
code for the loop macro.

ECL loop being derived from MIT loop, the non-conforming
examples shown in Section 2.1 are also accepted by ECL and
Clasp.

3ECL stands for “Embedded Common Lisp.
See: //https://gitlab.com/embeddable-common-lisp/ecl
4See: https://github.com/drmeister/clasp

2.3 SBCL
SBCL5 includes an implementation of the loop macro that

was originally derived from MIT loop, but that also includes
code created by Symbolics Inc. Because of the way the code
has evolved, it is hard to determine whether, at some point,
the code of the loop macro of SBCL and that of ECL were
the same, but a rough comparison suggests that this is the
case.

The loop implementation of SBCL being derived from
MIT loop, the non-conforming examples shown in Section 2.1
are also accepted by SBCL.

2.4 CLISP
CLISP has its own implementation of the loop macro.

The bulk of the implementation can be found in a function
named expand-loop. This function consists of more than
900 lines of code.

2.5 CCL
Like many other implementations, CCL6 includes the vari-

ation of MIT loop containing modifications by Symbolics Inc
from a brief inspection, we believe that the original code is
the same as that of SBCL and ECL.

2.6 LispWorks
Evaluating the two examples in Section 2.1 using Lisp-

Works7 gives the same result as the implementations using
MIT loop, suggesting that LispWorks also uses a derivative
of that loop implementation.

3. OUR TECHNIQUE

3.1 Parsing clauses
In order to parse loop clauses, we use a simplified version

of a parsing technique known as combinator parsing [10].
It is simplified in that we do not need the full backtrack-
ing power of this technique. It is fairly easy to structure
the individual clause and sub-clause parsers so that a parser
either succeeds or fails, simply because the loop grammar
is unambiguous at this level. When a parser succeeds, the
result is correct and unambiguous, and when it fails, other
parsers are tried in sequence. Obtaining the correct result
requires the individual parsers to be tried in a particular
order, which is a disadvantage of the simplification. As dis-
cussed in Section 5.1, we plan to avoid this restriction by
using an external parsing framework.

With this parsing technique, client code defines elemen-
tary parsers that are then combined using combinators such
as alternative and sequence. The resulting parser code is
modular in that individual parsers do not have to be listed
in one single place. For the loop clauses, this modularity
means that each type of clause can be defined in a different
module.

In our parsing framework, an individual parser is an or-
dinary Common Lisp function that takes a list of Common
Lisp expressions and that returns three values:

5SBCL stands for Steel-Bank Common Lisp.
See: http://www.sbcl.org/
6CCL stands for Clozure Common Lisp.
See: http://ccl.clozure.com/
7See: http://www.lispworks.com/
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1. A generalized Boolean8 indicating whether the parse
succeeded.

2. The result of the parse. If the parse does not succeed,
then this value is unspecified.

3. A list of the tokens that remain after the parse. If
the parse does not succeed, then this list contains the
original list of tokens passed as an argument.

Consider the following example:

(define-parser arithmetic-up-1-parser
(consecutive
(lambda (var type-spec from to by)
(make-instance ’for-as-arithmetic-up
:order ’(from to by)
:var-spec var
:type-spec type-spec
:start-form from
:end-form (cdr to)
:by-form by
:termination-test (car to)))

’simple-var-parser
’optional-type-spec-parser
(alternative ’from-parser

’upfrom-parser)
(alternative ’to-parser

’upto-parser
’below-parser)

’by-parser))

The macro define-parser defines a named parser. This
parser consists of four consecutive parsers:

1. A parser that recognizes a simple variable. The result
of this parser is the variable.

2. A parser that recognizes an optional type specifier.
The result of this parser is the type specifier or t if
the type specifier is absent.

3. A parser that recognizes one of the loop keywords from
or upfrom followed by a form. The result of the parser
is the form.

4. A parser that recognizes one of the loop keywords to,
upto, or below followed by a form. The result of this
parser is a cons, where the car is either the symbol <
or the symbol <= depending on which keyword was
recognized, and the cdr is the form.

The function defined by the lambda expression combines
the results of those four parsers into a single result for the
newly defined parser. In this example, the result of the new
parser is an instance of the class for-as-arithmetic-up.

Initially, the loop body is parsed as a sequence of indi-
vidual loop clauses, without any consideration for the order
between those clauses. A failure to parse during this phase
will manifest itself as an error relating to a particular clause,
whether it is in a valid position or not. Furthermore, ignor-
ing restrictions on clause ordering allows us to check the
syntax of each clause. If order had been taken into account,
we would either have to abandon the parsing phase when

8The term generalized Boolean is part of the Common Lisp
[1] terminology. It means any value where nil stands for
false and any other value stands for true.

a syntactically correct clause were found in the wrong posi-
tion and thereby being unable to verify subsequent clauses,
or else we would have to implement some sophisticated er-
ror recovery, allowing the parsing process to continue after
a failure.

Our technique for parsing clauses does not work very well
for signaling useful errors when a clause fails to parse. In
Section 5.2, we discuss our plans for improving the situation.

3.2 Representing parsed clauses
The result of the initial parsing process is a list of clauses,

where each clause has been turned into an instance of (a
subclass of) the class clause.

The classes representing different clauses are organized
into a graph that mostly mirrors the names and descrip-
tions of different clause types defined by the Common Lisp
standard.

So for example, the class named main-clause is the root
class of all clauses of that type mentioned in the standard.
The same is true for variable-clause, name-clause, etc.
(See Appendix A.)

Classes representing clauses that admit the loop keyword
and also have a list of sub-clauses.

This organization allows us to capture commonalities be-
tween different clause types by defining methods on generic
functions that are specialized to the appropriate class in this
graph.

In addition to representing each clause as an instance of
the clause class, we also represent the loop body itself as
an instance of the class named loop-body. This instance
contains a list of all the clauses, but also other information,
in particular about default accumulation for this call to the
loop macro.

3.3 Semantic analysis
We use generic functions to analyze the contents of the

parsed clauses, and to generate code from them. The reason
for using generic functions is again one of modularity. A
method specialized to a particular clause type, represented
by a particular standard class, can be textually close to other
code related that clause type.

Checking the validity of the order between clauses is done
in the first step of the semantic analysis, allowing us to signal
pertinent error conditions if the restrictions concerning the
order of clauses are not respected.

Next, we verify that the variables introduced by a clause
are unique when it would not make sense to have multiple
occurrences of the same variable. We also verify that there
is at most one default accumulation category, i.e, one of the
categories list, min/max, and count/sum.

3.4 Code generation
Our code generation consists of a direct expansion to lower-

level Common Lisp code. We do not make any attempts to
detect problems such as unused variables, type conflicts, etc.
All these problems will be detected by the compiler when it
processes the expanded code.

The main control structure for code generation consists of
two steps:

• First, the loop prologue, the loop body, and the loop

epilogue are constructed in the form of a tagbody9 spe-

9For readers unfamiliar with Common Lisp, the tagbody
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cial form.

• To the resulting tagbody form is then applied a set
of nested wrappers, one for each clause. A wrapper
for a clause typically contains let bindings required
for the clause, but also iterator forms where such it-
erators are required by the clause type, for example
with-package-iterator.

The loop body consists of three consecutive parts:

1. The main body, containing code for the do clauses and
the accumulation clauses.

2. The termination-test part, containing code that checks
whether iteration should terminate.

3. The stepping part, containing code that updates iter-
ation variables in preparation for the next iteration.

For a small example of expanded code, consider the following
loop form:

(loop for i from 2 to 20
when (> i 10) do (print i))

It expands to10 the following code:

(macrolet ((loop-finish ()
’(go #:g956)))

(block nil
(let ((#:g957 2) (#:g958 20) (#:g959 1))
(let ((#:g960 #:g957) (i #:g957))
(tagbody

(if (<= #:g960 #:g958)
(incf #:g960 #:g959)
(go #:g956))

#:g963
;; main body
(let ((#:g964 (> i 10)))
(if #:g964

(print i)
(progn)))

;; termination test
(unless (<= #:g960 #:g958)
(go #:g956))

;; stepping
(progn (setq i #:g960)

(incf #:g960 #:g959))
(go #:g963)

#:g956
(return-from nil nil))))))

The essence of code generation is handled by a number of
generic functions, each extracting different information from
a clause:

• accumulation-variables extracts the accumulation vari-
ables of a clause, indicating also whether the loop key-
word into is present.

• declarations extracts any declarations that result from
the clause.

special form allows low-level constructs such as arbitrary
control transfers to arbitrary statements through the use of
labels and go forms that jump to such labels. This special
form is mostly used in the expansion of high-level macros
such as loop and other iteration constructs.

10We cleaned it up somewhat by removing unnecessary progn
forms and we inserted the comments manually.

• prologue-form returns a form that should go in the
loop prologue, or nil if no prologue form is required
for the clause.

• epilogue-form returns a form that should go in the
loop epilogue, or nil if no epilogue form is required
for the clause.

• termination-form returns a form that should become
a termination test, or nil if the clause does not result
in a termination test.

• step-form returns a form that should be included in
the stepping part of the loop body, for those clause
types that define stepping. This generic function re-
turns nil if the clause does not have any step forms
associated with it.

• body-form returns a form that should be present in
the main body of the expansion, or nil if the clause
does not result in any form for the body.

The generic function prologue-form takes a clause argu-
ment and returns a form that should go in the loop pro-
logue. The initially clause is an obvious candidate for
such code. But the stepping clauses also have code that
goes in the prologue, namely an initial termination test to
determine whether any iterations at all should be executed.

Of the clause types defined by the Common Lisp standard,
only the finally clause has a method that returns a value
other than nil on the generic function epilogue-form.

The generic function termination-form takes a clause ar-
gument and returns a form for that clause that should go in
the termination-test part of the body of the expanded code.
Some of the for/as clauses and also the repeat clause have
specialized methods on this generic function.

The generic function step-form takes a clause argument
and returns a form for that clause that should go in the
stepping part of the body of the expanded code. The for/as
clauses and also the repeat clause have specialized methods
on this generic function.

The generic function body-form takes a clause argument
and returns a form for that clause that should go in the main
body of the expanded code. The do and the accumulation
clauses have specialized methods on this generic function.

3.5 Tests
Our code has been thoroughly tested. The code for testing

contains almost 5000 lines. This code has been taken from
Paul Dietz’ ANSI test suite11 and adapted to our needs.
In particular, we had to remove some tests that did not
conform to the standard, and we added tests where the test
suite omitted to test potentially non-conforming behavior.

4. BENEFITS OF OUR METHOD
As already mentioned in Section 3.1, the main advantage

of our technique is that it allows for a modular structure of
the loop implementation.

MIT loop has extension capabilities as well, through the
use of so-called loop universes. A loop universe is a struc-
ture instance that contains information on how to parse and
translate all loop constructs. The ease with which an exten-
sion can be added depends on how well the extension fits

11See: https://gitlab.common-lisp.net/groups/ansi-test
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into the framework provided. It is relatively easy to pro-
vide an additional keyword for a for var being ..., but
it would be much more difficult to allow for a clause like
when form is-a type ... to take but one example.

Furthermore, since MIT loop does not use generic func-
tions, customizing existing behavior by extending existing
methods for processing loop elements such as clauses is not
an option.

The most immediate consequence of this improved modu-
larity is that the code is easier to maintain than a monolithic
code for the same purpose. A modification in one module is
less likely to break other modules.

This modularity also makes it very simple for additional
clause types to be added by the Common Lisp implemen-
tation, such as the extension for iterating over the user-
extensible sequences described by Rhodes in his paper on
user-extensible sequences [9]. This extension defines the new
loop keywords element and elements for this purpose.

Furthermore, since the parsing technology we use does not
require any costly pre-processing, extensions could be added
by client code on a per-module basis, rather than as a perma-
nent extension. Then, client code can maintain the capacity
of detecting non-conforming constructs in most code, while
allowing for selected extensions in specific modules.

As a consequence of this additional modularity, we think
it is feasible to avoid the current problem of derivatives of
MIT loop, namely that each implementation has had to
introduce modifications to the single file that contains the
code. With better modularity, we think it is possible to
maintain the code for the loop macro as a separate entity,
with each Common Lisp implementation supplying modifi-
cations in separate, small modules. Such a common code
base would reduce the total maintenance cost for all Com-
mon Lisp implementations using this code base.

5. CONCLUSIONS AND FUTURE WORK
We have described a modern implementation of the Com-

mon Lisp loop macro. The main benefit of our method
is better modularity compared to existing implementations,
which makes maintenance easier, and also allows for more
modular integration of client-defined extensions.

Our implementation contains significantly more code than,
for instance, MIT loop; more than 5000 lines compared to
2000. There are several explanations for this discrepancy:

• Our code has more lines of comments; nearly 1500
compared to less than 200 for MIT loop.

• Our implementation contains more than 300 code lines
dedicated to specific conditions and to condition re-
porters for those conditions, whereas MIT loop uses
condition signaling very rarely, and then mostly using
simple conditions with condition reporters in the form
of literal strings.

• Our implementation is divided into nearly 50 files, or
modules, and each new file represents some overhead
in terms of code size.

• Our implementation contains more semantic verifica-
tion as shown by the fact that it rejects the examples
of non-conforming code shown in Section 2.1.

• Commonalities between clause types are captured as
explicit class definitions which require additional code.

• We most likely have not identified all the instances
where refactoring the code would be beneficial.

We believe that some ordinary code factoring will bring
the difference in code size (not counting comments) down to
a small difference that can be attributed to per-module over-
head, and to the fact that we have more extensive semantic
verification.

5.1 Use external parser framework
When we started the work on this library, we were un-

aware of any existing libraries for combinator parsing writ-
ten in Common Lisp. Since then, we have been made aware
of several libraries with such functionality, in particular:

• “cl-parser-combinators”12 which is a library for combi-
nator parsing inspired by Parsec [7]. Parsec was orig-
inally written in Haskell, and later re-implemented in
other languages as well.

• “SMUG”13 which seems to be more self contained than
cl-parser-combinators, especially when it comes to the
documentation.

We plan to evaluate cl-parser-combinators and SMUG to
determine whether they provide the functionality required
for parsing loop clauses, and if not, whether any of them
can be extended to obtain this functionality.

A significant advantage of using one of these libraries over
the existing technique is that they both have full support
for the most general backtracking capabilities of combinator
parsing. Using one of them rather than our current tech-
nique would make it unnecessary to consider careful ordering
of clause parsers the way we currently need to do.

A possible disadvantage might be that full backtracking
is potentially costly in terms of performance. However, we
do not expect performance of clause parsers to be a deter-
mining factor for the overall performance of a Common Lisp
compiler.

5.2 Second clause parser
As mentioned in Section 3, we are able to signal appropri-

ate conditions in some cases when the initial attempt is made
to parse the body of the loop form as individual clauses.
However, when a syntax error is detected in some clause, all
further analysis is abandoned. It would clearly be better if
the analysis could continue with the remaining clauses, and
if an appropriate error condition could be signaled for the
faulty clause.

A simple way of improving error reporting would be to
add more parsers for each clause type. These additional
parsers would recognize incorrect clause syntax and ulti-
mately result in an error being signaled, but more impor-
tantly, they would succeed so that parsing could continue
with subsequent clauses. For example, a common mistake is
to omit the = character in a with clause (See Appendix A.).
A second parser would recognize this defective with clause
as valid, but then either signal an appropriate error or issue
a warning.

Unfortunately, however, while the parsing technique we
use has many advantages as described in Section 4, it also

12https://github.com/Ramarren/cl-parser-combinators
13https://github.com/drewc/smug
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has the main disadvantage that parsing gets slower as more
parsers need to be tried, in particular if no care is taken to
order the parsers with respect to probability of success.

We plan to avoid this conundrum by implementing a sec-
ond parser for parsing individual clauses. This second parser
would be invoked only when the first one fails. In that sit-
uation, we estimate that performance is of secondary im-
portance and that emphasis should be on appropriate error
signaling. Only this second parser would contain the addi-
tional clause parsers that recognize common incorrect clause
syntax, and each such parser would be associated with an
error or a warning appropriate for the situation. Existing
clause parsers that recognize correct clause syntax would be
re-used, and additional parsers for each clause type would
be added to the set of parsers for that clause type.

At the moment, we have no quantifiable estimate of the
cost of a fully backtracking parser, as compared to our sim-
plified technique. At this point, we are also unable to quan-
tify the additional performance penalty of having additional
parsers for incorrect clause syntax when only correct loop

syntax is parsed. Further work is required for a precise es-
timate.

5.3 Alternative parsing techniques
While a number of different parsing techniques such as

LALR [5] or Pratt [8] would be feasible for the parsing
the loop grammar as specified in the standard (See Ap-
pendix A.), an explicit goal of our work is to make it pos-
sible for client code to extend the grammar in a modular
way. Most parsing techniques require the full grammar to
be available a priori which is incompatible with this goal.
There are parsing techniques other than combinator parsing
that could be used, and we plan to investigate the feasibility
of such techniques, in particular Earley [6] parsing.

5.4 Code refactoring
As suggested in the beginning of this section, there are

very likely several remaining opportunities for code refac-
toring. Part of the plan for future work is to identify such
opportunities and restructure the code accordingly, while
respecting the existing modular structure of the code.
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APPENDIX
A. LOOP SYNTAX

In this appendix, we present some parts of the syntax of
the loop macro that are relevant to the discussion in this
paper. Parts that are not relevant to this paper have been
left out.

loop [name-clause]

{variable-clause}*

{main-clause}*

=> result*

name-clause::= named name

variable-clause::= with-clause |

initial-final |

for-as-clause

with-clause::= with var1 [type-spec] [= form1]

{and var2 [type-spec] [= form2]}*

main-clause::= unconditional |

accumulation |

conditional |

termination-test |

initial-final

initial-final::= initially compound-form+ |

finally compound-form+

unconditional::= {do | doing} compound-form+ |

return {form | it}

accumulation::= list-accumulation |

numeric-accumulation

list-accumulation::= {collect | collecting |

append | appending |

nconc | nconcing}

{form | it}

[into simple-var]

numeric-accumulation::= {count | counting |

sum | summing | }

maximize | maximizing |

minimize | minimizing

{form | it}

[into simple-var]

[type-spec]

conditional::= {if | when | unless}

form selectable-clause

{and selectable-clause}*

[else selectable-clause

{and selectable-clause}*]

[end]

selectable-clause::= unconditional |

accumulation |

conditional

termination-test::= while form |

until form |

repeat form |

always form |

never form |

thereis form

for-as-clause::= {for | as} for-as-subclause

{and for-as-subclause}*

for-as-subclause::= for-as-arithmetic |

for-as-in-list |

for-as-on-list |

for-as-equals-then |

for-as-across |

for-as-hash |

for-as-package
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ABSTRACT
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of a
new language differs significantly from Racket’s core, macros of-
fer a maintainable approach to implementing a larger language by
desugaring into the core. Users of the language gain the benefits
of Racket’s programming environment, its build management, and
even its macro support (if macros are exposed to programmers of
the new language), while Racket’s syntax objects and submodules
provide convenient mechanisms for recording and extracting pro-
gram information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

CCS Concepts
•Software and its engineering Ñ Extensible languages; Trans-
lator writing systems and compiler generators;

Keywords
Language embedding, module systems, separate compilation

1. INTRODUCTION
A macro expander supports the extension of a programming lan-

guage by translating extensions into a predefined core language. A
source-to-source compiler (or transcompiler for short) is similar, in
that it takes source code in one language and produces source code
for another language. Since both macro expansion and source-to-
source compilation entail translation between languages, and since
individual translation steps can often be conveniently specified as
macro transformations, a macro-enabled language can provide a
convenient platform for implementing a transcompiler.

Racket’s macro system, in particular, not only supports language
extension—where the existing base language is enriched with new
syntactic forms—but also language definition—where a completely

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
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new language is implemented though macros while hiding or adapt-
ing the syntactic forms of the base language. Racket’s macro sys-
tem is thus suitable for implementing a language with a different or
constrained execution model relative to the core Racket language.

Magnolisp is a Racket-based language that targets embedded de-
vices. Relative to Racket, Magnolisp is constrained in ways that
make it more suitable for platforms with limited memory and pro-
cessors. For deployment, the Magnolisp compiler transcompiles a
core language to C++. For development, since cross-compilation
and testing on embedded devices can be particularly time consum-
ing, Magnolisp programs also run directly on the Racket virtual
machine (VM) using libraries that simulate the target environment.

Racket-based languages normally target only the Racket VM,
where macros expand to a core Racket language, core Racket is
compiled into bytecode form, and then the bytecode form is run:

Racket-based
language

macroexpand
core Racket

Racket VM
run

bytecode

compile

To instead transcompile a Racket-based language, Magnolisp could
access the representation of a program after it has been macro-
expanded to its core (via the read and expand functions). Fully
expanding the program, however, would produce Racket’s core lan-
guage, instead of Magnolisp’s core language. External expansion
would also miss out on some strengths of the Racket environment,
including automatic management of build dependencies.

Magnolisp demonstrates an alternative approach that takes full
advantage of Racket mechanisms to assemble a “transcompile time”
view of the program. The macros that implement Magnolisp ar-
range for a representation of the core program to be preserved in
the Racket bytecode form of modules. That representation can be
extracted as input to the mglc compiler to C++:

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

In this picture, the smaller boxes correspond to a core-form recon-
struction that is only run in transcompile-time mode (as depicted by
the longer arrow of the “run” step). The boxes are implemented as

ELS 2016 57



submodules (Flatt 2013), and the core form is extracted by running
the submodules instead of the main program modules.

By compiling a source program to one that constructs an AST for
use by another compiler layer, our approach is similar to lightweight
modular staging in Scala (Rompf and Odersky 2010) or strategies
that exploit type classes in Haskell (Chakravarty et al. 2011). Mag-
nolisp demonstrates how macros can achieve the same effect, but
with the advantages of macros and submodules over type-directed
overloading: more flexibility in defining the language syntax, sup-
port for static checking that is more precisely tailored to the lan-
guage, and direct support for managing different instantiations of a
program (i.e., direct evaluation versus transcompilation).

2. MAGNOLISP
Magnolisp1 is statically typed, and all data types and function

invocations are resolvable to specific implementations at compile
time. Static typing for Magnolisp programs facilitates compilation
to efficient C++, as the static types can be mapped directly to their
C++ counterparts. To reduce syntactic clutter from annotations and
to help retain untyped Racket’s “look and feel,” Magnolisp sup-
ports type inference à la Hindley-Milner.

Magnolisp’s surface syntax is similar to Racket’s for common
constructs, but it also has language-specific constructs, including
ones that do not directly map into Racket core language (e.g., if-cxx
for conditional transcompilation). Magnolisp uses Racket’s mod-
ule system for managing bindings, both for run-time functions and
for macros. An exported C++ interface is defined separately through
export annotations on function definitions; only exported func-
tions are declared in the generated C++ header file.

A Magnolisp module starts with #lang magnolisp. The mod-
ule’s top-level can define functions, types, and so on. A function
marked as foreign is assumed to be implemented in C++; it may
also have a Racket implementation, given as the body expression,
to allow it to be run in the Racket VM. Types are defined only in
C++, so they are always foreign, and typedef can be used to
give the corresponding Magnolisp declarations. The type annota-
tion is used to specify types for functions and variables, and type
expressions can refer to declared type names. The #:: keyword is
used to specify a set of annotations for a definition.

In the following example, add is a Magnolisp function of type
(-> Int Int Int), i.e., a binary function that computes with val-
ues of type Int. The (rkt.+ x y) expression in the function body
is a call to a Racket function from the racket/base module to ap-
proximately simulate C++ integer addition:

#lang magnolisp
(require magnolisp/std/list

(prefix-in rkt. racket/base))

(typedef Int #:: ([foreign int]))
(define (add x y) ; integer primitive (implemented in C++)

#:: (foreign [type (-> Int Int Int)])
(rkt.+ x y))

No C++ code is generated for the above definitions, as they are
both declared as foreign. As in Racket, it is possible to define
macros; this pattern-based one defines a new conditional, which
uses magnolisp/std/list module’s empty? function:

(define-syntax-rule (if-empty lst thn els)
(if (empty? lst) thn els))

For an example with a C++ translation, consider sum-2, a function
that uses the above definitions to compute the sum of the first two
elements of its list argument (or fewer for shorter lists):
1Available from http://bldl.github.io/magnolisp-els16/

(define (sum-2 lst) #:: (export)
(if-empty lst 0

(let ([t (tail lst)])
(if-empty t (head lst)

(add (head lst) (head t))))))

The transcompiler-generated C++ implementation for the sum-2
function is the following (apart from minor reformatting):

MGL_API_FUNC int sum_2( List<int> const& lst ) {
List<int> t;
return is_empty(lst) ?

0 :
((t = tail(lst)),
(is_empty(t) ? head(lst) :

add(head(lst), head(t))));
}

Figure 1 shows an overview of the Magnolisp architecture, in-
cluding both the magnolisp-defined front end and the mglc-driven
middle and back ends. Figure 2 illustrates the forms of data that
flow through the compilation pipeline. Transcompilation triggers
running of "a.rkt" module’s transcompile-time code, through magnolisp-s2s
submodule’s instantiation by invoking dynamic-require to fetch
values for certain variables (e.g., def-lst); the values describe the
code of "a.rkt", and are already in the compiler’s internal data
format. Any referenced dependencies of "a.rkt" (e.g., "num-types.rkt",
as indicated by int’s binding information) are processed in the
same manner, and the relevant definitions are incorporated into the
compilation result (i.e., "a.cpp" and "a.hpp").

The middle and back ends are accessed either via the mglc command-
line tool or via the underlying API as a Racket module. In either
case, the expected input is a set of modules for transcompilation
into C++. The compiler loads any transcompile-time code in the
modules and their dependencies. Any module with a magnolisp-s2s
submodule is assumed to be Magnolisp, but other Racket-based
languages may also be used for macro programming or simulation.
The Magnolisp compiler effectively ignores any code that is not
run-time code in a Magnolisp module.

The program transformations performed by the compiler are gen-
erally expressed with term-rewriting strategies. These strategies are
implemented by a custom combinator library2 that is inspired by
Stratego (Bravenboer et al. 2008). Syntax trees that are prepared
for the transcompilation phase instantiate data types that support
the primitive strategy combinators of the combinator library.

The compiler middle end implements whole-program optimiza-
tion (by dropping unused definitions), type inference, and some
simplifications (e.g., removal of condition checks where the condi-
tion is constant). The back end implements translation from Mag-
nolisp core to C++ syntax (involving, e.g., lambda lifting), copy
propagation, C++-compatible identifier renaming, splitting of code
into sections (e.g.: public declarations, private declarations, and
private implementations), and pretty printing.

3. TRANSLATED-LANGUAGE HOSTING
Magnolisp is an example of a general strategy for building a

transcompiled language within Racket. In this section, we describe
some details of that process for an arbitrary transcompiled language
L. Where the distinction matters, we use LR to denote a language
that is intended to also run in the Racket VM (possibly with mock
implementations of some primitives), and LC to denote a language
that only runs through compilation into a different language.

Building a language in Racket means defining a module or set
of modules to implement the language. The language’s modules
2http://bldl.github.io/illusyn/
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Figure 1: The overall architecture of the Magnolisp implementation, showing some of the components involved in compiling a Magnolisp
source file "a.rkt" into a C++ implementation file "a.cpp" and a C++ header file "a.hpp". The dotted arrows indicate that the use of the
mglc command-line tool is optional; the middle and back end APIs may also be invoked by other programs. The dashed “evaluates” arrow
indicates a conditional connection between the left and right hand sides of the diagram; the magnolisp-s2s submodule is only loaded when
transcompiling. The “expandsTo” connection is likewise conditional, as "a.rkt" may have been compiled to bytecode ahead of time, in
which case the module is already available in a macro-expanded form; otherwise it is compiled on demand by Racket.

a.rkt

#lang magnolisp
(require "num-types.rkt")
(define (int-id x)
  #:: ([type (-> int int)] export)
  x)

(module a magnolisp/main
  (#%module-begin

(module magnolisp-s2s racket/base
  (#%module-begin ....

(define-values (def-lst)
  (#%app list (#%app DefVar ....) ....))
....))

....
(#%require "num-types.rkt")
(define-values (int-id) ....)))

a.rkt (core) macroexpand

IR

def-lst

list

DefVar

annos

....

Id

.... int-id ....

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
  return x;
}

#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);

a.hpp

translate

run

Figure 2: Subset of Figure 1 showing file content: a Magnolisp
module passing through the compilation pipeline.

define and export macros to compile the language’s syntactic forms
to core forms. In our strategy, furthermore, the expansion of the
language’s syntactic forms produces nested submodules to separate
code than can be run directly in the Racket VM from information
that is used to continue compilation to a different target.

3.1 Modules and #lang
All Racket code resides within some module, and each module

starts with a declaration of its language. A module’s language dec-
laration has the form #lang L as the first line of the module. The
remainder of the module can access only the syntactic forms and
other bindings made available by the language L.

A language is itself implemented as a module.3 In general, a
language’s module provides a reader that gets complete control
over the module’s text after the #lang line. A reader produces
a syntax object, which is a kind of S-expression (that combines
lists, symbols, etc.) that is enriched with source locations and
other lexical context. We restrict our attention here to using the de-
fault reader, which parses module content directly as S-expressions,
adding source locations and an initially empty lexical context.

For example, to start the implementation of L such that it uses
the default reader, we might create a "main.rkt" module in an
"L" directory, and add a reader submodule that points back to
L/main as implementing the rest of L:

#lang racket
(module reader syntax/module-reader L/main)

The S-expression produced by a language’s reader serves as in-
put to the macro-expansion phase. A language’s module provides
syntactic forms and other bindings for use in the expansion phase
by exporting macros and variables. A language L can re-export all
of the bindings of some other language, in which case L acts as an

3Some language must be predefined, of course. For practical pur-
poses, assume that the racket module is predefined.
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extension of that language, or it can export an arbitrarily restrictive
set of bindings.

A language must at least export a macro named #%module-begin,
because that form implicitly wraps the body of a module. Most lan-
guages simply use #%module-begin from racket, which treats
the module body as a sequence of require importing forms, provide
exporting forms, definitions, expressions, and nested submodules,
where a macro use in the module body can expand to any of the ex-
pected forms. A language might restrict the body of modules by ei-
ther providing an alternative #%module-begin or by withholding
other forms. A language might also provide a #%module-begin
that explicitly expands all forms within the module body, and then
applies constraints or collects information in terms of the core forms
of the language.

As an example, the following "main.rkt" re-exports all of racket
except require (and the related core language name #%require),
which means that modules in the language L cannot import other
modules. It also supplies an alternate #%module-begin macro to
pre-process the module body in some way:

#lang racket
(module reader syntax/module-reader L/main)
(provide

(except-out (all-from-out racket)
require #%require #%module-begin)

(rename-out [L-module-begin #%module-begin]))
(define-syntax L-module-begin ....)

For transcompilation, the #%module-begin macro plays a key
role in our strategy. A Racket language L that is intended for
transcompilation is defined as follows:

‚ L’s module exports bindings that define the language’s sur-
face syntax, and expand only to transcompiler-supported run-
time forms. We describe this step further in section 3.2

‚ Macros record any additional metadata required for trans-
compilation. We describe this step further in section 3.3

‚ The #%module-begin macro expands all the macros in the
module body. We describe this step further in section 3.4

‚ After full macro expansion, #%module-begin adds exter-
nally loadable information about the expanded module into
the module. We describe this step further in section 3.5

‚ Any run-time support for running programs is provided along-
side the macros that define the syntax of the language. We
describe this step further in section 3.6

The export bindings of L may include variables, and the presence
of transcompilation introduces some nuances into their meaning.
When the meaning of a variable in L is defined in L, we say that
it is a non-primitive. When its meaning is defined in the execution
language, we say that it is a primitive. When the meaning of its
appearances is defined by a compiler (or a macro) of L, we say that
it is a built-in. As different execution targets may have different
compilers, a built-in for one target may be a primitive for another.

3.2 Defining Surface Syntax
A module that implements the surface syntax of a language L

exports a binding for each predefined entity of L, whether that en-
tity is a built-in variable, a core-language construct, or a derived
form. When the core language is a subset of Racket, derived forms
obviously should expand to the subset. Where the core of L is a
superset of Racket, additional constructs need an encoding in terms
of Racket’s core forms where the encoding is recognizable after
expansion; possible encoding strategies include:

‚ E1. Use a variable binding to identify a core-language form.
Use it in an application position to allow other forms to ap-
pear within the application form. Subexpressions within the
form can be delayed with lambda wrappers, if necessary.

‚ E2. Attach information to a syntax object through its syntax
property table; macros that manipulate syntax objects must
then propagate properties correctly.

‚ E3. Store information about a form in a compile-time table
that is external to the module’s syntax objects.

A caveat for strategies E2 and E3 is that syntax properties and
compile-time tables are transient, generally becoming unavailable
after a module is fully expanded; any information to be preserved
must be reflected as generated code in the module’s expansion, as
discussed in section 3.5. Another caveat of such “out-of-band” stor-
age is that identifiers in the stored data must not be moved out of
band too early; a binding form must be expanded before its refer-
ences are moved so that each identifier properly refers to its bind-
ing.

In the case of LR, the result of a macro-expansion should be com-
patible with both the transcompiler and the Racket evaluator. The
necessary duality can be achieved if the surface syntax defining
macros can adhere to these constraints: (C1) exclude Racket core
form uses that are not supported by the compiler; (C2) add any
compilation hints to Racket core forms in a way that does not af-
fect evaluation (e.g., as custom syntax properties); and (C3) encode
any compilation-specific syntax in terms of core forms that appear
only in places where they do not affect Racket execution semantics.

Where constraints C1–C3 cannot be satisfied, a fallback is to
have #%module-begin rewrite the run- or transcompile-time code
(or both) to make it conform to the expected core language. Rewrit-
ing may still be constrained by the presence of binding forms.

For cases where a language’s forms do not map neatly to Racket
binding constructs, Racket’s macro API supports explicit definition
contexts (Flatt et al. 2012), which enable the implementation of
custom binding forms that cooperate with macro expansion.

For an example of foreign core form encoding strategy E1, con-
sider an LC with a parallel construct that evaluates two forms
in parallel. This construct might be defined simply as a “dummy”
constant, recognized by the transcompiler as a specific built-in by
its identifier, translating any appearances of (parallel e1 e2)
“function applications” appropriately:

(define parallel #f)

Alternatively, as an example of strategy E2, LC’s (parallel
e1 e2) form might simply expand to (list e1 e2), but with a
'parallel syntax property on the list call to indicate that the
argument expressions are intended to run in parallel:

(define-syntax (parallel stx)
(syntax-case stx ()

[(parallel e1 e2)
(syntax-property #'(list e1 e2)

'parallel #t)]))

For LR, parallel might instead be implemented as a simple
pattern-based macro that wraps the two expressions in lambda and
passes them to a call-in-parallel run-time function, again in
accordance to strategy E1. The call-in-parallel variable could
then be treated as a built-in by the transcompiler and implemented
as a primitive for running in the Racket VM:

(define-syntax-rule (parallel e1 e2)
(call-in-parallel (lambda () e1) (lambda () e2)))
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For an example of adhering to constraint C3, we give a sim-
plified definition of Magnolisp’s typedef form. A declared type
t is bound as a variable to allow Racket to resolve type refer-
ences; these bindings also exist for evaluation as Racket, but they
are never referenced at run time. The #%magnolisp built-in is
used to encode the meaning of the variable, but as it has no use-
ful definition in Racket, evaluation of any expressions involving
it is prevented. The CORE macro is a convenience for wrapping
(#%magnolisp ....) expressions in an (if #f .... #f) form
to “short-circuit” the overall expression and make it obvious to the
Racket bytecode optimizer that the enclosed expression is never
evaluated. The annotate form is a macro that stores the annota-
tions a ..., which might, for example, include t’s C++ name.

(define #%magnolisp #f)
(define-syntax-rule (CORE kind arg ...)

(if #f (#%magnolisp kind arg ...) #f))

(define-syntax-rule (typedef t #:: (a ...))
(define t

(annotate (a ...) (CORE 'foreign-type))))

3.3 Storing Metadata
A language implementation may involve metadata that describes

a syntax object, but is not itself a core syntactic construct in the
language. Such data may encode information (e.g., optimization
hints) that is meaningful to a compiler or other kinds of external
tools. Metadata might be collected automatically by the language
infrastructure (e.g., source locations in Racket), it might be inferred
by macros at expansion time, or it might be specified as explicit
annotations in source code (e.g., Magnolisp functions’ export).

Metadata differs from language constructs in that it does not tend
to appear (or at least not remain) as a node of its own in a syntax
tree. A workable strategy for retaining any necessary metadata is to
have L’s syntactic forms store it during macro expansion. Encod-
ing strategies E1–E3 apply also for metadata, for which storage in
syntax properties is a typical choice. Typed Racket, for example,
stores its type annotations in a custom 'type-annotation syntax
property (Tobin-Hochstadt et al. 2011).

Compile-time tables are another likely option for metadata stor-
age. For storing data for a named definition, one might use an iden-
tifier table, which is a dictionary data structure where each entry is
keyed by an identifier. An identifier, in turn, is a syntax object for
a symbol. Such a table is suitable for both local and top-level bind-
ings, because the syntax object’s lexical context can distinguish
different bindings that have the same symbolic name.

Recording metadata in compile-time state has the specific ad-
vantage of the data getting collated already during macro expan-
sion which enables lookups across macro invocation sites, without
any separate program analysis phase. One could, for example, keep
track of variables annotated as #:mutable, perhaps to enforce legal-
ity of assignments already at macro-expansion time, or to declare
immutable variables as const in C++ output:

(define-for-syntax mutables (make-free-id-table))

(define-syntax (my-define stx)
(syntax-case stx ()

[(_ x v)
#'(define x v)]

[(_ #:mut x v)
(free-id-table-set! mutables #'x #t)
#'(define x v)]))

It is also possible to encode annotations in the syntax tree proper,
which has the advantage of fully subjecting annotations to macro
expansion. Magnolisp adopts this approach for its annotation record-

ing, using a special 'annotate-property-flagged let-values form
to contain annotations. Each contained annotation expression a
(e.g., [type ....]) has its Racket evaluation prevented by en-
coding it as a Magnolisp CORE form:

(define-syntax-rule (type t) (CORE 'anno 'type t))

(define-syntax (annotate stx)
(syntax-case stx ()

[(_ (a ...) e)
(syntax-property
(syntax/loc stx ; retain stx’s source location

(let-values ([() (begin a (values))] ...)
e))

'annotate #t)]))

The annotate-generated let-values forms introduce no bind-
ings, and their right-hand-side expressions yield no values; only the
expressions themselves matter. Where the annotated expression e
is an initializer expression, the Magnolisp compiler decides which
of the annotations to actually associate with the initialized variable.

3.4 Expanding Macros
One benefit of reusing the Racket macro system with L is to

avoid having to implement an L-specific macro system. When the
Racket macro expander takes care of macro expansion, the remain-
ing transcompilation pipeline only needs to understand L’s core
syntax (and any related metadata). Racket includes two features
that make it possible to expand all the macros in a module body,
and afterwards process the resulting syntax, all within the language.

The first of these features is the #%module-begin macro, which
can transform the entire body of a module. The second is the
local-expand (Flatt et al. 2012) function, which may be used
to fully expand all the #%module-begin sub-forms.

The local-expand operation also supports partial sub-form ex-
pansion, as it takes a “stop list” of identifiers that prevent descend-
ing into sub-expressions with a listed name. At first glance, one
might imagine exploiting this feature to allow foreign core syntax
to appear in a syntax tree, and simply prevent Racket from pro-
ceeding into such forms. That strategy would mean, however, that
foreign binding forms would not be accounted for in Racket’s bind-
ing resolution. It would also be a problem if foreign syntactic forms
could include Racket syntax sub-forms, as such sub-forms would
need to be expanded along with enclosing binding forms.

3.5 Exporting Information to External Tools
After the #%module-begin macro has fully expanded the con-

tent of a module, it can gather information about the expanded con-
tent to make it available for transcompilation. The gathered infor-
mation can be turned into an expression that reconstructs the in-
formation, and that expression can be added to the overall module
body that is produced by #%module-begin.

The information-reconstructing expression should not be added
to the module as a run-time expression, because extracting the in-
formation for transcompilation would then require running the pro-
gram (in the Racket VM). Instead, the information is better added
as compile-time code. The compile-time code is then available
from the module while compiling other L modules, which might
require extra compile-time information about a module that is im-
ported into another L module. More generally, the information can
be extracted by running only the compile-time portions of the mod-
ule, instead of running the module normally.

As a further generalization of the compile versus run time split,
the information can be placed into a separate submodule within the
module. A submodule can have a dynamic extent (i.e., run time)
that is unrelated to the dynamic extent of its enclosing module, and
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its bytecode may even be loaded separately from that of the enclos-
ing module. As long as a compile-time connection is acceptable, a
submodule can include syntax-quoted data that refers to bindings in
the enclosing module, so that information can be easily correlated
with bindings that are exported from the module.

For example, suppose that L implements definitions by produc-
ing a normal Racket definition for running within the Racket virtual
machine, but it also needs a syntax-quoted version of the expanded
definition to compile to a different target. The module+ form can
be used to incrementally build up a to-compile submodule that
houses definitions of the syntax-quoted expressions:

(define-syntax (L-define stx)
(syntax-case stx ()
[(L-define id rhs)
(with-syntax ([rhs2 (local-expand #'rhs

'expression null)])
#'(begin

(define id rhs2)
(begin-for-syntax

(module+ to-compile
(define id #'rhs2)))))]))

The begin-for-syntax wrapping makes the to-compile sub-
module reside at compilation time relative to the enclosing mod-
ule, so that loading the submodule will not run the enclosing mod-
ule. Within to-compile, the expanded right-hand side is quoted
as syntax using #’. Syntax-quoted code is often a good choice
of representation for code to be compiled again to a different tar-
get language, because lexical-binding information is preserved in a
syntax quote. Source locations are also preserved, so that a com-
piler can report errors or warnings in terms of a form’s original
location (mglc fetches original source text based on location).

Another natural representation choice is to use any custom inter-
mediate representation (IR) of the compiler. Magnolisp, for exam-
ple, processes Racket syntax trees already during macro expansion,
turning them into its IR format, which also incorporates metadata.
The IR uses Racket struct instances to represent AST nodes,
while still retaining some of the original Racket syntax objects as
metadata, for purposes of transcompile-time reporting of semantic
errors. Magnolisp programs are parsed at least twice, first from
text to Racket syntax objects by the reader, and then from syntax
objects to the IR by #%module-begin; additionally, any macros
effectively parse syntax objects to syntax objects. As parsing is
completed already in #%module-begin, any Magnolisp syntax er-
rors are discovered even when just evaluating programs as Racket.

The #%module-begin macro of magnolisp exports the IR via
a submodule named magnolisp-s2s. The submodule contains an
expression that reconstructs the IR, albeit in a somewhat lossy way,
excluding details that are irrelevant for compilation. The IR is ac-
companied by a table of identifier binding information indexed by
module-locally unique symbols, which the transcompiler uses for
cross-module resolution of top-level bindings, to reconstruct the
identifier binding relationships that would have been preserved by
Racket if exported as syntax-quoted code. As magnolisp-s2s
submodules do not refer to the bindings of the enclosing module,
they are loadable independently from it.

3.6 Run-Time Support
The modules that implement a Racket language can also define

run-time support for executing programs. For L, such support may
be required for the compilation target environment; for LR, any sup-
port would also be required for the Racket VM. Run-time support
for L is required when L exports bindings to run-time variables, or
when the macro expansion of L can produce code referring to run-
time variables (even if such a variable’s run-time existence is very

limited, as it is for #%magnolisp).
Every run-time variable requires a run-time binding, to make it

possible for Racket to resolve references to them. When binding
built-ins and primitives of LC, any initial value expression can be
given, as the expressions are not evaluated. A literal constant ex-
pression is a suitable initializer for built-ins of LR, which are ini-
tialized for Racket VM execution, but generally never referenced.

Each non-primitive is—by definition—implemented in L, with a
single definition applicable for all targets. Strictly speaking, though,
any non-primitive that is exported by a Racket module L cannot it-
self be implemented in L, but must use a smaller language; the
Racket module system does not allow cyclic dependencies.

Defining a primitive of L involves specifying a translation for
appearances of the variable into any target language. For a Racket
VM target, the variable’s value must specify its meaning. For other
targets, it may be most convenient to specify the target language
mapping in L, assuming that L includes specific language for that
purpose. As the mappings are only needed during transcompila-
tion, any metadata specifying them might be placed into a module
that is only loaded on demand by the compiler.

The magnolisp language, for example, binds three run-time
variables, all of which are built-ins. Of these, #%magnolisp is only
used for its binding, and only during macro expansion. The com-
piler knows that conditional expressions must always be of type
Bool, and that Void is the unit type of the language; this knowledge
is useful during type checking and optimization. References to the
Magnolisp built-ins may appear in code generated by magnolisp’s
macros, and hence they must already be bound for the language
implementation. Their metadata (specifying C++ translations) is
not required by the macros, however, which makes it possible to
declare that information separately, using Magnolisp’s own syn-
tax for storing metadata for an existing binding:

#lang magnolisp/base
(require "core.rkt" "surface.rkt")
(declare #:type Bool #:: ([foreign bool]))
(declare #:type Void #:: ([foreign void]))

4. EVALUATION
Our Racket-hosted transcompilation approach is generic—in the-

ory capable of accommodating a large class of languages. In prac-
tice, we imagine that it is most useful for hosting newly developed
languages (such as Magnolisp), where design choices can achieve
a high degree of reuse of the Racket infrastructure. In particular,
Racket’s support for creating new, extensible languages could be
a substantial motivation to follow our approach. Racket hosting
is particularly appropriate for an evolving language, since macros
facilitate quick experimentation with language features.

Another potential use of our strategy is to add transcompilation
support for an existing Racket-based language. We have done so for
Erda4, creating ErdaC++ as its C++-translatable variant. Erda has
Racket-like syntax, but its evaluation differs significantly from both
Racket and Magnolisp. ErdaC++ programs nonetheless compile to
C++ using an unmodified Magnolisp compiler.

ErdaC++ illustrates that Magnolisp is not only a language, but
also infrastructure for making Racket-based languages translatable
into C++. A Magnolisp-based language must be transformable
into Magnolisp’s core language, which is more limited than that
of Racket (lacking first-class functions, escaping closures, etc.), but
the language can have its own runtime libraries (whose names must
be magnolisp-s2s-communicated to mglc). The Racket API of
Magnolisp includes a make-module-begin function that makes

4http://bldl.github.io/erda/
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it convenient for other languages to implement mglc-compatible
#%module-begin macros—ones that communicate all the expected
information.

A potential drawback of transcompilation is the disconnect be-
tween the original, unexpanded code and its corresponding gen-
erated source code, which can lead to difficulties in debugging.
The problem is made worse by macros, and it can be particularly
pressing when the output is hard for humans to read. As Racket’s
macro expansion preserves source locations, a transcompiler could
at least emit the original locations via #line directives (as in C++)
or source maps (as supported by some JavaScript environments).

4.1 Language Design Constraints
In our experience, two design constraints make Racket reuse es-

pecially effective: the hosted language’s name resolution should be
compatible with Racket’s, and its syntax should use S-expressions.

Overloading as a language feature, for instance, appears a bad
fit for Racket’s name resolution. Instead of overloading, names in
Racket programs are typically prefixed with a datatype name, as in
string-length and vector-length. Constructs for renaming
at module boundaries, such as prefix-in and prefix-out, help
implement and manage name-prefixing conventions.

An S-expression syntax is not strictly necessary, but Racket’s
macro programming APIs work especially well with its default
parsing machinery. The language implementor can then essentially
use concrete syntax in patterns and templates for matching and gen-
erating code. This machinery is comparable to concrete-syntax
support in program transformation toolkits such as Rascal (Klint
et al. 2009) and Spoofax (Kats and Visser 2010). Still, other kinds
of concrete syntaxes can be adopted for Racket languages, with or
without support for expressing macro patterns in terms of concrete
syntax, as demonstrated by implementations of Honu (Rafkind and
Flatt 2012) and Python (Ramos and Leitão 2014).

5. RELATED WORK
Many language implementations run on Lisp dialects and also

target other environments. Some languages, such as Linj (2013)
or Clojure plus ClojureScript (2016), primarily provide a Lisp-
like language in the target environment. Other languages, such as
STELLA (Chalupsky and MacGregor 1999) and Parenscript (2016),
primarily match the target environment’s semantics but enable ex-
ecution in a Lisp as well. Magnolisp is closer to the latter group, in
that it primarily targets the target environment’s semantics.

Most other languages previously implemented on Racket have
been meant for execution only on the Racket virtual machine, but
a notable exception is Dracula (Eastlund 2012), which compiles
macro-expanded programs to ACL2. Its (so far largely undoc-
umented) compilation strategy is to expand syntactic forms to a
subset of Racket’s core forms, and to specially recognize applica-
tions of certain functions (such as make-generic) for compila-
tion to ACL2. The part of a Dracula program that runs in Racket
is expanded normally, while the part to be translated to ACL2 is
recorded in a submodule through a combination of structures and
syntax objects, where binding information in syntax objects helps
guide the translation.

Whalesong (Yoo and Krishnamurthi 2013) and Pycket (Bauman
et al. 2015) are both implementations of Racket targeting foreign
language environments. Their approaches to acquiring fully macro-
expanded Racket core language differ from ours. Whalesong com-
piles to JavaScript via Racket bytecode, which is optimized for ef-
ficient execution (e.g., through inlining), but does not retain all of
the original (core) syntax; thus, it is not the most semantics-rich
starting point for translation into foreign languages. The Pycket

compiler instead performs external expansion to get core Racket;
it reads, expands, and JSON-serializes Racket syntax, in order to
pass it over to the RPython meta-tracing framework.

Ziggurat (Fisher and Shivers 2008)—also built on Racket (then
PLT Scheme)—is a meta-language system for implementing ex-
tensible languages. Its approach allows both for self-extension and
transcompilation of languages, with different tradeoffs compared to
ours. Ziggurat features hygienic macros that are Scheme-like, but
have access to static semantics, as defined for a language through
other provided mechanisms; Racket lacks specific support for inter-
leaving macro expansion with custom analysis. Ziggurat’s macros
may be locally scoped, but not organized into separately loadable
modules; Racket allows for both. There is basic safety of macro
composition with respect to Ziggurat’s own name resolution, but
composability of custom static semantics depends on their imple-
mentation. Ziggurat includes constructs for defining new syntax
object types, while our approach requires encoding “tricks.”

Lightweight Modular Staging (LMS) (Rompf and Odersky 2010)
is similar to our technique in goals and overall strategy, but leverag-
ing Scala’s type system and overload resolution instead of a macro
system. With LMS, a programmer writes expressions that resemble
Scala expressions, but the type expectations of surrounding code
cause the expressions to be interpreted as AST constructions in-
stead of expressions to evaluate. The constructed ASTs can then
be compiled to C++, CUDA, JavaScript, other foreign targets, or
to Scala after optimization. AST constructions with LMS benefit
from the same type-checking infrastructure as normal expressions,
so a language implemented with LMS gains the benefit of static
typing in much the same way that a Racket-based language can
gain macro extensibility. LMS has been used for languages with
application to machine learning (Sujeeth et al. 2011), linear trans-
formations (Ofenbeck et al. 2013), fast linear algebra and other
data structure optimizations (Rompf et al. 2012), and more.

The Accelerate framework (Chakravarty et al. 2011; McDonell
et al. 2013) is similar to LMS, but in Haskell with type classes and
overloading. As with LMS, Accelerate programmers benefit from
the use of higher-order features in Haskell to construct a program
for a low-level target language with only first-order abstractions.

The Terra programming language (DeVito et al. 2013) takes an
approach similar to ours, as it adopts an existing language (Lua) for
compile-time manipulation of constructs in the run-time language
(Terra). Like Racket, Terra allows compile-time code to refer to
run-time names in a way that respects lexical scope. Terra is not
designed to support transcompilation, and it compiles to binaries
via Terra as a fixed core language. Another difference is Terra’s
emphasis on supporting code generation at run time, while our em-
phasis is on separation of compile and run times.

CGen (Selgrad et al. 2014) is a reformulation of C with an S-
expression-based syntax, integrated into Common Lisp. An AST
for source-to-source compilation is produced by evaluating the core
forms of CGen; this differs from our approach, where run-time
Racket core forms are not evaluated. Common Lisp’s defmacro
construct is available to CGen programs for defining language ex-
tensions; Racket’s lexical-scope-respecting macros compose in a
more robust manner. Racket’s macro expansion also tracks source
locations, which would be a useful feature for a CGen-like tool.
CGen uses the Common Lisp package system to implement sup-
port for locally and explicitly switching between CGen and Lisp
binding contexts, so that ambiguous names are shadowed; Racket
does not include a similar facility, although approximations thereof
should be implementable within Racket.

SC (Hiraishi et al. 2007) is another reformulation of C with an
S-expression-based syntax. It supports language extensions defined
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by transformation rules written in a separate, Common Lisp based
domain-specific language (DSL). The rules treat SC programs as
data, and thus SC code is not subject to Lisp macro expansion (as
in our solution) or Lisp evaluation (as in CGen). Fully transformed
programs (in the base SC-0 language) are compiled to C source
code. SC programs themselves have access to a C-preprocessor-
style extension mechanism via which there is limited access to
Common Lisp macro functionality.

6. CONCLUSION
We have described a generic approach for having Racket host the

front end of a source-to-source compiler. It involves a proper em-
bedding of the hosted language into Racket, so that Racket’s usual
language definition facilities are exploited rather than bypassed.
Notably, the macro and module systems are still available and, if
exposed to the hosted language, provide a way to implement and
manage language extensions within the language. Furthermore,
tools such as the DrRacket IDE work with the hosted language, rec-
ognize the binding structure of programs written in the language,
and can usually trace the origins of macro-transformed code.

Among the various ways to arrange for a source-to-source com-
piler to gain access to information about a program, our approach
is most appropriate when the language’s macros target a specific
foreign core language and runtime library and when it is useful to
avoid “extra-linguistic mechanisms” (Felleisen et al. 2015) by hav-
ing the language itself communicate its execution requirements to
the outside world. Such communications may be prepared as sub-
modules, which can also contain an AST in the appropriate core
language and representation, allowing one source language to sup-
port multiple different targets. Racket’s separate compilation and
build management help limit preparation work to modules whose
source files or dependencies have changed.

Racket’s macro system is expressive enough that the syntax and
semantics of a variety of language constructs can be specified in a
robust way. Given that typical macros compose safely, and given
that hygiene reduces the likelihood of name clashes and allows
macros to be defined privately, pervasive use of syntactic abstrac-
tion becomes a realistic alternative to manual or tools-assisted writ-
ing of repetitive code. Such abstraction can benefit both the code-
base implementing a Racket-based language, as well as programs
written in a macro-enabled Racket-based language.
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ABSTRACT
In conjunction with the increase of multi-core processors
the use of functional programming languages has increased
in recent years. The functional language Clojure has con-
currency as a core feature, and provides Software Transac-
tional Memory (STM) as a substitute for locks. Transac-
tions in Clojure do however not support execution of code
with side-effects and provide no methods for synchronising
threads. Additional concurrency mechanisms on top of STM
are needed for these use cases, increasing the complexity of
the code. We present multiple constructs allowing functions
with side-effects to be executed as part of a transaction.
These constructs are made accessible through a uniform in-
terface, making them interchangeable. We present constructs
providing explicit control of transactions. Through these
constructs transactions can synchronise threads based on
the current program state, abort a transaction, and provide
an alternative path of execution if a transaction is forced to
restart. eClojure is the implementation of these constructs
in Clojure 1.8, and it is tested using an additional set of unit
tests. With a series of use cases we show that the addition of
these constructs provides additional capabilities to Clojure’s
STM implementation without violating its ACI properties.
Through a usability evaluation with a small sample size we
show that using these constructs reduces both the number of
lines of code and the development time compared to Clojure
1.8. Last we demonstrate through a preliminary performance
benchmark that the addition of these constructs adds only a
constant overhead to the STM implementation.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; D.4.1 [Operating Systems]:
Process Management—Concurrency; Synchronization; Threads
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Clojure; MVCC; STM; Side-Effects; Transaction Control
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1. INTRODUCTION
In recent years processors have gained more computational

threads instead of an increase in clock frequency [17]. This
has increased the complexity of developing software that
utilises the full computational power of these multi-core
processors due to the need for managing multiple threads
of execution with non-deterministic interleaving [12]. To
ease development of multi-threaded software, multiple con-
currency methods which provide an abstraction on top of
threads and locks have been proposed. One of these is STM
where a critical section is executed as a transaction known
from database management systems, alleviating the need
for locks. Clojure by default provides immutable data struc-
tures making it safe to share data between threads without
any synchronisation, and implements STM for synchronising
access to mutable data between multiple threads [11].

While the STM implementation in Clojure simplifies syn-
chronisation of access to shared mutable data, it only has
limited support for synchronising Lisp forms with side-effects.
As STM transactions can restart a mechanism must be pro-
vided so side-effects are not repeated, while still allowing the
transaction itself to restart. Additionally, Clojure does not
provide any method for synchronising threads, but relies on
its interop with Java to provide constructs such as Barriers
and Semaphores. The use of Java’s concurrency API can add
unnecessary complexity to a Clojure program, due to the
API being developed in an imperative object oriented style.
Examples will be presented in Section 3.

Based on these shortcomings of the STM implementation
in Clojure 1.8, we make the following contributions:

• A uniform interface to methods for synchronising forms
with side-effects in multiple transactions in parallel.

• A ref type for storing a reference to a Java object and
a set of functions for executing methods on the object.

• Multiple novel extensions that enhance the capability
of an existing method for controlling transactions [8].

• The eClojure implementation with a set of unit tests.1

• An initial evaluation of eClojure in regards to function-
ality, usability and added performance overhead.

To our knowledge this is the first interface to multiple
methods for executing forms with side-effects in a transaction
that has been implemented in a Lisp based programming
language. While similar transaction control constructs have
1https://github.com/skejserjensen/eclojure
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been implemented in the Common Lisp STM implementation
STMX [6], we provide extensions to these constructs that
allow for additional functionality and more readable code due
to less reliance on implicit behaviour. Last, Clojure’s Lisp
heritage and dynamic type system allow for a high degree of
expressiveness. This makes it impossible for the runtime to
determine if a form contains data shared between threads or
what side-effects it will perform, a problem that is minimised
by a strong static type system [8, 4].

This paper is structured as follows; related work is sum-
marized in Section 2. A short introduction to the STM
implementation in Clojure followed by an in-depth discus-
sion of its limitation is presented in 3. The functionality
added in eClojure is described in Section 4, followed by a
preliminary evaluation of the extensions and a discussion of
the results in Section 5. We present our conclusion in Section
6, and we describe possible future work in Section 7.

2. RELATED WORK
An analysis of the problems with STM executing functions

with side-effects was presented by Baugh and Zilles [2]. The
following naming conventions and descriptions are based on
their summary, with the exception of irrevocable as it in
general is the term used in the literature for that method.

Outlaw The combination of STM and side-effects is not
allowed, enforced as a recommendation as in Clojure,
or forced as Haskell does using its type system [8].

Defer The transaction waits until it is guaranteed to com-
mit before the side-effects are performed. This adds
complexity as the execution no longer is sequential.

Irrevocable Guarantees that a transaction does not restart,
i.e. the use of side-effects is the same as outside trans-
actions. The complexity of irrevocable comes from
executing multiple irrevocable transactions in parallel.

Compensate If a transaction restarts after a side-effect has
occurred, code to compensate for said side-effect is
executed. Not all side-effects can be compensated for,
e.g. a message printed to the screen.

In general two approaches have been proposed for com-
bining these methods, a generic interface or a set of system
calls specific for STM. McDonald et al. [15] propose the
use of a commit, a violation, and an abort handle, each
allowing a function to be executed at that phase of the trans-
action. The implementation uses Hardware Transactional
Memory (HTM) making it less portable than an STM based
approach. The other approach is used by Volos et al. [19] to
develop an API proving OS functionality such as file manage-
ment, threading and network communication in transactions.
Demsky and Tehrany [5] present a method for integrating
file operations into STM using a defer based method, where
transactions can operate on the same file as operations on
each file are buffered until the transaction commits.

Other uses for the methods have also been proposed. In
addition to displaying how irrevocable can be used for ex-
ecuting side-effects, Welc et al. [20] show the benefits of
having irrevocable transactions as part of an STM implemen-
tation. They present benchmarks showing that hash tables
performing the rehashing step in an irrevocable transaction
increase performance, as the rehashing step cannot restart.

Harris et al. [8] present an STM implementation in Haskell
which allows developers to control transactions through the
function retry, allowing the transaction to restart and block.
orElse is used for composing alternative transactions and
execute the first able to commit. Harries and Jones [7] ex-
tended this implementation with the function check. check
allows developers to specify an invariance that must hold
for all transactions. Bieniusa et. al. [3] extend Haskell’s
STM implementation with a pre-commit step, splitting the
commit process into stm_prepare and stm_finalize. Code
can be executed between these stages, providing developers
with the means to remove conflicts with other transactions
and then allowing a transaction to commit, in addition to
execution of code with side-effects.

The constructs retry and orElse have been reused in
several other STM implementations. Bronson et al. [4]
propose an implementation of STM for Scala that included
the constructs, while Ghilardi [6] provides an implementation
in Common Lisp through the library STMX which combines
STM with HTM to increase performance.

3. CLOJURE STM
As Clojure’s use of the term retry overlaps with its existing

use in the literature [8], the following terms are used:

Abort the transaction stops and discards all changes.

Terminate the transaction aborts and execution continues
as if the transaction succeeded.

Restart the transaction aborts and starts execution of the
transaction from the start.

Retry the transaction restarts, but execution is blocked at
the start of the transaction.

3.1 Interface
The STM implementation in Clojure is based on Multi

Version Concurrency Control (MVCC). MVCC provides
each transaction with a snapshot of all mutable values from
when the transaction started executing. As each transaction
has a separate snapshot of the mutable values, a write by
one transaction does not require another transaction reading
the same value in parallel to restart. Use of MVCC does not
prevent a transaction from restarting in general as multiple
writes executed in parallel must be synchronised.
( dosync & exprs )

(ref x)
(ref x & options )

( deref ref)

( ref-set ref val)
( alter ref fun & args)
( commute ref fun & args)

( ensure ref)
(io! & body)

Listing 1: Interface for use of STM

The interface for the STM implementation in Clojure is
shown in Listing 1. A transaction is created by the function
dosync which takes forms as argument and executes them in
a transaction. For a transaction to synchronise reading and
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writing through MVCC a set of metadata must be attributed
to a mutable value. In Clojure this is represented by the
type Ref, that combines a mutable value with the necessary
metadata. A value stored in a Ref can be read using deref
and updated inside a transaction by one of three functions
ref-set, alter or commute depending on how it should be
updated. ref-set writes a new value to the Ref overwriting
the existing value. alter updates the existing value by
executing a function passed as the argument fun, the function
must have at least one parameter as the value of the Ref is
given as the first argument and the returned value is written
to the Ref. commute provides the same functionality as alter
but assumes that the update to the Ref is commutative, i.e.
can be performed by transactions in parallel.

Using MVCC, writing and reading of a Ref can be per-
formed in parallel. However if a computation depends on
multiple Refs being kept in a consistent state but only read
by the transaction, the function ensure can be used to ensure
that the Refs are not updated by another transaction until
the transaction calling ensure has ended. Last, in contrary
to Haskell, Clojure can not use types to represent functions
with effects. io! provides a means for annotating forms that
are incompatible with transactions, forcing an exception to
be thrown if the form is executed by a transaction.

( agent state & options )
(send a f & args)
( await & agents )

Listing 2: Interface for use of agents

As forms executed by a transaction cannot contain side-
effects, interoperability with another concurrency construct,
Agent, is provided. Agents are superficially similar to actors
as they encapsulate state and update this state in a sepa-
rate thread based on a sequence of instructions it receives.
However an actor implements its behaviour internally and
receives messages about which operation to perform, but
Agents receive functions which are then executed with the
Agent’s current state as input and the returned value of the
function written as the Agent’s new state.

Clojure’s interface for working with Agent can be seen in
Listing 2. agent creates a new Agent with an initial state.
send sends a function to an Agent, the function takes the
Agent’s current state as argument and its return value is set
as the Agent’s new state. A thread executing await with a
sequence of Agents as argument is blocked until all functions
received by the Agents are executed. Agent provides a limited
means for transactions to execute arbitrary side-effects as
calls to send are deferred until a transaction commits.

( add-watch reference key fn)
( remove-watch reference key)

( set-validator ! iref validator-fn )
( get-validator iref)

Listing 3: Interface for validators and watchers

As both Refs and Agents update internal state, Clojure
provides two event based mechanisms for executing code
when an update is performed, the interface can be seen in
Listing 3. A watch function, added by add-watch and re-
moved by remove-watch, is executed when a new value is
written to the Ref or Agent it is attached to, providing a
means for reacting to the new value. A validator function is

set by set-validator! and retrieved by get-validator,
one validator function can be set per Ref or Agent, so
set-validator! overwrites the existing function when a
new is set, nil is used for no validator. A validator function
is executed before a new value is written to a Ref or Agent,
and if it returns false the update is discarded.

3.2 Limitations
Clojure’s STM implementation lacks constructs to execute

side-effects such as system calls like printing to the screen.
(def counter-ref (ref 0))

( dosync
( println ( deref counter-ref ))
(if (< ( deref counter-ref ) 10)

( alter counter-ref inc)
( ref-set counter-ref 0)))

Listing 4: Print a mutable value inside a transaction
An example combining side-effects with STM can be seen
in Listing 4. The example prints the value of a Ref before
updating it. As updating the Ref restarts the transaction if
the operation conflicts with another transaction, there are
no guarantees for the number of times the value is printed.
Restructuring this example to either use an agent for printing
or returning the original value and then printing after the
transaction is possible. The example however shows why
combining side-effects and transactions is problematic. A
similar problem occurs if a function with side-effects must
be synchronised and its return value written to a Ref.
(def keys-ref (ref []))
(def rows-ref (ref vector-of-rows ))

( dosync
(let [row ( first ( deref rows-ref ))

next-key ( database-insert row )]
( alter keys-ref conj next-key )
( alter rows-ref rest )))

Listing 5: Inserting rows and returning keys
Listing 5 shows a transaction performing an operation on a
database synchronised using STM. The transaction starts
by inserting a row into a database and then appending a key
to an empty vector, before removing the inserted row from
the vector-of-rows. Having multiple threads executing the
transaction concurrently would not guarantee the correct
result, as a transaction could restart due to conflicts with
the other transactions. As a consequence a row might be
inserted into the database multiple times as the transaction
cannot ensure that the operation is only executed once.

Creating another transaction for updating keys-ref with
the keys would allow the operation to be performed, but
would not ensure that the two vectors are updated atomically.
Restructuring this example to use agents to perform the
side-effect would not be possible, as performing the database
operation inside an agent would not allow the transaction to
access the resulting key. Since agents execute asynchronously
it is necessary to wait for the agent to finish executing using
the function await before reading the resulting value. This
causes the thread to block until all functions sent to the agent
at that point have been executed, allowing other threads to
overwrite the result before it could be read.

The STM implementation in Clojure also lacks constructs
for transaction control [8]. Controlling when transactions
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abort, providing alternative paths of execution or synchro-
nising threads, and not just reads and writes, is not possible.

Clojure depends on its interoperability with Java to use the
monitors on Java Objects and the constructs from the pack-
age java.util.concurrent to synchronise threads. These
constructs nearly all depend on side-effects to operate, mak-
ing them incompatible with Clojure’s implementation of
STM and forcing the use of exceptions to make transactions
abort. Blocking a thread currently executing a transaction
does not relinquish ownership of Refs. This prevents other
transactions from using these Refs leading to starvation.
(try

( dosync
( throw TerminateException ))

( catch TerminateException te ))

Listing 6: Aborting a transaction
The simplest aspect of transaction control, aborting a trans-
action, must in Clojure be emulated using exceptions as
shown in Listing 6. A try/catch block around the dosync
block will catch the exception TerminateException. Code
inside the transaction can throw this exception which then
aborts the transaction. A unique exception is needed to
avoid aborting the transaction silently if an error occurs.

While the example shows that aborting a transaction is
possible in Clojure, such a simple operation should require
only one function call. Performing more advanced operations
such as blocking a thread would require use of a blocking
concurrency construct in addition to the exception, adding
additional complexity.

4. CLOJURE STM EXTENSIONS
Our first extension removes the requirement that forms

executed by a transaction must be without side-effects. The
second provides manual control over a transaction primarily
for synchronisation of threads. Adding these extensions the
problems shown in Section 3.2 can be solved without Java.

4.1 STM and Side-Effects
Synchronisation of forms with side-effects using STM can

be performed using one of the three methods, defer, irrevo-
cable or compensate, described in Section 2.

4.1.1 Event Management
These methods all depend on being executed at a specific

point in a transaction, and that the transaction then is
guaranteed not to be restarted when passed this point. To
provide this functionality it was necessary to extend Clojure’s
runtime with an event management system, as the event
management systems needed to interact with parts of the
STM implementation not accessible through its interface.
The event manager interface can be seen in Listing 7.
( listen event-key event-fn & event-args )
( listen-with-params event-key thread-local

delete-after-run event-fn & event-args )

( dismiss event-key event-fn dismiss-from )

( notify event-key )
( notify event-key context )

( context )

Listing 7: Interface for event management

An event listener can be registered by either listen or
listen-with-params with a Keyword as a key identifying the
listener, a function to serve as the listener function and any
arguments for that function. listen-with-params takes two
extra parameters, these indicate if the event should only be
registered for the thread calling the function or all threads,
and if the event listener should be dismissed after it has
been executed once. Both functions return an object used
to remove the event listener function through dismiss.

Registered listeners are executed when a notify function is
called with the same Keyword used to register the listener. An
overload of notify takes an extra argument named context.
The arguments, given through the context parameter of
notify, are made accessible through the function context
inside any listener executed due to the call to notify. This
allows a developer to provide data to an event listener both
from where the listener is created using arguments to the
event listener function, and from where the listeners were no-
tified through the context argument. All functions in Listing
7 apart from context will throw an IllegalStateException
if used inside a transaction to prevent them being executed
multiple times if a transaction restarts.

4.1.2 Transactional Events
Using the event management infrastructure three events

are added to Clojure’s STM implementation, after-commit,
on-abort and on-commit, as seen in Listing 8.

( after-commit & body)
( after-commit-fn event-fn & event-args )

( on-abort & body)
( on-abort-fn event-fn & event-args )

( on-commit & body)
( on-commit-fn event-fn & event-args )

( lock-refs func & body)

( java-ref x)
( java-ref x & options )

( alter-run input-ref func & args)
( commute-run input-ref func & args)

Listing 8: Interface for transactional events

Events enable use of side-effects by removing the problem
of not knowing if a transaction will restart. Two overloads
are created for each STM event. The first takes forms as
argument, making it simple to use when the computation
has no parameters. The second takes a function and a list of
parameters as arguments, hence adding the need to specify a
function if arguments are required. The events are executed
as follows:

• after-commit: after a transaction has committed, pro-
viding a synchronise alternative to agents.

• on-abort: if a transaction aborts, allowing the devel-
oper to compensate for executed side-effects.

• on-commit: after a transaction is guaranteed not to
conflict but before ownership of Refs is released, provid-
ing a fixed point for executing side-effects and writing
the result to Refs.
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Defer is provided through on-commit as it suspends exe-
cuting the form until the transaction is guaranteed not to
conflict. Irrevocable is provided by on-commit as a trans-
action, containing only a call to on-commit, is guaranteed
to commit after the event listener function is registered.
Compensate is provided through on-abort allowing code to
undo side-effects. after-commit provides a simpler method
compared to Agent for executing side-effects synchronously.

To ensure side-effects are only executed once, the imple-
mentation guarantees that the transaction cannot restart
when executing an event listener. In after-commit no abort
is possible due to these events being executed after a transac-
tion has committed. As side-effects are enabled by on-abort
by compensating for updates to Refs, additional updates to
these will never make a transaction abort. Restarts due to
other Refs being updated will force an STMEventException
to be thrown. For on-commit events any Refs written to by
the event listener must be locked manually using lock-refs.
As only the Refs either read from or written to by the event
listener function are locked, multiple events can be executed
in parallel if their sets of Refs do not overlap.

lock-refs uses the existing locking mechanisms in Clo-
jures’s STM implementation. lock-refs takes as argu-
ment either the function ensure if only reading is necessary,
commute if shared writes until the event listener function
starts executing are necessary, or alter if exclusive writes
from when lock-refs are executed are necessary. The other
argument can be any sequence of symbols and is intended
to be the source code of an event listener function which
lock-refs will search through recursively for Refs and lock
them according to the first argument passed to lock-refs.
lock-refs is implemented to operate like the identity func-
tion, allowing it to parse the source code of an event listener
function without the developer having to define it twice. As
the source code of compiled functions is not accessible pro-
grammatically, any Refs written to by compiled functions
executed as part of the on-commit event listener must be
added explicitly by the developer. If the Refs written to by
on-commit are not locked using lock-ref and the transaction
is forced to restart, an STMEventException is thrown.

java-ref constructs a JavaRef type, a Ref optimised for
use with references to mutable Java objects. Two changes
are made compared to Ref. The deref function when used
inside a transaction sets the value of the JavaRef to nil to
discourage aliasing, making it less trivial to copy a reference
to multiple JavaRefs. Secondly, to support MVCC each Ref
stores a history of values. For references only a shallow copy
is performed, making the stored history a copy of the same
reference. As MVCC allows for each transaction to read any
value written before that transaction started, a reference to
an object can be retrieved despite the object being changed
after the transaction started. To prevent this, history is
disabled for JavaRefs. Deep copying could be performed but
would be computationally expensive for data structures not
designed with multiple versions in mind.

alter-run and commute-run perform the same operations
as alter and commute but do not set the Ref to the return
value. This allows method calls on objects stored in Refs
when the object does not return itself as the result, a common
occurrence in Java’s standard library.

4.2 Transaction Control
The interface for transaction control can be seen in Listing

9, and is based on Harris et. al. [8] with some additions.
The additions were added to alleviate problems identified
when developing programs in Haskell. retry can only block a
thread in a transaction until any Ref read by the transaction
is updated, not all Refs. Also, in general a call to retry will
be based on an invariant, as the transaction would never
complete otherwise. As any update to a Ref will unblock
a transaction the invariant might still be true, making the
transaction continuously unblock and block. In addition
retry provides no mechanisms for explicitly defining a subset
of Refs to block on. orElse only allows for developers to
define alternative code to execute when a transaction is
explicitly forced to retry but not due to conflicts [8, 7].
( retry [])
( retry [refs ])
( retry [refs func & args ])

( retry-all [])
( retry-all [refs ])
( retry-all [refs func & args ])

( or-else & funcs )
( or-else-all & funcs )

( terminate )

Listing 9: Interface for transaction control

retry and retry-all both block until a set of Refs is
written to by another transaction, retry blocks until any of
the Refs blocked on are written to, while retry-all blocks
until all Refs in the set are updated. When no arguments
are given, the functions will block based on the Refs read
in the transaction. When one argument is given it must
be a Ref or a sequence of Refs and the function will block
on the specified Refs, allowing the developer to specify an
explicit set of Refs instead of relying on what has been read.
The last overload takes both Refs, a function returning a
boolean and arguments for that function. The function is
executed when either one or all of the Refs are written to,
depending on whether retry or retry-all is used. If the
function returns true the transaction is unblocked. This
allows the transaction to be blocked until an invariance is
true, and as the function must be provided to retry, all
symbols used to determine if the transaction should block
are also available for use as arguments to the function.

or-else and or-else-all allow for a transaction to exe-
cute alternative functions if one fails. Both take as argument
a list of functions and try to execute them in the given order
until one of them executes without forcing the transaction
to abort, if none of the functions given as arguments could
be executed successfully the transaction will abort. The
function or-else follows the semantics of Haskell’s orElse
construct [8, 7], or-else only executes the next function if
the first function was forcefully stopped by the execution of
retry or retry-all. If the transaction is forced to restart
due to conflicts with another transaction the entire transac-
tion will restart. or-else-all will execute the next function
if the current one fails either due to a conflict with another
transaction or due to the execution of retry or retry-all.
This allows or-else-all to use another resource if one is
used by another transaction without the developer making
additional checks, while or-else provides developers with
control over when another function should be executed.

terminate terminates a transaction, meaning that it will
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abort and continue execution of the next form after the
dosync that defined the transaction. One use of this function
is to combine terminate with or-else or or-else-all to
skip a transaction if a resource is unavailable. or-else or
or-else-all can be used to select the first available resource
and then have terminate be the last function to ensure the
transaction terminate if no resources are available.

5. PRELIMINARY EVALUATION
As preliminary evaluation of our extensions we detail how

they maintain the ACI properties of Clojure’s STM imple-
mentation. We also present the findings of a usability eval-
uation using a small sample size, in addition to the initial
performance results. Both are presented to demonstrate
to what degree eClojure makes development of concurrent
programs simpler and what overhead is added [16].

The transaction control methods replace traditional struc-
tures such as Semaphores, constructs which exist in Clojure
through its Java interop, so the usability evaluation will focus
on development of programs with a high degree of thread
synchronisation to compare these two thread synchronisation
methods. The extension for executing forms with side-effects
in a transaction has no equivalent constructs in Clojure, and
is not part of our usability evaluation.

As changes were only made to the STM implementation
and the interface between Clojure’s Java runtime and stan-
dard library written in Clojure, eClojure demonstrates that
the extension can be implemented with changes only to a
small part of Clojure’s runtime. The focus of the implemen-
tation has been to keep it simple so we could reason about
its behaviour, hence optimisation has not been a priority.

5.1 Clojure STM Properties
The ACI properties guarantee that a transaction is pro-

cessed reliably, and that updates to mutable data are syn-
chronised correctly. Due to the capability of executing forms
with side-effects in transactions, eClojure does not fully fulfil
these properties. As the transaction control constructs are
without any changes to how a transaction synchronises reads
and writes of data, these constructs do not affect the ACI
properties. The same holds for after-commit as any form
executed by after-commit is run after a transaction has
committed. In this section we will detail the compromises
we had to make in our implementation. Clojure defines the
ACI properties as follows [1]:

Atomic means that every change to Refs made within a
transaction occurs or none do.

Consistent means that each new value can be checked with
a validator function before allowing the transaction to
commit.

Isolation means that no transaction sees the effects of any
other transaction while it is running.

The atomicity property is enhanced to include mutable
values and side-effects. To ensure this property is fulfilled the
constructs must be used correctly. For on-commit lock-refs
must be used to indicate what Refs will be updated so the
transaction is guaranteed not to restart. Having to manually
add lock-refs was a compromise made to only lock the set
of Refs a transaction with side-effects will use so multiple
transactions with side-effects can run in parallel, and not

automatically parse the forms executed by all on-commit
functions for Refs. For on-abort it is the developers respon-
sibility to remove all side-effects executed by the transaction
until it was aborted.

eClojure required no changes to Clojure’s validator func-
tionality. Each validator is executed the same for both Refs
and JavaRefs ensuring consistency. An exception from this
property must be made for the on-commit functions as they
are executed after the validators to ensure that the transac-
tions do not restart after forms with side-effects are executed.
Use of on-abort allows the property to be fulfilled as com-
pensation code is executed if the transaction aborts and
validators execute right before the transaction commits.

Isolation guarantees are unchanged for immutable values
stored in Refs and JavaRefs as is the norm in Clojure. Due
to its use of MVCC and Java objects being represented as
references, isolation can only be guaranteed for mutable
data stored as references if the data is accessed through a
single JavaRef only. If an object reference is aliased and
stored in multiple JavaRefs, a transaction will operate on
these as if they were different values. This breaks isolation as
writes synchronised through one JavaRef can be read through
another JavaRef. The problem is that Refs store a history
of values to support MVCC. However for a Java object the
reference is stored in a Ref, not the object itself. This leads
to multiple references to the same object being stored in the
same Ref. As a transaction can read an older value from a
Ref despite another transaction updating the Ref, multiple
transactions can have an unsynchronised reference to the
same mutable object which breaks consistency. To remedy
this JavaRef was developed. JavaRef only stores one version
of the reference, so a transaction must restart if it reads data
from an object that was changed after the transaction started
executing. An alternative would be to perform a deep copy
of the object each time an object is updated. By using a
JavaRef to hold a reference to mutable data, isolation can
be guaranteed between transactions if the reference is not
aliased. Side-effects outside the program, such as updates
to a database, can be observed by the database. However if
the database connection object is stored in a JavaRef, access
will be synchronised between transactions.

5.2 Usability
The usability evaluation was conducted to determine if

eClojure simplifies development of concurrent programs com-
pared to Clojure. The evaluation consists of two implemen-
tations of the Santa Claus Problem [18]. It is a substitute
for a real world program because, while small, it nearly ex-
clusively consists of synchronisation of threads, and larger
programs often only contain a very small percentage of code
performing synchronisation [16]. The two implementations
will be compared based on the following metrics:

• Lines of code (LOC) How many LOC the implemen-
tation consists of, ignoring empty lines and comments.

• Development time How much time was spent on
that implementation of the Santa Claus Problem.

LOC will be used as a measure as it makes the resulting
code comparable to other studies [14, 13, 16]. Though LOC
in itself is not that informative, it gives an indication of how
much code is needed to use the constructs of the language.
A short program on its own is not guaranteed to have been
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simple to write, therefore development time is included as
it shows how efficiently the developer can create solutions
with the constructs available [16]. Based on experience with
Haskell, we anticipate that eClojure will improve on Clojure.
A short subjective discussion of the two implementations
will provide additional context regarding the usability of
the added language constructs [13]. Both programs were
developed by the same developer who had experience with
similar transaction control constructs from Haskell and con-
current programming with traditional concurrency control
structures from Java. The eClojure version was developed
first to ensure that all knowledge gained from developing the
first version, would be counted against eClojure for a fair
comparison.

The implementation in eClojure consisted of 22.22 % fewer
LOC and took half the time to implement compared to
the version in Clojure. The reduced number of LOC is the
result of adding the retry constructs in eClojure, instead of
throwing exceptions and synchronising using a Semaphore
and a CyclicBarrier. The overall structure of the two
versions turned out to be very similar, and the time used
for each was initially similar. However more time was spent
ensuring that the Clojure implementation did not cause a
deadlock. This is due to synchronisation with a Semaphore
and a CyclicBarrier being more complicated then using
our extensions.

5.3 Performance Overhead
A benchmark was performed to determine if the additions

in eClojure added a performance overhead compared to Clo-
jure. We are aware that some benchmark suites for STM
implementations exist, but as documented by Massimiliano
Ghilardi [6] they either consist of a set of micro benchmarks
or larger programs where only a small part of the program
performs synchronisation, making the difference in perfor-
mance of the STM implementation negligible compared to
the overall execution time of the program.

As our evaluation focuses on the overhead added to an ex-
isting STM implementation, we use three micro benchmarks
which only execute code that was changed between the two
versions of the implementation. This approach was chosen
to ensure that as few factors as possible could influence the
experiments, and that any added overhead was not hidden
by a long running program. The three benchmarks were:

Empty A dosync function without any arguments.

Deref A dosync function executing a deref function.

Database The database example shown in Section 3.2 with
database-insert returning a random number as key.

An empty transaction will show the overhead the exten-
sions have added to dosync, deref will show if the instru-
mentation needed for retry adds overhead, and the database
example will indicate if any added overhead is still measur-
able in a real transaction. The experiments were executed
on a MacBook Pro with a 2.8 GHz Intel Core i7 and 16GB
DDR3-1600 MHZ ram running Mac OS X 10.11.3 and the
Oracle JDK 8 Update 71. Criterium 0.4.3 was used to en-
sure that the Java virtual machine was initialised, garbage
collection was taken into account and enough samples were
collected to eliminate outliers. A graph of the results was
created using matplotlib [9], and can be seen in Figure 1.
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Figure 1: Execution time for each benchmark and
the percentage overhead added by eClojure.

The results show that the additions in eClojure have in-
creased the execution time of a transaction. However, there
is a tendency that when operations are performed in a trans-
action the overhead decreases, indicating that the overhead
is constant and could become insignificant when executing
larger transactions. We hypothesise that the overhead could
be reduced even further if the implementation is optimised
based on the need of real world applications with uses of
STM beyond what is needed for the micro benchmarks.

6. CONCLUSION
In this paper we demonstrate how the expressiveness of

the STM implementation in Clojure is limited by the lack
of methods for synchronising functions with side-effects and
constructs for manually controlling how a transaction must be
executed. We discuss alternative solutions for the presented
limitations and the alternative concurrency constructs a
developer is forced to use both in terms of Clojure and Java.
To demonstrate that these limitations are unnecessary given
the existing STM implementation, we present two sets of
extensions that remove these limitations and provide the
complete source code in addition to unit tests.

The first set implements methods for synchronising forms
with side-effects through STM, while allowing transactions
to be executed in parallel given no overlap in their write sets.
Constructs are added for synchronising access to Java objects,
allowing STM to be used for both synchronising access to
mutable data structures and for execution of external effects
by multiple transactions in parallel.

The second set of extensions provides control over a trans-
action. A transaction in eClojure can block threads until
a write to Ref is performed. If the program must be in a
specific state for the thread to unblock, it can be checked
using a function returning a boolean. Constructs were im-
plemented that allow a transaction to select a different path
of execution if the transaction is forced to restart due to a
conflict with another transaction, or manually made to retry
by the developer. Through these methods the STM imple-
mentation in eClojure can be used for synchronising threads
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based on state, and developers can prevent transactions from
restarting by defining an alternative path of execution in
case of conflicts.

We evaluate eClojure based on its compliance with the
ACI properties of Clojure’s STM implementation. In ad-
dition we demonstrate through a preliminary performance
benchmark and a usability evaluation with a small sample
size that the added constructs simplify concurrent program-
ming by reducing the need for complementing STM with
other concurrency constructs. eClojure adds only a constant
performance overhead to the implementation when executing
transactions, as the relative overhead is decreased by the
execution of increasingly larger transactions.

7. FUTURE WORK
The event handling system of eClojure introduced the use

of contexts in event handling functions. This functionality
is used to indicate which Refs can be changed during the
on-commit event. We see the possibility of adding more
detailed control over the transaction [3], by creating an API
for interacting with the transaction itself and providing it as
an object through the context function to both on-commit
and on-abort. Providing on-abort with information about
what side-effects were performed would make on-abort able
to only compensate for side-effects already executed, instead
of forcing the developer to define an on-abort event listener
function for each side-effect executed.

The need for manually indicating what Refs an on-commit
event will modify, using the function lock-refs, adds com-
plexity both due to the extra code and overhead as lock-refs
is forced to check if each symbol is a Ref to the implemen-
tation. Removing the need for lock-refs and extending
Ref to provide the functionality of JavaRef based on the
type of its input, would simplify the use of side-effects in
transactions as Refs would be locked automatically.

Additional evaluation of performance and usability for
eClojure should be performed based on a larger set of con-
current programs and additional developers to determine
how the implementations can be better optimised, both in
terms of performance and usability. An interesting area for
performance evaluation is parallel versions of data structures
that use a reorganisation step such as hash tables [20].
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ABSTRACT
CANDO is a compiled programming language designed for
rapid prototyping and design of macromolecules and nano-
meter-scale materials. CANDO provides functionality to
write programs that assemble atoms and residues into new
molecules and construct three-dimensional coordinates for
them. CANDO also provides functionality for searching
molecules for substructures, automatically assigning atom
types, identifying rings, carrying out conformational search-
ing, and automatically determining stereochemistry, among
other things. CANDO extends the Clasp implementation
of the dynamic language Common Lisp. CANDO provides
classes for representing atoms, residues, molecules and ag-
gregates (collections of molecules) as primitive objects that
are implemented in C++ and subject to automatic memory
management, like every other object within the language.
CANDO inherits all of the capabilities of Clasp, including
the easy incorporation of C++ libraries using a C++ tem-
plate programming library. This automatically builds wrap-
per code to expose the C++ functionality to the CANDO
Common Lisp environment and the use of the LLVM li-
brary[1] to generate fast native code. A version of CANDO
can be built that incorporates the Open Message Passing
Interface C++ library[2], which allows CANDO to be run
on supercomputers, in order to automatically setup, start,
and analyze molecular mechanics simulations on large par-
allel computers. CANDO is currently available under the
LGPL 2.0 license.

Categories and Subject Descriptors
D.2.12 [Software and its engineering]: Interoperability;
D.3.4 [Software and Programming Languages]: Incre-
mental compilers

Keywords
Computational chemistry, Common Lisp, LLVM, C++, in-
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teroperation

1. INTRODUCTION
Using computers to design molecules and materials pre-

sents many challenges. There are almost no software tools
that allow a chemist to write efficient programs that auto-
matically construct molecules according to a design and op-
timize those designs based on their ability to organize func-
tional groups in desired three-dimensional constellations. Soft-
ware like this would greatly facilitate the creation of designer
macromolecules and materials.

My laboratory is a synthetic organic chemistry group that
has developed a unique approach to synthesizing large mol-
ecules with well defined three-dimensional structures[3]. These
molecules can be designed to act as new therapies, to create
new catalysts, and to create channels that purify water and
separate small molecules from each other. These molecules
are assembled like peptides, DNA and carbohydrates, us-
ing a common set of interchangeable building blocks linked
through common linkage chemistry. By assembling them
in different sequences an enormous number of different well
defined, three-dimensional structures are created, some of
which could have extremely valuable properties. The chal-
lenge is to find those active molecules and with the right
software, together with large, parallel, modern supercom-
puters we may be able to find them.

We synthesize stereochemically pure bis-amino acids that
we connect together through pairs of amide bonds. These
create large molecules with programmable three-dimensional
shapes and functional groups called “spiroligomers”. In the
last several years, we have demonstrated that we can de-
sign small spiroligomers that bind a protein[4], and we have
demonstrated three spiroligomer based catalysts that accel-
erate chemical reactions[5, 6, 7]. Recently we have demon-
strated that we can connect multiple spiroligomers together
to create macromolecules that present large surfaces with
complex constellations of functional groups[8]. These mol-
ecules can now be synthesized to a size where it is impossible
to design them using existing tools and so I have developed
CANDO, a molecular programming environment that will
enable the design of large, functional spiroligomers as well
as any other foldamers[9] such as peptides, peptiods, beta-
peptides and any other large molecules assembled from mod-
ular building blocks.

CANDO is a compiled, dynamic programming language
that implements objects essential to molecular design includ-
ing atoms, residues, molecules and aggregates as memory-
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efficient C++ classes. CANDO manages these objects using
modern memory management (garbage collection), freeing
the programmer from having to deal with memory manage-
ment for exploratory code. CANDO is written in C++ and
makes it easy to integrate existing C++, C, and Fortran li-
braries that efficiently carry out molecular simulations and
tightly integrate them with high-level code that sets up cal-
culations and carries out analyses of results. The idea is
to do everything within CANDO: build new molecules, as-
sign force-field atom types and atomic charges, run molec-
ular dynamics simulations, and analyze the results of the
simulations, all within a single compute node, without hav-
ing to leave the CANDO programming environment. This
is done using external C++ libraries like OpenMM from
within CANDO, using the exposed C++ application pro-
gramming interface (API) provided by the library. CANDO
is designed to be for chemistry what Mathematica is for
symbolic mathematics or R is for statistial analysis - a gen-
eral purpose programming language, tailored for the specific
problem domain of computational chemistry and molecular
and nanomaterials design. CANDO is an implementation of
the Common Lisp dynamic programming language, a com-
piled, industrial strength language with a well-defined stan-
dard that includes incremental typing and can interactively
compile code in a way that is both highly interactive and
dynamic while generating fast native code.

2. RELATED WORK
CANDO is not the only programming language that specif-

ically targets chemistry. The Scientific Vector Language
(SVL) is embedded within the Molecular Operating Envi-
ronment (MOE) software package developed by the Chem-
ical Computing Group Inc[10]. SVL contains primitive ob-
jects for atoms, residues, molecules and systems of molecules.
SVL is touted as being both a compiled and interpreted lan-
guage. MOE is a commercial product and the source code
to the SVL compiler is not open source[11]. SVL uses a syn-
tax that could be termed “C-like”. More generally, Scientific
Python (SciPy)[12], and scientific programming languages
like Julia could be used to implement chemistry objects,
but they do not implement the classes required to represent
molecular systems[13]. There are significant differences be-
tween CANDO and SVL. CANDO builds on and extends the
existing language Clasp Common Lisp, therefore CANDO
is able to use the large library of existing software that
has been developed in Common Lisp[14]. CANDO is open
source, and is freely available to the scientific community
under the LGPL 2.1 license. This is to facilitate its use in
research and allow it to be adapted to run on large academic
parallel supercomputers without paying a per-processor fee.
SVL and MOE are closed source and commercial products
and licensing must be negotiated with the Chemical Com-
puting Group.

In the realm of molecular design, CANDO is related to the
software package Rosetta[15]. Rosetta is a suite of command
line applications and bindings for languages like Python,
that carry out different operations such as protein folding
prediction and protein/protein interface design. Rosetta is
highly tuned to work with natural proteins and uses the
Brookhaven Protein Database to construct rotamer libraries
that describe the preferred conformations of amino acids.
This structural information is not available for unnatural
building blocks like spiroligomers and other foldamers and
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Figure 1: A bond line drawing of a molecule that can form
an internal hydrogen bond between the base and alcohol if it
has the correct stereochemistry at C1, C2, C3 and C4. The
annotations in red add properties to the atom’s property
list.

non-proteogenic building blocks require a great deal of work
to incorporate into Rosetta. CANDO provides tools for car-
rying out conformational analysis on molecules constructed
from unnatural building blocks and enables the construction
of conformational databases for building blocks. CANDO
is more general than Rosetta with respect to the chem-
istry that it can deal with and while it was designed with
spiroligomers in mind, it supports molecular design with any
molecular building blocks.

3. BUILDING MOLECULAR STRUCTURES
One of the ways that chemists communicate with each

other is using “bond line formalism”, a graphical notation
that describes the chemical structure of molecules. A mol-
ecule is represented with a structure like Figure 1. Struc-
tures like this can be drawn using commercial packages such
as ChemDraw[16] and ChemDoodle[17]. These programs
are able to save these structures in an XML-based format
called cdxml. CANDO can read cdxml files directly and
construct the molecular graph of the molecule with atom
names, atom elements, bond orders, connectivity and other
annotations attached. CANDO interprets some of the bond
types as codes to annotate atom, residue, and molecule prop-
erties with Common Lisp symbols and value pairs so that
programs can easily identify features within the molecules.
The red keyword symbols and arrows in Figure 1 are exam-
ples of this. The red arrows indicate that the property/value
pairs (:group :base) and (:group :alcohol) are attached to the
pyridine nitrogen and benzyl alcohol oxygen respectively.

The code to read a cdxml file into CANDO is shown in
listing 1. In bond line formalism (and thus cdxml), hydrogen
atoms are not drawn on carbon atoms because their num-
ber can be inferred from the structure. Carbon atoms are
represented by vertices and ends of lines and other atoms
are labeled with their element name or a name that starts
with the element name (eg: C1). CANDO automatically
identifies the number of implicit hydrogens and adds them
to the molecules graph. The resulting structure obtained
by loading the cdxml file is put in the dynamic variable
*agg*, which is an instance of the CHEM:AGGREGATE
class containing one instance of the CHEM:MOLECULE
class, which contains four instances of the CHEM:RESIDUE
class. Each residue contains a collection of CHEM:ATOM
instances that contain lists of pointers to CHEM:BOND
objects. The CHEM:BOND objects create a bidirectional
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graph by pointing to pairs of CHEM:ATOM objects. A
CHEM:RESIDUE object contains multiple atoms that are
bonded to each other and form a common unit of molecular
structure like an amino acid, DNA nucleotide, or monosac-
charide. A collection of CHEM:RESIDUE objects can be
bonded to each other to form a CHEM:MOLECULE ob-
ject. A collection of CHEM:MOLECULEs can be grouped
together into a CHEM:AGGREGATE instance, used to de-
scribe a collection of molecules that interact with each other.

(defparameter *cd*
(with-open-file

(fin #P"base-alcohol.cdxml"
:direction :input)

(chem:make-chem-draw fin)))
(defparameter *agg* (chem:as-aggregate *cd*))

Listing 1: Load cdxml file

Carbon atoms that have sp3 hybridization are bonded
to four other atoms that roughly point to the corners of
a tetrahedron with the sp3 carbon atom at its center. If the
four bonded groups are all unique then there are two pos-
sible three-dimensional arrangements of those four groups,
termed the “stereochemical configuration” of the central car-
bon. CANDO can automatically identify the carbons that
can have such stereochemical configurations, and allows the
programmer to define their configurations using the keyword
symbols :S or :R. In the structure above, the four stereocen-
ters were labeled C1, C2, C3, and C4 and in Listing 2 the
four stereocenters are all set to the :S configuration. The as-
signment of stereochemical configuration sets a field in the
carbon’s CHEM:ATOM instance which will be used later
to add a stereochemical configuration restraint when three-
dimensional coordinates of the molecule are constructed.

(defparameter *stereocenters*
(sort (cando:gather-stereocenters *agg*)

#’string < :key #’chem:get-name ))
(cando:set-stereoisomer-func

*stereocenters*
(constantly :S) :show t)

Listing 2: Set stereocenter configurations

CANDO can load files of various formats that describe
the three-dimensional structure of molecules (PDB, MOL2).
However, CANDO’s purpose is to build three-dimensional
structures from a simple graph description of the molecule
with no prior knowledge of the three-dimensional structure.
To do this CANDO uses a very robust approach to build-
ing chemically reasonable three-dimensional structures for
molecules from first principles. Quantum mechanics and the
Schroedinger equation can be used to build chemically rea-
sonable three-dimensional structures of molecules, however
the calculations for even simple molecules are extremely time
consuming. A less expensive approximation is to use“molec-
ular mechanics,” which approximates bonds as mechanical
springs and describes molecules using a “molecular force-
field function” that contains many empirically-determined
parameters including ideal bond lengths, angles, torsion an-
gles, and through-space interactions describing the electro-
static and van Der Waals interactions between non-bonded
atoms. CANDO has built in the popular AMBER force-
field,[18] which has the form (1). CANDO adds several ad-
ditional terms to the force-field equation that restrain atoms
in different ways. For instance, the stereochemical configu-
ration defined above is maintained with a special stereo-

chemical configuration restraint term that penalizes molec-
ular structures where the four groups attached to the stere-
ochemical carbon are in the wrong tetrahedral arrangement.

(1)
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∑
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∑
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To build the three-dimensional structure of a molecule
from first principles, the programmer first instructs CANDO
to assign random coordinates to every atom within a 20x20x20
Angstrom box using the (cando:jostle *agg* 20) com-
mand (Figure 2). Then CANDO is instructed to mini-
mize the force-field energy using non-linear optimization.
CANDO implements three non-linear optimizers in C++
(a steepest descent, a conjugate gradient, and a truncated
Newton-Raphson[21] optimizer), switching between them as
the optimization proceeds. Prior to carrying out the non-
linear optimization, CANDO assigns force-field atom types
using substructure pattern recognition and assigns force-
field parameters. Currently CANDO assigns all atomic char-
ges to zero for model building. In the future, atomic-charge
approximation algorithms will be implemented in CANDO
Common Lisp. The non-linear-optimization is then initated
using the (my-minimize *agg* *ff*) function (Listing 3).

(cando:jostle *agg* 20)
(defparameter *ff* (energy:setup-amber ))
(my-minimize *agg* *ff*)
(cando:chimera *agg*)

Listing 3: Energy minimization

The energy minimization function first minimizes the en-
ergy with non-bonded interactions turned off, and then with
non-bonded interactions turned on. This is to allow atoms
and bonds to initially pass through each other so that rings
do not get tangled up with each other. The resulting struc-
ture is generated in a few seconds and shown in Figure 3.
The structure can then be displayed using the molecular vi-
sualization program Chimera[20] by calling the (cando:chimera
*agg*) function, which writes the structure to a temporary
file and calls the Unix system function to open it (Figure 3).

(defun my-minimize (agg force-field)
"Minimize the conformational energy"
(let* (( energy-func

(chem:make-energy-function
agg force-field ))

(minimizer
(chem:make-minimizer
:energy-function energy-func )))

(cando:configure-minimizer
minimizer
:max-steepest-descent-steps 1000
:max-conjugate-gradient-steps 5000
:max-truncated-newton-steps 0)

(chem:enable-print-intermediate-results
minimizer)

(chem:set-option energy-func
’chem:nonbond-term nil)

(cando:minimize-no-fail minimizer)
(chem:set-option energy-func

’chem:nonbond-term t)
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Figure 2: A molecule with random coordinates.

Figure 3: A molecule after energy minimization.

(cando:minimize-no-fail minimizer )))

Listing 4: Definition of my-minimizer function

CANDO is capable of many other manipulations to pre-
pare structures for calculations such as molecular dynamics
simulations. For example, Figure 4 shows a model of a po-
tential membrane channel that was designed using CANDO.

(defparameter *channel*
(cando:load-mol2 "trichannel.mol2"))

(cando:chimera *channel *)
(defparameter *membrane* (load-membrane ))
(cando:chimera *membrane *)

Listing 5: Loading a channel from a mol2 file and a model
membrane

This molecule is designed to create a pore in a cell mem-
brane. To prepare it for a simulation, it needs to be embed-
ded within a model of a fragment of cell membrane in water.
To do this, the channel needs to be superimposed onto the
membrane and the lipid and water molecules that overlap

Figure 4: A potential membrane channel designed using
CANDO.

Figure 5: A model of a small segment of cell membrane.

with the channel atoms need to be removed. A problem is
that lipid molecules are long and almost always overlap the
channel while water molecules are small and so different cri-
teria for overlap are needed for the two types of molecules.
If the same distance criterion was used for each, then there
would be large gaps where too many lipids were removed
or there would be lots of close contacts between many water
molecules and the channel where not enough water molecules
were removed. This is a problem that is easily solved by
writing a bit of code. The function load-membrane (List-
ing 6), loads the membrane and then uses the chem:map-

molecules function to count the number of atoms in each
molecule of the membrane and assign the symbol :solvent
or :lipid to each molecule based on the number of atoms
it contains.

(defun load-membrane ()
"Load the membrane from the psf/pdb files

and name each of the molecules
within it based on whether they
are solvent (<= 3 atoms) or lipid."

(let (( agg-membrane
(cando:load-psf-pdb "POPC36.psf"

"POPC36.pdb")))
(chem:map-molecules
nil
(lambda (m)

(if (<= (chem:number-of-atoms m) 3)
(chem:set-name m :solvent)
(chem:set-name m :lipid )))

agg-membrane)
agg-membrane ))

Listing 6: Load a membrane from a pair of psf/pdb files
and assign each molecule in the membrane to be :solvent or
:lipid.

Removing the various molecules from the membrane model
that overlap with the channel is carried out using the func-
tion cando:remove-overlaps. This function accepts two
AGGREGATE objects and a Common Lisp function ob-
ject that returns the minimim overlap distance depending
on the type of molecule that is overlapping with an atom
in the channel (Listing 7). The ability to pass functions
and closures to other functions is a very useful feature of
the Common Lisp language that CANDO makes extensive
use of. The cando:remove-overlaps function is written in
CANDO Common Lisp and it carries out a very common but
time-consuming operation in programming for chemistry. It
needs to compare every atom in the first aggregate to every
atom in the second aggregate, an expensive NxM calcula-
tion that would normally be implemented in C++. Since
CANDO Common Lisp is compiled, the algorithm can be
implemented in Common Lisp and the calculation is fast.
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Figure 6: The top view of the cell membrane after overlaps
with the channel are removed. Water molecules have been
hidden for clarity.

Figure 7: The side view of the channel embedded within the
cell membrane. The channel is rendered using spheres for
atoms and waters as dots for clarity.

After the molecules are removed from the membrane model,
a new aggregate, *merged*, is created. The molecules from
the membrane and the molecule of the channel are added to
it and the result is saved to a mol2 file (Listing 8).

(defun overlap-func (molecule)
"Small waters (: solvent) overlap

if within 3A of a channel atom while
:lipid overlaps if within 0.6A"

(if (eq (chem:get-name molecule) :solvent)
3.0
0.6))

(cando:remove-overlaps
*membrane*
*channel*
:distance-function #’overlap-func)

(cando:chimera *membrane *)

Listing 7: Removing membrane molecules that overlap with
the channel.

(let ((agg (chem:make-aggregate )))
(chem:map-molecules
nil
(lambda (m) (chem:add-molecule agg m))
*membrane *)

(chem:map-molecules
nil
(lambda (c) (chem:add-molecule agg c))
*channel *)

(defparameter *merged* agg))
(cando:save-mol2 *merged* "merged.mol2")
(cando:chimera *merged *)

Listing 8: Create a new aggregate and add the membrane
and channel molecules to it.

At this point the structure in *merged* in the file merged.mol2
can be used to construct the input files for a molecular dy-
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Figure 8: A cyclic peptide with one secondary amide bond
highlighted in yellow.

namics simulation using AMBER[19]. Molecular dynamics
simulates the motions of molecules and is used by chem-
istry researchers to understand many molecular phenom-
ena. CANDO does not currently generate the input files
for a molecular dynamics simulation directly but relies on
an external program called LEaP (written by this author),
which is the primary tool used by computational chemists
to set up their calculations for AMBER[19]. Future plans
are to write the code to generate AMBER input files in
CANDO Common Lisp and to incorporate molecular dy-
namics packages directly into CANDO and communicate
with them through an application programming interface
(API) using CANDO’s built-in abilities to interface with ex-
ternal libraries.

4. CHEMICAL PATTERN RECOGNITION
CANDO incorporates a modified version of SMARTS,[22]

which is a language that allows a programmer to specify a
chemical substructure and then search for that substructure
within the graph of a molecule. SMARTS searches chemi-
cal structures for substructures in the same way that reg-
ular expressions are used to search text. With SMARTS,
a string such as "CCCC" will match a continuous chain of
carbon atoms connected by single bonds. The SMARTS
code: "$(N1(C2)(~[#1]3)~C4(=O5)C6)" will match a sec-
ondary amide bond and also bind the six atoms that form
the amide bond to numerical keys so that the atoms can be
recovered from the match. This capability has myriad uses
and is the basis of the automatic atom-type assignment re-
quired for structure building. In the example below, a cyclic
peptide is searched using a substructure matcher that rec-
ognizes secondary amide bonds (Listing 9). All five of the
amide bonds are found and the nitrogen atoms of the amides
are displayed (Listing 10).

(defparameter *cyclorgd*
(load-cdxml #P"cyclorgd.cdxml"))

(defparameter *smarts*
(make-cxx-object ’chem:chem-info ))

(chem:compile-smarts
*smarts*
"$(N1(C2 )(~[#1]3)~ C4(=O5)C6)")

(chem:map-atoms
nil
(lambda (a)

(let ((match (chem:matches *smarts* a)))
(when match

(format t "Amide nitrogen: ~a~%" a))))
*cyclorgd *)

Listing 9: Find all secondary amide bonds within a cyclic
peptide.
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Amide nitrogen: #<ATOM :N/: N@0x118032610 >
Amide nitrogen: #<ATOM :N/: N@0x118032190 >
Amide nitrogen: #<ATOM :N/: N@0x118032c10 >
Amide nitrogen: #<ATOM :N/: N@0x117991d90 >
Amide nitrogen: #<ATOM :N/: N@0x117991790 >

Listing 10: Found five amide bonds within the cyclic pep-
tide.

5. MOLECULAR MECHANICS
ENERGY FUNCTIONS

CANDO uses a very flexible approach to implementing
non-linear optimization for structure building with molec-
ular mechanics. CANDO allows the programmer to define
new energy function terms by providing the functional form
of the energy term and then automatically generates opti-
mized computer code to evaluate the function and its an-
alytical first and second derivatives. CANDO uses auto-
matic symbolic differentiation and a compiler that optimizes
the resulting symbolic expressions to remove common sub-
expressions and minimize the number of expensive reciprocal
and square-root operations. The energy terms, the analyti-
cal gradient terms, and the analytical Hessian terms of the
AMBER force field and the additional restraint terms are
all implemented within CANDO in this way. Currently this
facility is implemented in Mathematica code[23] and it gen-
erates efficient C code. The Mathematica and resulting C
code is included in the CANDO source code. In the fu-
ture this facility will be implemented in CANDO Common
Lisp and generate efficient static single assignment (SSA)
LLVM-IR. This will allow users to add new energy terms
to the molecular mechanics force-field of CANDO to sup-
port other force fields and add new restraint terms and to
use CANDO’s non-linear optimizers to optimize things like
partial charges in residues.

6. SERIALIZATION OF OBJECTS
CANDO has a built-in serialization format based on Com-

mon Lisp S-expressions. It uses the Common Lisp printer
and reader facilities to serialize any collection of objects, in-
cluding those containing internal cross-referencing pointers,
into a compact, human-readable format. This serialization
facility is used within CANDO to store and retrieve objects
to files and to communicate data and code between pro-
cessing nodes on large parallel clusters. The serialization
facility is extended to CANDO C++ classes by adding one
C++ method to the definition of the C++ class.

7. MEMORY MANAGEMENT OF
CHEMISTRY OBJECTS

Programs that implement molecular design algorithms need
to repeatedly allocate memory to represent atoms, residues,
molecules, and other objects. They then need to allocate
other objects to generate three-dimensional coordinates for
molecular designs, predict the molecular properties in silico,
and then release those memory resources to advance to the
next design. Molecules are most conveniently represented
as bi-directional graphs of atoms connected to each other
through bonds. These form enormous numbers of reference
loops and primitive reference-counting techniques are inad-
equate to manage memory. Robust garbage collection is
therefore necessary to avoid crippling memory leaks.

Table 1: Calculating the 78th Fibonacci number 107 times

Language Seconds Factor Stdev(sec) Rel. cclasp
clang C++ 0.76 1 0.016 0.3
sbcl 1.2.11 0.63 1 0.008 0.2
cclasp 2.9 4 0.022 1.0
Python 2.7 77.7 102 0.36 26.8
bclasp 639 839 n/c 221

CANDO is based on the Common Lisp implementation
Clasp[14] and it uses the memory management facilities that
Clasp provides to manage all chemistry objects. Clasp sup-
ports both the Boehm[24] and the Memory Pool System
(MPS)[25] garbage collectors with the MPS garbage collec-
tor intended for use in production and the Boehm garbage
collector used for bootstrapping and building the CANDO
executable. The additional 239 C++ classes that CANDO
adds to Clasp are all managed by the garbage collectors in
the same way that the standard Common Lisp objects are
managed. This means that objects that are no longer used
are automatically discarded and objects that remain are con-
tinuously compacted in memory to release memory for fur-
ther use. For algorithms where the overhead of memory
management is considered to be too high for performance
code, the algorithms can be implemented in C++ and the
responsibility for memory management is taken over by the
programmer.

In order to allow the MPS library to work with CANDO’s
C++ core, every pointer to every object that will move in
memory needs to be updated whenever that object is moved.
CANDO fully automates the identification of C++ pointers
that need to be updated by MPS, using a static analyzer
written in Clasp Common Lisp. The static analyzer uses
the Clang C++ compiler front end to parse the more than
360 C++ source files of CANDO and uses the Clang AST-
Matcher library to search the C++ Abstract Syntax Tree,
in order to identify every class and global pointer that needs
to be managed by MPS.

8. CANDO, CLASP AND COMMON LISP
CANDO is a full implementation of the Common Lisp

language including the Common Lisp Object System. It
supports the Common Lisp software packages: ASDF, the
Superior Lisp Interaction Mode for Emacs (SLIME), and
Quicklisp. It is a superset of the Clasp implementation of
Common Lisp and has every feature that Clasp has, includ-
ing the C++ template programming library “clbind”, which
makes it easy to integrate C++ libraries with CANDO[14].
In the past year, Clasp (and CANDO) have been enhanced
with tagged pointers, and immediate fixnums, characters,
and single-float types. Additionally, the Cleavir compiler[26]
has been fully integrated into Clasp and the speed of the
most optimized code generated by Clasp is within a few fac-
tors of C++ (Table 1). The “cclasp” compiler is the Cleavir
compiler within Clasp. The “bclasp” compiler is a less so-
phisticated compiler within Clasp that bootstraps cclasp and
was Clasp’s only compiler when reported last year[14]. So,
by one measure, the performance of Clasp has improved by
a factor of 221 in the past year.

9. THE CANDO SOURCE CODE
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CANDO adds 155,000 logical source lines of C++ code to
the 186,000 logical source lines that makes up Clasp (ver-
sion 0.4). CANDO extends Clasp with 239 additional C++
classes, 948 additional C++ instance methods and 66 C++
functions that implement objects and algorithms related to
chemistry. In addition, CANDO adds a growing body of
CANDO Common Lisp code that implements algorithms
important to chemistry and molecular design. CANDO is
freely available at http://github.com/drmeister/cando.

10. CONCLUSIONS AND FUTURE WORK
CANDO is a general, compiled programming language de-

signed for rapid prototyping and design of macromolecules
and nanometer-scale materials. Future work will include de-
veloping bindings external molecular modeling packages and
the OpenGL graphics library and developing a rich library
of molecular modeling tools within CANDO Common Lisp.

11. LICENSE
Clasp is currently licensed under the GNU Library Gen-

eral Public License version 2.
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ABSTRACT
In this paper we show how a feature-oriented development
methodology can be exploited to investigate a large set of
possible implementations for a real-time rendering algorithm.
We rely on previously published work to explore potential
dimensions of the implementation space of an algorithm to
be run on a graphics processing unit (GPU) using CUDA.
The main contribution of our paper is to provide a clear
example of the benefit to be gained from existing methods
in a domain that only slowly moves toward higher level ab-
stractions. Our method employs a generative approach and
makes heavy use of Common Lisp-macros before the code
is ultimately transformed to CUDA.

1. INTRODUCTION
When developing algorithms to be used in time-critical ap-
plication domains, such as real-time rendering, many differ-
ent implementation variants need to be evaluated to arrive
at the method that best exploits the available resources.
This is even more true in research where the spectrum of
solutions to investigate is potentially larger. Higher-level
languages such as Common Lisp, can ease this process of
finding the best solution considerably. However, while pro-
viding great flexibility and productivity, they are not avail-
able in all domains and for all applications. This can be
due to technical limitations (vendor-specific languages, com-
patibility) or policies (certified processes, coherent working
environment) as well as due to resistance from developers
unwilling to embrace change.
In earlier work we proposed formulating C and similar

languages in an S-Expression syntax and only transforming
them to their native notation as late in the process as pos-
sible [22] using C-Mera1. This allows employing a macro-
heavy methodology to generate many different variants of
an input program, and to express it on a very high level.
We believe that this scheme, even if very unfamiliar to pro-
grammers used to C, can help make higher level paradigms
1github.com/kiselgra/c-mera
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available to that domain (also by supporting guerrilla adop-
tion [22, 21]).
For domain exploration we recently proposed employing

a feature-oriented programming paradigm to implement the
exploration process [21]. To this end we use cm-fop2, a
very lightweight library that provides this feature-oriented
programming model to C-Mera.
In our case study we show how these methods can be

applied to find highly efficient implementations of a post-
processing depth of field effect for real-time rendering.
The following section, related work, is divided into two

parts. At first we cover generative meta-programming tech-
niques followed by rendering methods for depth of field.
After a short review of C-Mera in a dedicated section,
we depict several aspects and details of our depth of field
algorithm. Details and examples of the actual meta pro-
gramming approach are given in the implementation sec-
tion. Thereafter, the generated resulting code is discussed
and evaluated, and our findings are summarized in a short
conclusion.

2. RELATED WORK
In this paper we propose employing a generative methodol-
ogy to explore the space of possible implementations of real-
time depth of field rendering algorithms. Section 2.1 gives
a short review of generative programming techniques while
Section 2.2 provides an introduction to depth of field ren-
dering. The latter is divided further, whereby the first part
discusses depth of field in general. Afterwards, the difference
between gathering and scattering methods is elucidated, fol-
lowed by a description of how the scattering algorithm can
be harnessed for GPU application.

2.1 Generative Meta-Programming
In the following we will focus on related work concerned with
general purpose methods providing domain-specific abstrac-
tions. For a comprehensive summary of general generative
programming methods see Czarnecki and Eisenecker [4].
The most ubiquitous approach to generative programming

is C++ template meta programming (TMP) [26, 4]. It has
been applied to a wide range of problems, also in graphics
(for example with RTfact [23], a ray tracing library). We
believe that, while certainly convenient and unobtrusive to
use when working in a C++ environment, exploration is se-
riously impaired by this approach as the maintenance over-
head of the meta code becomes a burden in itself [7, 13, 21].
2github.com/kiselgra/cm-fop
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Also note that TMP is only available in C++, only partially
in CUDA [15] and not in other, very similar languages such
as OpenCL [8] and GLSL [11].

C-Mera is a multi-stage programming language [24], that
is, a language that is embedded in a host language (in our
case Common Lisp). Embedded languages are compiled
into the host language and the resulting program is then
further compiled or interpreted. In the case of C-Mera
the evaluation of the input program constructs the internal
Common Lisp representation that is then pretty printed to
C-style code.
Examples of other multi-stage programming languages are

MetaOCaml [3], an extension for staging OCaml, Terra [6],
a low-level language embedded in Lua, and AnyDSL [14],
which gives the programmer explicit control over when cer-
tain parts of the program are to be evaluated.
Feature-oriented programming [17, 2] offers additional de-

grees of freedom regarding programming versatility. A fea-
ture is a unit of functionality that provides an interface for
configuration. A feature-oriented program is then composed
of features that together provide its implementation. This
scheme aims to provide well-structured programs that can
be configured to provide different incarnations by varying
the implementations of the underlying features [1]. Our
work relies heavily on feature-oriented programming, as it
is demonstrated in more detail in Section 5.

2.2 Depth of Field Rendering

Figure 1: Rendered image (top) and post processed
image showing depth of field (bottom).
Depth of field is a physical effect caused by the finite size
of the lens in an imaging system (e.g. in a camera or in the
eye). Rays of light are collected through the aperture of
the system (the pupil of the eye) and focused by the lens
on the image sensor (the retina). As the refractive power
of the lens can only be in one state at any given time only
light arriving from a given distance is actually in focus and
mapped to a single point on the sensor. Light from a dif-
ferent distance is mapped to a circular region (or, in case
of a camera, to a region in the shape of the camera’s aper-

ture, known from polygonal shapes of out-of-focus lights in
movies and artistic photographs). This circle of confusion
is the reason out-of-focus objects appear blurred. Figure 1
shows an example computed using our implementation of a
post-processing method.
When synthesizing images this is an important effect for

generating more plausible results, as the depth perception is
skewed for scenes that are shown completely in-focus. De-
mers [5] describes this effect in great detail and provides an
overview of methods of generation. In the following we will
only touch on a few methods and refer to Demers [5] for
more details.

Gathering vs Scattering. The most common method to
implement depth of field is by adding it to an previously
generated image. This can be done in two ways, namely
via gathering or scattering. Gathering approaches apply a
(bilateral) image-space blur filter where the filter’s size de-
pends on the current pixel’s circle of confusion [5, 18]. The
main limitation of these methods is that the ordering of the
participating pixels is not considered correctly and only a
weighted average is computed [19]. With scattering meth-
ods the problem is approached differently: the rendered im-
age is interpreted as a point-sampled scene representation
and the individual points are scaled to form circles accord-
ing to the original pixel’s circle of confusion. These scaled
points (“splats”) are then sorted and accumulated (in order)
as semi-transparent objects, thus ensuring correct weight-
ing [16, 12]. The limitation of these methods is that they
require a global ordering of the splats be established, which
is an expensive operation.
Recent work on tiled shading [9] and particle accumula-

tion [25] can be applied to remove this limitation of scat-
tering depth of field algorithms in a straightforward fash-
ion [19].

Fast GPU Particle Accumulation. High-performance par-
ticle accumulation can be implemented by employing a tiling-
based scheme that maps well to graphics hardware. Instead
of globally sorting the particles, they are binned into screen-
space tiles (e.g. of 16×16 pixels, potentially a 1 : n mapping)
and the tiles are then sorted independently and in paral-
lel [25]. The computation of the contribution for each pixel
is then a simple process that traverses the list of particles in
the pixel’s associated tile. This process, too, maps very well
to hardware as (in CUDA terms) the execution can be set
up such that each thread-block traverses a single tile, and
thus the threads in a warp run with great coherency.
In Section 4 we list choices of how to implement the accu-

mulation phase of this technique for depth of field rendering.
We also show how C-Mera, together with cm-fop, can be
used to explore the space of possible solutions with feature-
oriented programming.

3. BRIEF REVIEW OF C-Mera
C-Mera is a simple transcompiler embedded in Common
Lisp. It allows writing programs in an S-Expression syntax
that is transformed to C-style code providing simple exten-
sion for languages with similar syntax on top of the core C
support. For example, the C-Mera distribution provides
modules for C++, CUDA, GLSL and OpenCL. The main
goal of providing an S-Expression syntax is to write the com-
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piler such that it evaluates the syntax to construct a syn-
tax tree when the input program is read, thereby allowing
interoperability with the Common Lisp-system, most im-
portantly by providing support for Lisp-style macros. To
keep this part short we refer to the original C-Mera pa-
per [22] for a more detailed description of the system and
its implementation.
With the use of macros the input program no longer rep-

resents a plain syntax tree, but a semantically annotated
tree that is transformed according to the implementation of
the semantic nodes (macros). The utility of such a system
ranges from simple, ad-hoc abstractions and programmer-
centric simplifications [22] to providing otherwise hard to
achieve programming paradigms for C-like languages [21]
and even to fully fledged domain specific languages [20]. In
this paper we provide a case study of applying C-Mera to
provide a higher level programming paradigm for GPU al-
gorithm development.
Figure 2 shows an example from our application domain,

which is processed by C-Mera, and C-style code that is
generated by it. The overall appearances of the input (top)
and the generated code (bottom) resemble each other but
the former applies S-Expressions, whereas C-style syntax
and infix expressions are required in the latter. As can be
seen, C-Mera supports convenient and essential language
elements from C, for example the member accessor color.x
(line 10,11,12), infix increment ++i (line 1, top), type suffix
3.1415f (line 7, top), and further notations that are not
shown here. Additionally, C-Mera renames variable names
that are restricted in C, for example dist-x (line 6, top).

1 (for (( int i 0) (< i num−per−tile) ++i)
2 ( decl (( dataSpl elem ( aref lists tile−index i))
3 (int dist−x (− ( funcall elem.x) gid.x))
4 (int dist−y (− ( funcall elem.y) gid.y))
5 ( float coc−sq ( funcall elem.sq−coc)))
6 (if (<= (+ (∗ dist−x dist−x) (∗ dist−y

dist−y)) coc−sq)
7 ( decl (( float area (∗ coc−sq 3.1415 f))
8 ( float alpha (/ 1.0f area)))
9 (+= color .x (∗ alpha−dest alpha elem.r))

10 (+= color .y (∗ alpha−dest alpha elem.g))
11 (+= color .z (∗ alpha−dest alpha elem.b))
12 (∗= alpha−dest (− 1.0f alpha ))))))

1 for (int i = 0; i < num_per_tile ; ++i){
2 dataSpl elem = lists [ tile_index ][i];
3 int dist_x = elem.x() − gid.x;
4 int dist_y = elem.y() − gid.y;
5 float coc_sq = elem. sq_coc ();
6 if ((( dist_x ∗ dist_x ) + ( dist_y ∗ dist_y ))

<= coc_sq ) {
7 float area = coc_sq ∗ 3.1415 f;
8 float alpha = 1.0f / area;
9 color .x += ( alpha_dest ∗ alpha ∗ elem.r);

10 color .y += ( alpha_dest ∗ alpha ∗ elem.g);
11 color .z += ( alpha_dest ∗ alpha ∗ elem.b);
12 alpha_dest ∗= (1.0f − alpha );
13 }
14 }

Figure 2: The most basic particle accumulation loop
as used as input for C-Mera (top) and the resulting
generated C-style code (bottom).

4. IMPLEMENTATION-SPACE
We focus our analysis on the accumulation of particles, which

can be described briefly as follows: Every pixel of the result-
ing image must be synthesized form a number of particles
that might affect it. To do so, the program has to iterate
through a previously sorted list with possible candidates in
reach that might affect the resulting pixel. Every tile, a
group of 16 × 16 pixels, has one associated list, therefore a
list is shared by 256 pixels.
The process of sorting the entries in the tile lists, as well

as the subsequent accumulation benefit greatly from a com-
pact memory layout in which single entries can be trans-
ferred en-bloc. For our CUDA implementation this means
that the entries should be no more than 16 bytes, such that
they can be encoded as uint4. However, the required fields
are the pixel’s (high resolution) color, screen-space position
and camera distance. This data can be stored compactly,
but the best choice not only depends on the number of bits
reserved for each entry, but also on the effort to unpack the
respective fields and how how likely they will be accessed.
In our implementation we tested two different basic node
layouts.
The most obvious point to evaluate different implementa-

tions is how the CUDA warp and block configuration is set
up and employed during traversal. Here we evaluated two
different approaches: Loading large chunks (256 elements)
of the tile-lists (with an average length of 1300) to a buffer
of shared memory, and then processing the list chunk-by-
chunk with all threads working in parallel on the same data.
This, however, requires synchronization after the data has
been loaded to ensure that it is available to all threads. The
second approach is to only load blocks of warp size (i.e. 32)
to shared memory and process smaller chunks. The bene-
fit of this approach is that no synchronization is necessary,
however, at the cost of smaller batches in the shared cache
and redundant loads on the block level.
To gain greater insight into the effect of blending front-to-

back vs back-to-front, both approaches have been analyzed.
Naturally, the front-to-back method performs better [25] as
it offers the option to terminate early when the pixel is sat-
urated. This leads to the question of how finely checking for
early termination is advisable: after each accumulation step,
or only after each chunk, which interacts with the aforemen-
tioned chunk size?
We also evaluated many small-scale optimizations such

as explicitly enabling caching to L1, storing vs computing
certain values and peeling off parts of loops to remove condi-
tionals from the inner loop. In the end we arrived at 320 dif-
ferent (and meaningful) combinations that are implemented
using cm-fop in 300 lines of feature definitions, feature im-
plementations and the algorithm-template that expand to
more than 16000 lines of CUDA code.

5. IMPLEMENTATION
As the previous section shows, our implementation space
expands into multiple dimensions; thus we must consider
and evaluate many versions of the accumulation loop, which
might differ heavily from each other and from the non op-
timized version shown in Figure 2. Starting from the ba-
sic implementation and with a rough draft of the desired
variations, we can incrementally extend the existing solu-
tion with functionnlities, also in reaction to the results from
previously tested variants. This leads to an iterative and
especially exploratory programming methodology. In this
section we will discuss our meta implementation, starting
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with an explanation of why we have chosen features over
plain macros. Given examples will at first focus on feature
usage and later examine target and feature interaction in
more detail.

From Macros to Features. Relying solely on Common
Lisp’s macro system to facilitate previously mentioned ex-
tensions has the risk of becoming tedious, since particular
variation points can mutually exclude each other and macros
do not support convenient configurability of their implemen-
tation. Therefore, if wanting to write a macro that combines
multiple varying results, one has to implement each of its
possible expansions inside a single block of conditionals. An
example of such a macro is given in Figure 3. Therefore,
we employ cm-fop, C-Mera’s library for feature-oriented
programming to ease this procedure. This library enables
using features that are essentially macros with a built-in sys-
tem that automatically implements and resolves conditional
expansion. A feature-oriented definition equivalent to the
macro from Figure 3 is shown in Figure 4. In contrast to
plain macros the feature system is able to recognize the de-
sired expansion code by means of a configuration variable,
which can be defined and stays valid within a lexical scope
and thus supports nesting of different configurations. Addi-
tionally, the feature system decouples the feature definition
from its implementations, with the result that the definition
of a feature is only required once and its likely multiple and
divergent implementations can be written individually. Fur-
thermore, writing a feature implementation does not require
to manually declare its dependencies, nor define conditional
expansion. Thus, unlike a macro that incorporates such
a behaviour, feature implementations only require minimal
boiler-plate code. Nevertheless, it should be mentioned that
cm-fop’s feature system relies on Common Lisp’s macro
and object system, but without the need to manually define
the conditional expansions, cm-fop improves the handling
of multiple implementations over plain macros considerably.

1 ( defmacro early−out ( target condition &body body)
2 ( cond (( eql target ’no−early−out)
3 ‘( progn ,@body ))
4 (( eql target ’blockwise−early−out)
5 ‘(if ,condition
6 ( progn ,@body )
7 ( break )))
8 (t
9 ‘( error "The target ~a is not

specified " ’,target ))))

Figure 3: Example macro-implementation with mul-
tiple expansion possibilities.

Feature Setup. As a first example we introduce a simple
feature to the algorithm from Figure 2. The most basic part
of extending the particle accumulation is to exit the loop
when the pixel is opaque because collecting further elements
will not change the resulting color. To do so we construct
a feature equal to the macro shown in Figure 3 that wraps
the body with an if-statement and uses a break operation
to exit the loop. The corresponding feature setup is shown
in Figure 4.
Before we implement features, we define their possible tar-

gets (lines 1 and 2). Features are defined once (line 4) and

support one implementation per target combination (lines 6
to 12). Targets can be derived from each other, as it is the
case here, thus the combination of the currently used most
specific target and its available implementations determine
the expanded code. For example, if the implementation for
blockwise-early-out is not given, but that target is used, the
more general no-early-out will be used. However, if imple-
mentations for more specific targets are given, but a less
specific target is used, the best fitting implementation (ac-
cording to CLOS’s [10] method lookup) is chosen. As can
be seen in Figure 4, the body for a feature implementation
is similar to the body of a standard macro, but there are
multiple implementations for the same feature. The upper
implementation (line 6 and 7) returns the body passed in
without modifications. The other one (line 9 to 12) splices
the body inside an if-statement, places the condition in the
designated position, and introduces a break-statement as
the else case.

1 (define−target no−early−out)
2 (define−target blockwise−early−out no−early−out)
3
4 (define−feature early−out ( condition &body body))
5
6 ( implement early−out (no−early−out)
7 ‘( progn ,@body ))
8
9 ( implement early−out (blockwise−early−out)

10 ‘(if ,condition
11 ( progn ,@body )
12 ( break )))

Figure 4: Construction of a feature for a conditional
break

Elementary Feature Utilization. The example application
shown in Figure 5 depicts the use of features (top) and their
resulting code (bottom), whereby feature applications are
highlighted in orange and targets in green. Multiple targets
can be combined with make-config into one single config-
uration (top, line 1 and 6). The with-config form takes a
configuration as an argument and declares it as locally valid
for features used within its lexical scope. Depending to the
configuration used, each early-out feature expands into dif-
ferent code.
The no-early-out target adds no further code nor changes

the body, whereas the blockwise-early-out target adds an
if-clause and a break-statement. This behaviour is the es-
sential element that we want to utilize. Normally if we in-
troduce additional variations, we must clone and partially
rewrite every version for every additional divergence. Thus,
the number of possible implementations to write grows ex-
ponentially. Our solution for this problem, as we already
proposed in previous work [21], is to use a single, general
implementation that handles each diverging point individu-
ally by applying the proper feature expansion.
Based on the examples from Figure 4 and Figure 5 an

applicable multi-variant-aware implementation is shown in
Figure 6. As can be seen, we now only require one imple-
mentation of the accumulation-loop that can expand into
multiple versions depending on the configuration passed in.

Pinpoint Implementation. By adding an increasing amount
of expansion possibilities to the unified implementation, we
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1 (with−config (make−config no−early−out)
2 (for (( int i 0) (< i num−per−tile) ++i)
3 (early−out (> alpha−dest 0.01)
4 ....
5
6 (with−config (make−config blockwise−early−out)
7 (for (( int i 0) (< i num−per−tile) ++i)
8 (early−out (> alpha−dest 0.01)
9 ....

1 for (int i = 0; i < num_per_tile ; ++i){
2 dataSpl elem = lists [ tile_index ][i];
3 ...
4 }
5
6 for (int i = 0; i < num_per_tile ; ++i){
7 if (> alpha_dest 0.01) {
8 dataSpl elem = lists [ tile_index ][i];
9 ...

10 }
11 }
12 else
13 break
14 }

Figure 5: Feature evaluation: Depending on the
configuration or targets used, highlighted in green
(top), the same features, highlighted in orange, ex-
pand into different resulting code (bottom)

arrive at the most general implementation of the accumu-
lation loop, which is shown in Figure 7. This algorithm
template is capable of expanding into 320 versions of the ac-
cumulation loop. Most of the features used are implemented
similarly to previous examples and are mapped straightfor-
wardly to one single element previously described in the im-
plementation space in Section 4. More sophisticated fea-
tures are shown in Figure 8. These features are used to-
gether to assemble one single variation inside the implemen-
tation space. The given example generates code that iterates
chunk-wise over an input list (loop-over-blocks, lines 1 and
11)), after which the inner loop processes the single chunk
elements (process-blocks, lines 6, 22, 26). Process-blocks is
not used directly within the feature-implementation of loop-
over-blocks, but appears later on, inside its body as seen in
line 3 in Figure 7. Processing a list chunk-wise requires a
special case handling, since the last iteration only processes
the residual list elements.
One possibility to manage this is to check each iteration

step whether the currently processed chunk is the last one
and to set the upper limit of the inner loop according to the
number of remaining elements. A respective implementation
is shown in the upper part (line 1 to 9) of Figure 8. In
this case, loop-over-blocks does not distinguish between the
first blocks (0 <= i < iterations) and the last one (i ==
iterations), thus iterates over all chunks. The associated
feature (process-blocks, line 6), then limits the upper bound
for the inner loop (N ) by setting it either to the standard
block-width (elems-per-iter) or, if the outer loop reached the
last element, to the size of the last chunk (last-iter-width).
In short, loop-over-blocks iterates over the complete range
of chunks and process-blocks tests whether the last chunk is
to be processed to set suitable limits for the inner loop.
A different approach handling the last chunk is shown in

the lower part (line 11 to 27) of Figure 8. The underly-
ing concept is to process the last chunk separately. Conse-
quently, the outer loop iterates over every chunk except for

the last one, which must be handled individually outside the
loop. The benefit of this method is that the conditional as-
signment (line 7) can be omitted and the necessary process-
blocks features (line 21 to 27) reduce their complexity. Yet,
as it can be seen, we now employ two, slightly different
process-blocks features, which depend on different targets.
One deploys a loop, which iterates over the full range of the
block size, and the other one processes the width of the final
chunk.
To fuse the looped code with that of the last chunk, hav-

ing been processed separately, both of the described process-
blocks features need to be used. Since the algorithmic proce-
dure for every block is the same, the body of the loop-over-
blocks feature can be duplicated and used for both parts
sequentially. The corresponding implementation (lines 11
to 19) simply duplicates the forwarded body, whereby one
is placed within the for-loop (line 16) and the other is ap-
pended afterwards.
Both bodies are implemented at the same and cannot be

changed usefully by means of list modification at this point.
However, they still must generate different code. Therefore,
we substitute the currently valid configuration individually
for each body. Since it is not desirable to overwrite the con-
figuration completely, the newly introduced configurations
are composed of the targets previously passed in (config, line
15 and 18). These are already being used for the global con-
figuration, and extended by the respective, locally required
targets (full-block, line 15 and peel-block line 18). Eventually
we have two nearly equal sections, which expand into two
different specific implementations.
These examples were aimed at providing further insight

into how we approached the design of a merged implemen-
tation for all meaningful variants previously described in
Section 4.
In the following section we will evaluate each instance in

terms of their performance in order to identify the optimal
combination.

1 ( defmacro instantiate ( config )
2 ‘(with−config ,config
3 (for (( int i 0) (< i num−per−tile) ++i)
4 (early−out (> alpha−dest 0.01)
5 ...
6
7 ( instantiate (make−config no−early−out <do−this>

...))
8 ( instantiate (make−config blockwise−early−out

<skip−that > ...))

Figure 6: Single implementation for multiple vari-
ants

6. EVALUATION AND RESULTS
In this section we briefly evaluate the generator and result-
ing code of our generic implementation on a Nvidia Geforce
GTX Titan, 980, and 980Ti graphics card. We strive to an-
alyze each possible combination of aspects and GPU archi-
tecture to identify substantial coherences and special cases.
However, to cover every generated accumulation loop, we
have to consider 320 versions and testing all of them on
three GPUs results in 960 individual measurements.
All time measurements in the context of implementation

aspects and architectures are shown in Figure 9. It should
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1 (with−iteration−bounds
2 (loop−over−blocks ,config
3 (early−out (> alpha−dest 0.01f)
4 (process−blocks
5 (load−current−element elem
6 ( decl (((dist−type) dist−x (dist x))
7 ((dist−type) dist−y (dist y))
8 ((coc−type−in−node) coc−sq
9 ( funcall

elem.sq−coc)))
10 (if (<= (+ (∗ dist−x dist−x)
11 (∗ dist−y dist−y)) coc−sq)
12 (with−alpha
13 (set−color x r)
14 (set−color y g)
15 (set−color z b)
16 (set−sample)))))))
17 (sync−after−iteration)))

Figure 7: Multidimensional implementation with
features

be noted that the visualization is normalized, thus the lower
bound is representing the shortest processing time and the
upper bound the longest. In addition, for each graphics card
different values for upper and lower bounds were applied.
This representation was chosen due to better exposition of
specific patterns.

Performance Evaluation. The most efficient combination
for the Maxwell architecture (980 and 980Ti) is highlighted
in green and the equivalent set for the Kepler architecture
(Titan), which is highlighted in blue and interestingly, as
well suitable for the Maxwell architecture but not vice versa.
Despite the fact that the best Titan measurement is only
0.1ms faster than the slowest GTX 980Ti measurement, all
GPUs share favorable implementation aspects. The result-
ing code of the best implementation for the Maxwell archi-
tecture can be found in the appendix in Figure 10.
A surprising insight is that it is not always the best choice,

as initially assumed, to implement an early-out behaviour.
As can be seen, all version highlighted in violet, the most ag-
gressive early-out method, are in most cases slower than ver-
sions highlighted in yellow, which are implemented with only
one exit attempt per processed block, and versions high-
lighted in red, which are implemented completely without
early-out mechanism. This being said, applying a Maxwell
GPU, a moderate early-out technique seems to be a better
choice over omitting early-out completely. Employing a Ke-
pler GPU, early-out techniques should be avoided, at least
in our use case.
Further discoveries are the superior performance for the

Maxwell architecture, when the last work unit is processed
separately, and for both architectures, when using float in-
stead of integer values to compute the distance, even though
this requires additional conversions with a _half2float() call.
The remaining aspects seem to have only a minor or no im-
pact at all.
In contrast to the plot of the GTX Titan, it is striking

how similar the measurement charts of the GTX 980 and
the GTX 980Ti appear even though they represent differ-
ent performance ranges. Although noticeable, it is not very
surprising, since both GTX 980 and 980Ti share the same
architecture.

1 ( implement loop−over−blocks (check−residual−block)
2 ‘(for (( int i 0) (<= i iterations ) ++i)
3 (load−threads−local−data i)
4 ,@body ))
5
6 ( implement process−blocks (check−residual−block)
7 ‘( decl (( int N (? (== i iterations )

last−iter−width elems−per−iter)))
8 (loop−over−loaded−block (j N)
9 ,@body )))

10
11 ( implement loop−over−blocks (peel−residual−block)
12 ‘( progn
13 (for (( int i 0) (< i iterations ) ++i)
14 (load−threads−local−data i)
15 (with−config (make−config ,@ config

full−block)
16 ( progn ,@body )))
17 (load−threads−local−data iterations )
18 (with−config (make−config ,@ config

peel−block)
19 ( progn ,@body ))))
20
21 ( implement process−blocks (full−block)
22 ‘(loop−over−loaded−block (j elems−per−iter)
23 ,@body ))
24
25 ( implement process−blocks (peel−block)
26 ‘(loop−over−loaded−block (j last−iter−width)
27 ,@body ))

Figure 8: Implementation for checking (top) and
peeling (bottom) residual list elements.

Code Evaluation. Our preliminary objective was a gen-
eral implementation of the accumulation loop of our depth
of field algorithm [19]. At first we extended the initial con-
cept with simple features, followed by a few iterations of
including and testing newly emerging variation possibilities
leading to an implementation that provides 320 versions of
our algorithm.
Extending, debugging, and maintaining has been done

with ease, since, per variant only one location of the pro-
gram code has to be considered and modifications affect
generated instances of features globally. This behaviour is
an additional benefit in itself, precisely because we now can
guarantee that each specific instance of the generated feature
aspect is identical, in contrast to manually copied and and
modified code. With this assurance we do not risk to draw
the wrong conclusion comparing unequal or faulty code in-
stances and are able to keep many variations, which, as the
comparison across the architecture generations shows, can
be beneficial in the long run.
The final C-Mera code consists of 300 lines (275 with-

out comments) of feature implementations and expands into
over 19000 lines (16000 without comments) of CUDA code
that provides 320 distinct kernels.

7. CONCLUSION
In this paper, we showed how we were able to discard re-
dundant instances of essentially similar code fragments by
merging them into general structures. Instead of implement-
ing the whole algorithm for each of its possible variants. the
algorithm is implemented only once and every ambiguity is
replaced with its respective feature.
This approach enabled us to simply unfold, examine, and

maintain 320 different versions of the same algorithm to
eventually determine the best fitting feature-set in terms
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Figure 9: Individual measurements of various feature combinations on 3 GPUs.

of performance for specific GPUs and architectures.
By fully expanding every possible combination we were

able to analyze and maintain a much broader range of mea-
surements and identify unexpected findings. In addition, we
can securely rely on the accuracy of each kernel, since the
expansion of individual feature is globally consistent and in-
vestigation on the output code can be done with ease.
In conclusion it can be said that employing a feature

oriented programming methodology can proof quite useful
when it comes to exploring and analyzing a vast amount of
possibly suitable variants, especially when interesting future
variations are to be expected.

Acknowledgments
The authors gratefully acknowledge the generous funding by
the German Research Foundation (GRK 1773).

8. REFERENCES
[1] S. Apel and C. Kästner. An Overview of

Feature-Oriented Software Development, July/August
2009. Refereed Column.

[2] S. Apel and C. Kästner. Virtual Separation of
Concerns - A Second Chance for Preprocessors.
Journal of Object Technology, 8(6):59–78, 2009.

[3] C. Calcagno, W. Taha, L. Huang, and X. Leroy.
Implementing multi-stage languages using asts,
gensym, and reflection. In Proceedings of the 2Nd
International Conference on Generative Programming
and Component Engineering, GPCE ’03, pages 57–76,
New York, NY, USA, 2003. Springer-Verlag New
York, Inc.

[4] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications.
Addison-Wesley, May 2000.

[5] J. Demers. Depth of field: A survey of techniques. In
R. Fernando, editor, GPU Gems. Pearson Higher
Education, 2004.

[6] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and
J. Vitek. Terra: A multi-stage language for
high-performance computing. In Proceedings of the
34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13,
pages 105–116, New York, NY, USA, 2013. ACM.

[7] A. Fredriksson. Amplifying C. http://voodoo-
slide.blogspot.de/2010/01/amplifying-c.html,
2010.

[8] K. O. W. Group. The OpenCL Specification, March
2016.

[9] T. Harada, J. McKee, and J. C. Yang. Forward+:
Bringing deferred lighting to the next level. In
Eurographics 2012 - Short Papers Proceedings,
Cagliari, Italy, May 13-18, 2012, pages 5–8, 2012.

[10] S. E. Keene. Object-oriented programming in
COMMON LISP - a programmer’s guide to CLOS.
Addison-Wesley, 1989.

[11] J. Kessenich, D. Baldwin, and R. Randi. The OpenGL
Shading Language, January 2014.

[12] J. Krivanek, J. Zara, and K. Bouatouch. Fast depth of
field rendering with surface splatting. In Computer
Graphics International, 2003. Proceedings, pages
196–201. IEEE, 2003.

[13] M. McCool, S. Du, T. Tiberiu, P. Bryan, and C. K.

ELS 2016 89



Moule. Shader algebra. ACM Transactions on
Graphics, pages 787–795, 2004.

[14] R. Membarth, P. Slusallek, M. Köster, R. Leißa, and
S. Hack. High-performance domain-specific languages
for gpu computing. GPU Technology Conference
(GTC), March 2014.

[15] NVIDIA Corporation. NVIDIA CUDA C
Programming Guide, September 2015.

[16] M. Potmesil and I. Chakravarty. A lens and aperture
camera model for synthetic image generation. In
Proceedings SIGGRAPH 1981, pages 297–305. ACM,
1981.

[17] C. Prehofer. Feature-oriented programming: A fresh
look at objects. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP ’97), Lecture
Notes in Computer Science, pages 419–443.
Springer-Verlag, June 1997.

[18] G. Riguer, N. Tatarchuk, and J. R. Isidoro. Real-time
depth of field simulation. In W. Engel, editor,
ShaderX2: Shader Programming Tips and Tricks with
DirectX 9.0. Wordware, Plano, Texas, 2003.

[19] K. Selgrad, L. Franke, and M. Stamminger. Tiled
Depth of Field Splatting. In J. Jorge and M. Lin,
editors, Eurographics 2016 – Posters. The
Eurographics Association, 2016.

[20] K. Selgrad, A. Lier, J. Dörntlein, O. Reiche, and
M. Stamminger. A High-Performance Image
Processing DSL for Heterogeneous Architectures. In
Proceedings of ELS 2016 9rd European Lisp
Symposium, pages to–appear, New York, NY, USA,
2016. ACM.

[21] K. Selgrad, A. Lier, F. Köferl, M. Stamminger, and
D. Lohmann. Lightweight, generative variant
exploration for high-performance graphics
applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2015,
pages 141–150, New York, NY, USA, 2015. ACM.

[22] K. Selgrad, A. Lier, M. Wittmann, D. Lohmann, and
M. Stamminger. Defmacro for C: Lightweight, ad hoc
code generation. In Proceedings of ELS 2014 7rd
European Lisp Symposium, pages 80–87, 2014.

[23] P. Slusallek and I. Georgiev. Rtfact: Generic concepts
for flexible and high performance ray tracing. In R. J.
Trew, editor, Proceedings of the IEEE / EG
Symposium on Interactive Ray Tracing 2008, pages
115–122, RT08 Reception Warehouse Grill 4499
Admiralty Way Marina del Rey, CA 90292, 2008.
IEEE Computer Society, Eurographics Association,
IEEE.

[24] W. Taha. A gentle introduction to multi-stage
programming. In Domain-specific Program
Generation, LNCS, pages 30–50. Springer-Verlag,
2004.

[25] G. Thomas. Compute-Base GPU Particle Systems,
2014. GDC’14.

[26] T. Veldhuizen. Template metaprograms. C++ Report,
May 1995.

APPENDIX

1 // This is DOF accumulation with the following features :
2 // − block−load−with−syncthreads
3 // − peel−odd−blocks
4 // − node−rgb16−c32−xy16
5 // − copy−current−entry−to−register
6 // − synced−blockwise−early−out
7 // − directly−load−from−global−memory
8 // − load−alpha
9 // − front−to−back

10 // − float−dist
11
12 __global__ void kernel_213 (int width , int height , int2 tileWH , int2

tilesizes , dataSpl ∗∗lists , float max_coc , uint
∗atomic_counters , ushort4 ∗∗hdr_output )

13 {
14 int2 gid = make_int2 (( blockIdx .x ∗ blockDim .x) + threadIdx .x,

( blockIdx .y ∗ blockDim .y) + threadIdx .y);
15 if (( gid.x >= width ) || (gid.y >= height ))
16 return ;
17 float2 gidF = make_float2 ( float (gid.x), float (gid.y));
18 int tile_index = (gid.x / tileWH .x) + ( tilesizes .x ∗ (gid.y /

tileWH .y));
19 int num_per_tile = ( tileWH .x ∗ tileWH .y) +

(( int) atomic_counters [ tile_index ]);
20 float4 color = make_float4 (0, 0, 0, 1);
21 int tid = ( threadIdx .y ∗ 16) + threadIdx .x;
22 __shared__ dataSpl local_data [256] ;
23 float alpha_dest = 1.0f;
24 const int elems_per_iter = 256;
25 int iterations = num_per_tile / 256;
26 int last_iter_width = num_per_tile % 256;
27 for(int i = 0; i < iterations ; ++i){
28 local_data [tid] = lists [ tile_index ][(i ∗ 256) + tid];
29 __syncthreads ();
30 if ( __any ( alpha_dest > 0.01f)) {
31 for(int j = 0; j < elems_per_iter ; j += 1){
32 dataSpl elem = local_data [j];
33 float dist_x = __half2float (elem.x())

− gidF.x;
34 float dist_y = __half2float (elem.y())

− gidF.y;
35 float coc_sq = elem. sq_coc ();
36 if ((( dist_x ∗ dist_x ) + ( dist_y ∗

dist_y )) <= coc_sq ) {
37 float alpha =

__half2float (elem.w());
38 color .x += ( alpha_dest ∗

alpha ∗
__half2float (elem.r()));

39 color .y += ( alpha_dest ∗
alpha ∗
__half2float (elem.g()));

40 color .z += ( alpha_dest ∗
alpha ∗
__half2float (elem.b()));

41 alpha_dest = (1.0f − alpha ) ∗
alpha_dest ;

42 }
43 }
44 }
45 else
46 break ;
47 __syncthreads ();
48 }
49 local_data [tid] = lists [ tile_index ][( iterations ∗ 256) + tid];
50 __syncthreads ();
51 if ( alpha_dest > 0.01f)
52 for(int j = 0; j < last_iter_width ; j += 1){
53 dataSpl elem = local_data [j];
54 float dist_x = __half2float (elem.x()) −

gidF.x;
55 float dist_y = __half2float (elem.y()) −

gidF.y;
56 float coc_sq = elem. sq_coc ();
57 if ((( dist_x ∗ dist_x ) + ( dist_y ∗ dist_y ))

<= coc_sq ) {
58 float alpha = __half2float (elem.w());
59 color .x += ( alpha_dest ∗ alpha ∗

__half2float (elem.r()));
60 color .y += ( alpha_dest ∗ alpha ∗

__half2float (elem.g()));
61 color .z += ( alpha_dest ∗ alpha ∗

__half2float (elem.b()));
62 alpha_dest = (1.0f − alpha ) ∗

alpha_dest ;
63 }
64 }
65 __syncthreads ();
66 hdr_output [gid.x][ gid.y] = make_half4 ( color .x / (1.0f −

alpha_dest ), color .y / (1.0f − alpha_dest ), color .z /
(1.0f − alpha_dest ), 1.0f);

67 }

Figure 10: C-Mera generated kernel with the best
performance on Nvidia GTX 980Ti.
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ABSTRACT
Any reasonably large program has to use local variables. It
is quite common in the Lisp language family to also allow
functions that exist only in a local scope. Scoping rules often
allow compilers to optimize away parts of the local environ-
ment; doing that is good for performance, but sometimes
inconvenient for debugging.

We present a debugging library for Common Lisp that en-
sures access to the local variables during debugging. To pre-
vent the optimisations from removing access to these vari-
ables, we use code-walking macros to store references to the
local variables (and functions) inside global variables.

Keywords
Software and its engineering, Software testing and debug-
ging, lexical environment, lexical closures

1. INTRODUCTION
We hope that every program of non-negligible size uses

some local variables. Unfortunately, during debugging these
variables may be inaccessible because of optimisation. For
example, when debugging the following code:

(labels ((f (z) (+ z 1))) (let ((x 2))

(cerror "Continue" "Error invoked") (f x)))

in SBCL[5] 1.3.4 (the freshest available at the time of writing)
neither x nor f were accessible from the debugger with any
combination of safety and debugging declarations.

Lacking access to local variables makes debugging runtime
errors significantly less convenient. Also, using a continuable
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error to get a REPL inside the context of a function is sig-
nificantly less useful as a debugging and exploration tool if
the local variables become inaccessible.
CLISP[6] seems to do the right thing from the debugging

point of view, but, unfortunately, many libraries (for exam-
ple, CLSQL) do not fully support CLISP.

Since searching hasn’t revealed a solution to this problem,
we implemented a brute-force solution, which became the
local-variable-debug-wrapper library[1], presented in the
current paper.

1.1 Feature set
The features of the presented library include:
• Access to local variables and functions from the debugger,
including the lexical contexts lower on the stack
• Altering local variables during debugging
• A reader trick that allows wrapping the contents of the
entire file by adding one line in the beginning

1.2 Example use
The following code illustrates an example file which has

wrapping enabled:

(use-package :local-variable-debug-wrapper)

; Wrapping to the end of file

(wrap-rest-of-input)

; Inspecting local variables in a function

(defun test-w-1 ()

(let ((x 1)) (let ((x 3) (y 2)) (pry) (+ 2 3))))

; Debugging a failure

(defun test-w-2 ()

(let ((x 1)) (let ((x 3) (y 2)) (error "Oops"))))

2. TECHNIQUES USED
Currently, we use hu.dwim.walker[2] to annotate the in-

put code (annotations are represented using CLOS objects).
The forms whose lexical environment differs from that of
their parent form get wrapped in a special call.

At the top level the special call is defined as a local macro
by macrolet. It uses the &environment parameter to access
lexical environment of each form and the hu.dwim.walker

wrapper over implementation-specific lexical environment
objects to obtain the names of local bindings.

For example, we get the following expansion:

(with-local-wrapper (let ((x 1)) x))

-->

(macrolet

((push-lexenv-to-saved-inner (&rest args)
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‘(push-lexenv-to-saved ,@args)))

(progn

(let ((x (push-lexenv-to-saved-inner 1)))

(push-lexenv-to-saved-inner x))))

We build an alist of local functions and their correspond-
ing names. For variables, we want to allow the user to mod-
ify local variables and resume execution. This functionality
requires capturing a reference, and we use anonymous func-
tions and lexical closures for that (apparently, there is no
safe alternative).

This is performed by push-lexenv-to-saved. It is a macro
using an &environment parameter. For examples, one of its
calls expands as follows:

(push-lexenv-to-saved-inner x)

-->

(let ((*saved-lexenvs*

(cons (list :variables (list (cons ’x

(lambda (&optional (value nil value-given))

(if value-given (setf x value) x)))))

*saved-lexenvs*))) x)

To make inspecting a saved lexical environment easier we
provide the pry macro that creates the dynamic variables
with the same names as the lexical local variables in the
environment under consideration. The dynamic extent of
the created variables is limited to the pry call, so they affect
the debugging session but not the semantics of the program
after continuation.

This function is named after the Pry REPL[3] for Ruby,
seeing as how not only is it aimed towards the same use case,
but the original inquiry that motivated the development was
finding a Common Lisp equivalent for that very library.

We also provide lower-level functions for accessing the
saved environments, and some other convenience helpers.

To make wrapping all the forms in a file easier, we provide
(wrap-rest-of-input) functionality: wrap-rest-of-input

clones the readtable and makes ( a macro-character. The
corresponding reader function immediately reverts to the
previous readtable, calls unread-char on the opening paren-
thesis, and reads a form; afterwards the form is put inside
the with-local-wrapper.

3. EVALUATION
To test a bad case, we used a very inefficient Fibonacci

number calculation:

(defparameter *pry-on-bottom* nil)

(defun fib-uw (n)

(if (<= n 1)

(progn (when *pry-on-bottom* (pry)) 1)

(+ (fib-uw (- n 1)) (fib-uw (- n 2)))))

We ran the same code wrapped and unwrapped, recording
time and memory. The tests were run on a 4-core i7-4770R.

On SBCL, each function call consed 16 bytes when un-
wrapped and 128 bytes when wrapped. For large parame-
ter values the wrapped version was approximately 4 times
slower than the unwrapped one.

CCL ran the unwrapped test slightly faster than SBCL,
but the wrapped version was slower than on SBCL. For large
parameter values the slowdown was slightly below 9 times.

CLISP does provide full access to local variables on its
own in most cases, but this implementation is not currently

supported by hu.dwim.walker. The unwrapped version runs
80 times slower than on CCL .

An example run for n = 40 gave the following results
(values in parenthesis are relative to the unwrapped code on
the same implementation):

time, s slower
than CCL

bytes consed
per call

CCL 3.18 16
SBCL 3.50 1.10× 16
CLISP 259.90 81.68× 0
CCL w/w 28.29 (8.89×) 8.89× 160 (+144)
SBCL w/w 13.95 (3.98×) 4.38× 128 (+112)

3.1 Known limitations
To modify the bindings used outside the pry session one

has to use the low-level local-variable macro.
The library currently doesn’t provide access to local macros.
The limitations of wrapping a piece of code in progn ap-

ply (note that wrap-rest-of-input wraps each form sepa-
rately).

Macro definitions can’t be wrapped. This is due to limi-
tations of hu.dwim.walker. If all the macro definitions are
top-level defmacro forms wrap-rest-of-input will do the
right thing.

Portability is limited by the hu.dwim.walker package. Cur-
rently the library is known to be usable on SBCL and CCL
and broken on ECL and CLISP.

3.2 Conclusion
Our testing shows that the wrapper provides reliable ac-

cess to local variables.
We think that this library can make debugging easier in

many cases. Impossibility to enforce local variable availabil-
ity seems surprising (and confusing) to newcomers; we hope
that our work can make Lisp slightly more accessible for
programmers coming from other languages.

We plan to fix some of the limitations in future. We will be
grateful for pointing out corner cases that we have missed.
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ABSTRACT
We will demonstrate how to build Common Lisp programs using
Bazel, Google’s hermetic and reproducible build system. Unlike
the state of the art so far for building Lisp programs, Bazel en-
sures that incremental builds are always both fast and correct. With
Bazel, one can statically link C libraries into the SBCL runtime,
making the executable file self-contained.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques

Keywords
Bazel, Build System, Common Lisp, Determinism, Hermeticity,
Reproducibility

1. INTRODUCTION
Common Lisp, a general-purpose programming language, is used

at Google for the well-known low-fare search engine QPX (de
Marcken 2001). Google now builds its Lisp code incrementally,
using Bazel, its recently open-sourced scalable build system.

Bazel is designed to build software in a reproducible and her-
metic way. Hermeticity means all build dependencies, including
build tools such as compilers, are kept under source control. Bazel
can thus assess what was or wasn’t modified, and either rebuild or
reuse cached build artifacts. Reproducibility means building the
same target multiple times from the same source code produces
the same output. Reproducibility facilitates testing and debugging
production code. Bazel further enforces determinism by executing
each build action in a container wherein only declared inputs may
be read, and any non-declared output is discarded. Bazel can thus
parallelize build actions, either locally or to remote workers. Bazel
supports writing software in a mix of languages notably including
C++, Java, Python, Go and Javascript. Compilers and other build
tools must be tuned to remove sources of non-determinism such as
timestamps, PRNG seeds, etc.

While mainly written in Java, Bazel is extensible using Skylark, a
subset of Python with strict limits on side-effects. We used Skylark
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to add support for building software written in Common Lisp.

2. PREVIOUS WORK
The state of the art so far for building large Common Lisp appli-

cations is ASDF (Rideau 2014). A descendent of the original Lisp
DEFSYSTEM from the 1970s, ASDF builds all the code in the cur-
rent Lisp image; incremental builds may therefore be affected by
all kinds of potential side-effects in the current image; and to guar-
antee a deterministic build one has to build from scratch. ASDF
also lacks good support for multi-language software. An attempt to
build Lisp code deterministically, XCVB (Brody 2009), failed for
social and technical reasons, though it had a working prototype.

Meanwhile, QPX was built using an ad-hoc script loading hun-
dreds of source files before compiling them and reloading the re-
sulting FASLs. The multi-stage build was necessary because of
circular dependencies between the files; the dependencies formed a
big "hairball" which any replacement build solution had to handle.

3. BUILDING LISP CODE WITH BAZEL
The input to Bazel is a set of BUILD files with Python-like syn-

tax, that declaratively specify software targets using rules.
Our first Lisp support function, lisp_library, declares an

intermediate target which can be referenced from other Lisp rules.
With SBCL (Steel Bank Common Lisp), lisp_library creates
a FASt Load (FASL) archive by concatenating the FASL files pro-
duced by compiling each of its Lisp sources.

Bazel users specify attributes when defining rules. For Lisp
rules, these include the Lisp sources srcs, Lisp libraries deps,
C sources csrcs and C libraries cdeps, auxiliary data avail-
able at runtime to all executable targets depending on the library,
and auxiliary compile_data available at compile-time.

Lisp rules have additional build options. The order attribute
notably specifies a build strategy; the default "serial" order
loads each source file in sequence before compiling the next file.
The "parallel" order compiles all files in parallel without load-
ing other ones. The "multipass" order first loads all source
files, then compiles each one separately in parallel, which is useful
to handle a "hairball" aggregate.

load("@lisp__bazel//:bazel/rules.bzl",
"lisp_library")

lisp_library(
name = "alexandria",
srcs = ["package.lisp",

# ...
"io.lisp"],

visibility = ["//visibility:public"])
The above example is from the BUILD file for the "alexandria"

general utility library. Bazel first loads lisp_library from
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its conventional build label under the lisp__bazel "external
repository". The visibility attribute indicates which Bazel
packages are allowed to reference the rule’s target — in this case,
all packages.

The following command builds alexandria.fasl and makes
it available at a well defined path:

bazel build :alexandria
Our second function, lisp_binary, creates an executable in-

cluding both Lisp runtime and Lisp core image. If Lisp or C sources
are specified, they will be compiled into corresponding Lisp and C
components before being statically linked into the final binary. Our
third function, lisp_test, is a variation on the lisp_binary
rule meant to be invoked with the bazel test command.

load("@lisp__bazel//:bazel/rules.bzl",
"lisp_binary")

lisp_binary(
name = "myapp",
srcs = ["myapp.lisp"],
main = "myapp:main",
deps = [

"@lisp__alexandria//:alexandria"])
This BUILD file contains a lisp_binary target which refer-

ences the "alexandria" BUILD target seen before. When running
the binary, the Lisp function myapp:main will be called with no
arguments at startup. The program may be compiled and executed
using:

bazel run :myapp
A lisp_binary can directly or transitively depend on C or

C++ libraries. Static linking of the libraries makes it more reliable
to deploy such a binary on multiple hosts in the cloud, without
the opportunity to get library dependencies wrong; in particular, it
helps with minimizing discrepancies between test and production
environments. C and C++ dependencies can be specified via the
cdeps rule attribute, which can refer to any cc_library built
with Bazel. The csrcs and copts rule attributes allow to directly
specify C source files for which an internal target will be generated.

Thanks to these build rules, the duration of the incremental QPX
build went from about 15 minutes to about 90 seconds, with quali-
tative effects on developer experience. However, this is for a large
project, using a computing cloud for compilation. The open source
version of Bazel currently lacks the ability to distribute builds, but
it can already take advantage of multiple cores on a single ma-
chine. The typical Lisp user will therefore not experience as large
a speedup when using the Bazel lisp rules.

4. INSIDE THE LISP RULES
Lisp support was implemented using Bazel’s Skylark extension

language. The functions lisp_library, lisp_binary and
lisp_test are Skylark macros calling internal implementation
rules. A Skylark macro is basically a Python function that is ex-
ecuted by Bazel at the time the BUILD file is loaded and invokes
the actual Skylark rules as side-effects. A Skylark rule consists
of an implementation function and a list of attribute specifications
that notably define type-checked inputs and outputs for the rule’s
target. The Lisp support macros establish two separate graphs for
each of the Lisp and C parts of the build, that are connected at
the final binary targets. Thus, the lisp_library macro calls
the _lisp_library rule to create Lisp related actions, and also
calls the make_cdeps_library macro to create the C related
targets using Skylark’s native.cc_library.

The rules compile C sources and Lisp sources in parallel to each
other, and the resulting compilation outputs are combined together
in the last step. This improves the build parallelism and reduces

the latency. In order to facilitate linking, all C symbols referred to
at Lisp-compilation time are dumped into a linker script file. The
final linking step uses that .lds file to include from C libraries
only the referenced objects, and to statically detect any missing or
misspelled C symbol. The lisp_binary and the lisp_test
macros then create the executable by combining the runtime of
SBCL linked with additional C libraries and a core image dumped
after loading all FASLs.

The _lisp_library rule implementation compiles each file
in a new Lisp process (possibly on remote worker machines) that
will first load all the Lisp source files from all the transitive de-
pendencies as well as relevant files from the current rule (depend-
ing on the order attribute). This is faster than loading FASLs,
thanks to SBCL’s fasteval interpreter (Katzman 2015), written
specifically to speed up building with Bazel; this also enables all
compile actions to run in parallel, whereas loading FASLs would
introduce long chains of dependencies between actions and cause
high latency. On the downside, some source files must be fixed
to add missing :execute situations in eval-when forms, and
optionally to explicitly compile computation-intensive functions
used at compile-time.

The _lisp_library implementation also returns a provider
structure containing transitive information about: all Lisp sources
loaded; all reader features declared; runtime and compile-time data
for each library; FASLs from each lisp_library target, used
when linking the final binary target; deferred warnings from each
compilation — mostly for undefined functions — checked after all
FASLs have been loaded into the final target.

5. REQUIREMENTS
The Lisp support for Bazel so far only works on SBCL, on the

x86-64 architecture, on Linux and MacOS X. It shouldn’t be hard
to make it work on a platform supported by both SBCL and Bazel.
However, porting to another Lisp implementation will be non-trivial,
notably with respect to linking C libraries statically or to achieving
latency as low as with the fasteval interpreter.

Bazel itself is an application written in Java. It takes seconds to
start for the first time; then it becomes a server that can start an
incremental build instantly but consumes gigabytes of memory.

6. CONCLUSION AND FUTURE WORK
We have demonstrated simultaneously how Common Lisp appli-

cations can be built in a fast and robust way, and how Bazel can be
extended to reasonably support a new language unforeseen by its
authors. Bazel may not be a lightweight solution for writing small
programs in Lisp; but it is a proven solution for building large in-
dustrial software projects tended by several groups of developers
using multiple programming languages, including Lisp.

In the future, we may want to add Lisp-side support for interac-
tively controlling Bazel: we would like to be able to build code,
and load the result code into the current image, without reloading
unmodified FASLs and object files.

Our code is at: http://github.com/qitab/bazelisp
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ABSTRACT
Functional programming languages, like Lisp or Racket are
known to be general purpose languages with a steep learn-
ing curve and wide range of applications. They can be used
interactively to solve problems and have inspired other com-
parably new languages with respect to functional extensions
(e.g. Python or Swift). In this work, we will demonstrate the
use of the Racket programming language with respect to fast
interactive computer vision. Based on the VIGRACKET
module, which combines the best of the compiled and in-
teractive worlds with respect to common tasks in computer
vision, Racket and the VIGRA C++ library (see [4]), we
will present a (near-) realtime computer vision demo. For
this demo we have selected the Microsoft Kinect Sensor as
the continuous the image source. We present the connection
to the sensor by means of image transfer to Racket and a
case study: a natural pointer interface for human computer
interaction.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming—Allegro Common Lisp, SBCL, Racket ;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces, software libraries;
I.4.8 [Image Processing and computer vision]: Scene
Analysis

1. INTRODUCTION
In [4] we have presented how well functional programming

and computer vision approaches may be combined by means
of the VIGRACKET library. Like other state-of-the-art in-
teractive development environments, functional language in-
terpreters natively offer an interactive development cycle,
generic modeling and even powerful garbage collectors. So,
instead of using a new language with functional extensions,
like Swift, Python or others, why not simply use well-known
functional languages like Lisp or Racket?
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The main aim of this paper is to demonstrate the use
of the extended VIGRACKET module with respect to the
Kinect sensor as a data source. Since the VIGRACKET
module has been developed to introduce computer vision to
Racket, neither to support interactive realtime processing
nor to support fast functional development interfaces or fast
visualizations, some optimizations were additionally needed.
For sake of clarity of this demo, these optimization steps
can be found elsewhere (see [3]). Herein, we present how to
connect with the Kinect sensor to Racket, acquire images
and to use the acquired images by means of an interactive
natural pointing device interface.

2. PRELIMINARIES
To run the demonstration, some preliminaries need to be

fulfilled. Besides Racket, the VIGRACKET module needs to
be downloaded and installed from the author’s GitHub ac-
count: https://github.com/bseppke. Depending on the tar-
get’s operating system, this module may require additional
dependencies, which are described in [4].

Since the VIGRACKET module is not an acquisition li-
brary, it does not support real-time acquisition devices. For
this demonstration, we have selected the Microsoft Kinect
sensor as the acquisition device, and the OpenKinect libfreenect
library for accessing the sensor. Unfortunately, this library
does provide interaction layers for Python and Java, but
none for Racket (see [5]). Based on a low level USB-interface
(via the libusb), the libfreenect library allows access to all
the necessary data. In order to avoid concurrent asynchronous
calls and callbacks, we use the synchronous grabbing access
API. Finally, it is necessary to download and install the
“rackinect” Module from the same GitHub account as men-
tioned above.

3. CONNECTION TO THE KINECT
Since the image formats of the raw data, which are used

by the libfreenect library, are not compatible with the im-
age representation of the VIGRACKET module, we need
to introduce another small Racket/C-wrapper, to which we
refer to as “rackinect”. On the Racket side of this wrap-
per we define grabbing functions for the acquisition of the
raw data. The function (grabdepth) grabs the depth data
(in mm) and stores it inside a newly allocated one channel
VIGRACKET image. The function (grabvideo) grabs the
current RGB image and stores it by means of a new three
channel VIGRACKET image. Finally the (grabdepth+video)
grabs both data and stores it by means of new a four chan-
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Figure 1: Image taken out of the sequence we get by calling (animate live-view-combined). Left: RGB
image, center: current tick and refresh counter, right: depth image. Since the depth values are normalized
to millimeters, there is one overflow each 25.5 cm. Black parts of the depth image denote unknown depth.

nel VIGRACKET image, where the first channel contains
the depth data (in mm) and the last most three channels
contain the RGB data.

As a first demonstration, we present the use of both func-
tions for a near real-time depth and video display GUI. Here
we use the animate functionality of Racket’s 2htdp/universe
module (see [1]). It takes a function with one argument and
a Racket bitmap as a result type and calls the given func-
tion 28 times per second using an increasing argument t and
updates the images every fourth frame. An example output
is shown in Fig. 1.

( define dp ( grabdepth + video ))
( define d (image−> bitmap ( list (car dp ))))
( define p (image−> bitmap (cdr dp )))

( define (live−view−combined t [ update_each 4])
( when (= ( modulo t update_each ) 0)

( begin
(set! dp ( grabdepth + video ))
(image−> bitmap ( list (car dp )) d)
(image−> bitmap (cdr dp) p)))

( beside p ( status t update_each ) d))

( animate liveview−combined)

4. NATURAL POINTER INTERFACE
The computer mouse has probably been the most common

pointing device for human-computer interaction for decades.
Due to the electronic mobile revolution with tablets and
smartphones, we are now able to use our fingers directly as
pointing devices, e.g. by means of (multi-) touch displays.
Although this is closer to the “natural pointing” metaphor,
it is still artificial and might not be well applicable for gen-
eral virtual environments. The main limitation is the two-
dimensional interface, since virtual worlds are usually not as
flat as the displays’ touch surfaces.

The Microsoft Kinect sensor with its depth image stream
provides another alternative for a more natural pointer in-
terface by tracking your fingers movements (cf. [2]). To sim-
plify the finger detection, we make the following assumptions
for this case study:

1. Only a certain range of the depth data is allowed to

contain the image of the finger.

2. A finger pointer is defined as the top- and left-most
point, which is found within this range.

Under these assumptions, it is quite clear, that we will
detect one pointer position if any object is inside the depth
interval of interest. Since it is the top- and left-most po-
sition, it is not necessary, that the finger is put in front of
other objects, but above them. The first necessary step is
to threshold the raw depth image accordingly to the range
of the depth interval.

( define ( closerThan depth_img [t 800])
(image−map!

( lambda (val) (if (< 0 val t) 255.0 0.0))
depth_img ))

In this function we are able to use the in-place method
image−map! to save allocation costs, because the original
depth values are no longer needed in the further processing.
To find the top-left part of the thresholded depth image, we
may apply the function above while the result is true. The
first false coordinate denotes the pointer position. Experi-
ments have shown, that this approach works stable at about
5 frames per second (see [3]).
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ABSTRACT

A ”continuous integration” program development process in-
volves interpreting dependency relations

• between program components respective the given de-
velopment step, and

• between test and program components.
This essay describes how to capture these relations among

the entities of a Lisp system without a reified system descrip-
tion, but instead in a language which allows one to build,
test and deliver such systems by inferring the system man-
agement operations from that information which is implicit
in the source code, apparent in the state of the source arte-
facts, or to be captured introspectively in the running sys-
tem.

Categories and Subject Descriptors
[Information Systems Applications]: Query Languages,
Information systems, Resource Description Framework

1. INTRODUCTION
Any system which automates a program development pro-

cess will base its actions on a model for the relations among
the program’s components. The precedent for Lisp develop-
ment has been to construct the model from a system defini-
tion document and to manage and interpret the model with
functions implemented in the host language.[2][6]

2. AN IMPLICIT SYSTEM DESCRIPTION
It is possible to achieve the same ends through an alter-

native approach which relies on RDF[4][3] to capture the
description as a graph model and expresses logic to derive
build and test plans from the model in the RDF query lan-
guage, SPARQL[1]. The description in such a model is in
terms of an ontology derived from the W3C provenance on-
tology[5] and extended to refer to entity classes and prop-
erties in accord with the terms used for source code man-
agement. Within this ontology, one might describe a very
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Figure 1: The system description ontology

simple system, such as

example

|-- file1.lisp

|-- file2.lisp

|-- file3.lisp

|-- package.lisp

\-- test.lisp

with content, such as

(in-package :example)

(defun function3 (arg)

(+ (function3-part1 arg) (function3-part2 arg)))

(defun function3-part1 (arg)

arg)

(defun function3-part2 (arg)

(function2 arg))

would yield a graph model which would include,

@prefix ssd: <http://dydra.com/schema/ssd#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ssd:Function#example:function3-part2

rdf:type ssd:Function ;

ssd#referenced

ssd:System#example/Function#example:function2 .

ssd:Pathname#/source/example/file3.lisp

a ssd:SourceFile ;

ssd:defines

ssd:Function#example:function3-part2 .
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ssd:Pathname#/source/example/file2.lisp

a ssd:SourceFile ;

ssd:defines

ssd:Function#example:function2 .

The representation offers in itself no great advantage over
the various system definition formats which have evolved
over the past decades. The benefit derives from the means
which can be applied to such models to infer and generate
plans for such operations as

• dependency-directed builds
• modification-directed builds
• dependency-directed testing
• system visualization
• version-specific regression testing.

It permits management facilities, in which the compo-
nents are decoupled through the mediation of a store, the
core management logic is articulated as a clear collection of
queries, and additional presentation and analysis facilities
can be easily applied to the stored system model.

source code
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For example, it is possible to introduce rules to infer indi-
rect dependency relations to render them apparent for path
navigation:

prefix ssd: <http://dydra.com/schema/ssd#>

construct {

?file1 ssd:requiredBy ?file2

} where {

?file1 ssd:defines ?function1 .

?file2 ssd:referenced ?function1 .

}

3. DEPENDENCY-DIRECTED BUILDING
Given the RDF model to describe the relations among

operators and between operators and source code entities in
terms of the illustrated ontology, it is possible to formulate
a query which infers the load process from the elementary
relations in the following manner.

prefix ssd: <http://dydra.com/schema/ssd#>

prefix prov <http://www.w3.org/ns/prov#>

prefix pav <http://purl.org/pav/>

select ?loadPathname

where {

?source ssd:requiredBy* ?dependentSource .

?source pav:authoredOn ?timeModified .

filter ( ?timeModified > ?SYSTEM_LOAD_TIME )

?dependentSource ssd:pathname ?sourcePathname .

?dependentSource pav:authoredOn ?sourceTime .

optional {

[] prov:used ?dependentSource ;

prov:generated ?dependentBinary ;

prov:endedAtTime ?binaryTime .

?dependentBinary ssd:pathname ?binaryPathname .

}

}

bind (if( bound(?binaryTime),

if ((?binaryTime > ?sourceTime),

?binaryPathname, ?sourcePathname ),

?sourcePathname )

as ?loadPathname )

The result is a list of those files which depend on any
file which has been modified subsequent to the last known
load, in an order which corresponds to their degree of depen-
dency on modified source files. In a similar manner, based
on a graph which captures code:refersTo relations from an
initial test run of an instrumented system, it is possible to
infer the test complement sufficient to cover a particular set
of source code changes.

prefix ssd: <http://dydra.com/schema/ssd#>

prefix prov <http://www.w3.org/ns/prov#>

prefix pav <http://purl.org/pav/>

select ?test

where {

?test code:refersTo+ ?function .

?source code:fileContainsDefOf ?function .

?source pav#authoredOn ?timeModified .

filter ( ?timeModified > ?SYSTEM_TEST_TIME )

}
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ABSTRACT
High Performance Computing (HPC) is the Formula 1 of
computer programming and deals with the solution of prob-
lems that have a practically inexhaustible demand for com-
pute resources, e.g. accurate physics simulations. We present
the library CL-MPI and how it can be applied to distribute
scientific computing workloads over several Lisp images and
computers.

In particular, we describe our work towards the paral-
lelization of Femlisp and the tools and techniques developed
in the process. Femlisp is a Common Lisp framework for
solving partial differential equations using the finite element
method.

Keywords
MPI, distributed computing, parallelization

1. INTRODUCTION
The Message Passing Interface[6] (MPI) is the de facto

standard for distributed programming on all modern com-
pute clusters and supercomputers. It features a large num-
ber of communication patterns with virtually no overhead.
Our work on bringing MPI functionality to Common Lisp
resulted in vast improvements to the message passing library
CL-MPI [1] and the development of several new approaches
to distributed computing.

2. DISTRIBUTED COMPUTING WITH CL-
MPI

The primary function of CL-MPI is to transmit subse-
quences of simple-arrays between collaborating processes.
The dynamic type system and the condition system of Com-
mon Lisp allowed for an API that is much cleaner and less
error-prone than the corresponding native interfaces to C
or Fortran as shown in Figure 1. Care was taken that the
convenience that is gained by automatically converting and
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ierr = MPI_Recv(&buffer, count, MPI_INT, src, tag,

MPI_COMM_WORLD, &status);

(mpi-recv buffer source) ; oh the clarity!

Figure 1: Comparing MPI bindings of C and Lisp

checking all arguments has little impact on the computa-
tional cost. In our measurements the transfer time for a
single message from one CPU core to another is below 500
nanoseconds (SBCL 1.2.4, OpenMPI 1.6, Intel i7-5500U @
2.40GHz).

2.1 Getting Started
An MPI application is launched by a call to mpiexec

-np N EXECUTABLE, which launches N identical processes on
one or more interconnected machines. To register as an
MPI application, each process has to call (mpi-init) ini-
tially and end with a call to (mpi-finalize). The indi-
vidual processes can use the commands (mpi-comm-rank)

and (mpi-comm-size) to obtain their unique process rank
and the total number of processes, respectively. Given those
numbers, it is possible to partition given tasks and compute
parts of them independently. The commands (mpi-recv

BUF RANK) on the receiving side and (mpi-send BUF RANK)

on the sending side can be used to communicate data where
necessary.

The previous six commands are already sufficient for suc-
cessful MPI programming. Figure 2 shows an implementa-
tion of the game “whisper down the lane” to illustrate the
concepts. The static-vectors [2] package is used to allo-
cate arrays with fixed memory locations.

It is recommended to use a utility like cl-launch or Roswell
to create a standalone Lisp executable before launching it
with mpiexec. A starting point to MPI programming is [4].

2.2 Advanced Usage
Now that MPI is accessible to Lisp, it is possible to ex-

plore new programming models for parallel computation in
a rapid fashion. Most prominently we have implemented a
distributed REPL, where commands are first broadcast to
all processes and then evaluated in parallel. This approach
is flexible, but erroneous communicating commands quickly
lead to deadlocks of all processes. We conclude that a higher
level of abstraction is necessary if one attempts to bring in-
teractive computing to a distributed system.
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(mpi-init)

(let* ((rank (mpi-comm-rank))

(size (mpi-comm-size))

(left-neighbor (mod (- rank 1) size))

(right-neighbor (mod (+ rank 1) size)))

(with-static-vector (buffer 14

:element-type ’character)

(cond ((= 0 rank)

(mpi-send "secret message" right-neighbor)

(mpi-recv buffer left-neighbor))

(t

(mpi-recv buffer left-neighbor)

(mpi-send buffer right-neighbor)))))

(mpi-finalize))

Figure 2: MPI ring, a.k.a whisper down the lane

3. DYNAMIC DISTRIBUTED OBJECTS
As a next step towards productive distributed high perfor-

mance computing, we introduce dynamic distributed objects
(short: DDO). These are regular CLOS objects that can be
shared across multiple processes.

3.1 Mechanics
Local modifications to a DDO are registered. A synchro-

nisation command can be issued, after which all DDOs with
local modifications broadcast their state to all other owners
of that object. Generic functions are invoked to resolve any
colliding modifications.

DDOs are not excluded from garbage collection. If an
object is locally garbage collected, the process broadcasts
that it is no longer an owner. This way garbage collection
works even across process boundaries.

3.2 Implementation
Each DDO on each process has a locally unique id. The

three place relation between the local id, the rank of a neigh-
bor process and the id of the same object on this neighbor
process is stored in red-black binary trees [5]. The mapping
from local ids to the actual objects is done via a weak hash
table to not interfere with regular garbage collection.

The synchronization of objects occurs in two steps. First,
all processes exchange a list of modifications they want to
broadcast. In the second step, the modifications of the in-
dividual objects are transferred with point-to-point commu-
nication.

4. APPLICATION TO FEMLISP
Finite Elements (FE) are a particularly successful method

for solving partial differential equations, which, in turn model
many important everyday problems. Since our world is
three-dimensional or (including time) four-dimensional, dis-
cretizing the continuum usually leads to very large discrete
problems, for which the solution on parallel architectures
becomes a necessity.

Our library Femlisp [3] is a FE framework which is writ-
ten completely in Common Lisp. Of course, this gives all
the benefits one expects from CL, for example, compact and
flexible code as well as interactivity. This flexibility is also
the main reason, why Femlisp offers a comparatively large
number of features (e.g. unstructured meshes in arbitrary

space dimensions, arbitrary approximation order) with rel-
atively little source code.

However, up to now, Femlisp has been a serial program,
which, as indicated above, is a major impediment for most
applications in scientific computing. Only recently, the situ-
ation has changed in such a way that a large part of Femlisp
became thread-safe so that multi-threading can be used for
some performance-critical sections.

Using the libraries CL-MPI and DDO, we have an addi-
tional level of parallelism available. The integration with
Femlisp is a work in progress, but important parts (refine-
ment, and discretization) are already parallelized. Only very
little additional code was needed for achieving this, and we
are very confident that this will be the case for the solver as
well.

As a simple and already working example, we show tim-
ings for assembling matrix and right-hand side for a diffu-
sion problem on a three-dimensional cube using a mesh with
4096 = 163 cells and an approximation order of 5, which cor-
responds to more than 550,000 scalar unknowns.

processes × threads 1×1 1×6 2×6 4×6
time (sec) 188 34 20 10
speedup - 1.7 3.4

We observe almost optimal speedup, which is to be ex-
pected because the communication overhead for discretiza-
tion involves only unknowns lying on lower-dimensional in-
terfaces, and, therefore, the number of communicated data
is of lower order compared with the total amount of data.

5. CONCLUSIONS
A lot of effort is currently put into the development of new

parallel computing paradigms, as the traditional methods
are no longer feasible on machines with several petaFLOPS1.
We believe that Common Lisp is an excellent vessel for such
kinds of exploratory programming and will continue our re-
search.
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