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Preface

Message from the Program Chair

Welcome to the 11thth edition of the European Lisp Symposium!

This year’s ELS demonstrates that Lisp continues at the forefront of experimental, academic,
and practical “real world” computing. Both the implementations themselves as well as their
far-ranging applications remain fresh and exciting in ways that defy other programming lan-
guages which rise and fall with the fashion of the day. We have submissions spanning from the
ongoing refinement and performance improvement of Lisp implementation internals, to prac-
tical and potentially lucrative real-world applications, to the forefront of the brave new world
of Quantum Computing.

Virtually all the submissions this year could have been published, and it was a challenge to
narrow them down enough to fit the program.

This year’s Program also leaves some dedicated time for community-oriented discussions, with
the purpose of breathing new life and activity into them. On Day One, the Association of Lisp
Users (ALU) seeks new leadership. The ALU is a venerable but sometimes dormant pan-Lisp
organization with a mission to foster cross-pollenization among Lisp dialects. On Day Two, the
Common Lisp Foundation (CLF) will solicit feedback on its efforts so far and will brainstorm
for its future focus.

On a personal note, this year I was fortunate to have a “working retreat” in the week prior to
ELS, hosted by Nick & Lauren Levine in their villa nestled in the hills above Marbella. This was
a renewing and reflective time which allowed me to recharge and recommit to going back to
the “real world” with a strong desire to do great things with Lisp. Thanks Nick and Lauren!

Wishing you all a wonderful time in (what should be a) sunny Marbella. I am honored to be of
humble service to this awesome community. Many Thanks,

Dave Cooper, writing from Marbella, April 12 2018.
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Message from the Local Chair

When I agreed to help organise the 2018 ELS I expected to be busy, to be stressed, and to end
up with a list of people with whom never to speak again. The reality has been different. Yes
I’ve been busy. Yes I’ve been stressed, but everyone I’ve had to work with has been unfailingly
helpful, from Didier, Dave, Nick and the rest of the ELS team to the local council representatives,
from the restaurant owners to the bus driver and tour guides. The result is that this has been a
very positive experience for me, for Nick I believe, and I hope that this will be reflected in what
should be a very positive experience for us all.

I hope that you all enjoy your time in Marbella.

Andrew Lawson, Marbella, April 13 2018
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Invited Contributions

Lisp in a Startup: the Good, the Bad, and the Ugly

Vsevolod Dyomkin, m8nware, Ukraine
Over the last 10 years of my software development career, I have mostly programmed in Com-
mon Lisp, in two distinct environments: open-source and startup (aka consumer Internet com-
panies). Among the startup projects, in which I managed to introduce Lisp, the most successful
is Grammarly where the system we had built continues to playa major role — more than two
years after my departure from the company — at the core of its intelligent product used by 10
million people daily.
In this talk, I’d like to share the success stories of developing a number of internet services
in Lisp and the merits of the Lisp enviornment that enabled those, as well as the flip sides
of the same stories that manifest the problems of the Lisp ecosystem — and propose possible
solutions to them. We’ll discuss where Lisp fits best and worst among the different professional
environments and why.

Vsevolod Dyomkin is currently employed as a Lisp consultant at Franz
Inc. working on AllegroGraph. He is a long-time Lisp enthusiast and
quit his job 9 years ago to program in Common Lisp: first, his own
projects, afterwards, in bigger companies and as a hired consultant. His
other area of interest is Natural Language Processing. He has developed
a number of open-source Lisp projects, the most notable of which is CL-
NLP — a yet incomplete Lisp NLP library. He’s also an author of "Lisp
Hackers" — a series of interviews with prominent Lisp programmers.
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This Old Lisp

R. Matthew Emerson, USA
Lisp was invented 60 years ago. Coral Common Lisp, the ancestor of today’s Clozure Common
Lisp, was released over 30 years ago.
Over this time, processor architectures and operating systems have come and gone, but Clozure
CL (under various names and forms) has survived and is still with us today.
Clozure CL, Common Lisp, and Lisp itself are the product of many intelligent and clever people.
Indeed, we find ourselves saying, with Newton, "If I have seen a little farther than others, it is
because I have stood on the shoulders of giants."
I will say a few words, looking down from the giant’s shoulders, on the subject of Clozure CL,
that old Lisp, including where it stands today, and how it might evolve in the future.

R. Matthew Emerson currently leads the development and maintenance
of Clozure Common Lisp, a free (Apache 2.0-licensed) Common Lisp
implementation. Formerly an employee of the Common Lisp consulting
company Clozure Associates, he now works on Clozure CL indepen-
dently.

Event Detection in Unstructured Text (using Common Lisp)

Jason Cornez, Spain
At RavenPack, we use Common Lisp to extract meaning from unstructured English text. The
focus is low-latency processing of real-time news feeds and blogs, to provide actionable intel-
ligence to our clients in the financial industry. This talk discusses our technology for detecting
events. We look at what we’ve done so far, what we are working on now, and some future
possibilities.

Jason joined RavenPack in 2003 and is responsible for the design and
implementation of the RavenPack software platform. He is a hands-on
technology leader, with a consistent record of delivering break-through
products.
A Silicon Valley start-up veteran with 20 years of professional expe-
rience, Jason combines technical know-how with an understanding of
business needs to turn vision into reality. Jason holds a Master’s De-
gree in Computer Science, along with undergraduate degrees in Math-
ematics and EECS from the Massachusetts Institute of Technology.
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Petalisp: A Common Lisp Library for Data Parallel Programming
Marco Heisig

FAU Erlangen-Nürnberg
Cauerstraße 11

Erlangen 91058, Germany
marco.heisig@fau.de

ABSTRACT
We describe the design and implementation of Petalisp — a Com-
mon Lisp library for data parallel programming. At its core, Petal-
isp is a lazy, functional array language. All its statements are an-
alyzed, simplified and compiled at runtime. This approach limits
expressive power and introduces significant overhead, but also un-
locks unprecedented potential for optimization.

We explain Petalisp from a users’ perspective, compare its per-
formance with other libraries for data parallel computation and
finally discuss important facets of our implementation.

CCS CONCEPTS
•Software and its engineering →Parallel programming lan-
guages; Distributed programming languages; Functional lan-
guages; Data flow languages; Just-in-time compilers;

KEYWORDS
High Performance Computing, Common Lisp, Compilers, SIMD
ACM Reference format:
Marco Heisig. 2018. Petalisp: A Common Lisp Library for Data Parallel
Programming. In Proceedings of the 11th European Lisp Symposium, Mar-
bella, Spain, April 16–17 2018 (ELS’18), 8 pages.
DOI:

1 INTRODUCTION
For the last 50 years, the performance of our computers has dou-
bled roughly each 20 months — an effect known as Moore’s law.
However, Gordon Moore’s original prediction in 1965 was never
about performance, but about the complexity of integrated circuits.
In other words, the transistor count and resulting complexity of
our computers has grown exponentially for more than 50 years.
Translating this transistor count into performance is not for free.
It led to the introduction of superscalar execution, speculative ex-
ecution, vector instructions, caches, out-of-order execution, simul-
taneous multithreading, multicore CPUs, cache coherent NUMA
domains, hybrid hardware and distributed systems. We expect
to see even more such technologies, now that our semiconductor
manufacturing processes start to hit physical limits.

Each of these technologies places a burden on the performance-
aware programmer. The time it takes to develop efficient, parallel

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
ELS’18, Marbella, Spain
© 2018 Copyright held by the owner/author(s). 978-2-9557474-2-1…$15.00
DOI:

software grows at a steady pace. Today, developing a physics sim-
ulation to efficiently utilize a parallel machine often takes longer
than a PhD thesis. The consequence is that many important scien-
tific problems are not solved due to a lack of software.

To address this important issue, we propose a programming
model where the software sacrifices a portion of its resources at
runtime to remove the burden of parallel programming entirely
from the user. In this model, it must be possible to reliably predict
the complexity of future tasks and optimize the schedule, memory
layout and code accordingly. The goal is not to develop another
general purpose programming language, but to provide a special
purpose tool for structured, inherently parallel programs. In its do-
main, it should rival human expert programmers in skill, but act in
a timeframe of microseconds. The result of these considerations is
the library Petalisp1.

2 PREVIOUS WORK
The idea to develop specialized programmingmodels for data paral-
lel programming is not new. There are dedicated array languages,
such as APL (Iverson 1962) and its descendants, data parallel ex-
tensions for imperative languages, such as High Performance For-
tran (Forum 1997), Fortran coarrays (Reid 2010) and CUDA (Nick-
olls et al. 2008) and fully developed general purpose languages
with particular support for parallel computing, such as SISAL (Mc-
Graw et al. 1983), ZPL (Snyder 2007), NESL (Blelloch et al. 1994),
SAC (Grelck and Scholz 2007), SequenceL (Nemanich et al. 2010),
Chapel (Chamberlain et al. 2007), X10 (Charles et al. 2005) and
Fortress (Steele 2006). The Lisp language alone spawned plenty of
research on parallel computing, such as Qlisp, Multilisp, PaiLisp,
Concurrent Scheme and Parcel (Ito 1990), as well the data paral-
lel Lisp dialects *Lisp (Massar 1995) and Connection Machine Lisp
(Steele and Hillis 1986).

Our work has been influenced by the design decisions and ex-
periences with most of these tools, but also differs in some signifi-
cant aspects. The pivotal difference is that Petalisp only ever gen-
erates and compiles code at runtime. This increases the compiler’s
knowledge far beyond what any ahead-of-time compiler can hope
to achieve. Our main challenge will be to keep the resulting run-
time overhead within reasonable bounds.

3 USING PETALISP
Data structures are a fundamental concept in computer science. In
classical Lisps, this role is filled by the cons function. While ele-
gant, this approach produces data structures that are far too hetero-
geneous for any automatic parallelization. Instead Petalisp oper-
ates exclusively on strided arrays. Strided arrays are an extension

1www.github.com/marcoheisig/Petalisp
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of classical arrays, where the valid indices in each dimension are
denoted by three integers: The smallest admissible index, the step
size and the highest admissible index. More precisely, we define
strided arrays as:

Definition 1 (strided array). A strided array in n dimensions is a
function from elements of the cartesian product of n ranges to a
set of Common Lisp objects.

Definition 2 (range). A range with the lower bound xL , the step
size s and the upper bound xU , with xL , s, xU ∈ Z, is the set of
integers { x ∈ Z | xL ≤ x ≤ xU ∧ (∃k ∈ Z) [x = xL + ks] }.

As a convenience feature, Common Lisp arrays and scalars are
automatically converted to Petalisp strided arrays when necessary,
rendering the distinction almost invisible to the user.

Working exclusively with strided arrays allows us to perform
many domain-specific optimizations that are not possible in the
general case. Our philosophy is that a reliable tool for a narrow
domain is more useful that a mediocre general-purpose library. Be-
sides, workingwith arrays is a relatively common case inmany dis-
ciplines, such as image processing, data analysis or physics simula-
tion. Finally, we want to point out that strided arrays may contain
objects of any type, e.g. conses or hash tables.

3.1 Index Spaces
In order to denote strided arrays of a particular size, or to select a
subset of the values of a strided array, we introduce index spaces
as tangible objects. Index spaces can be created using the notation
shown in figure 1.

(σ) ; the zero-dimensional space
(σ (0 1 8) (0 1 8)) ; index space of a 9 × 9 array
(σ (0 8) (0 8)) ; ditto
(σ (10 2 98)) ; all even two-digit numbers
(σ (x0 2 xN)) ; using variable bounds
(σ (1 2 3) (1 2 3) (1 2 3)) ; corners of a 3 × 3 × 3 cube

Figure 1: A notation for strided arrays index spaces.

3.2 Transformations
A crucial difference between Petalisp and many other parallel pro-
gramming models is that the motion of data is restricted to affine-
linear transformations and permutations. This design strikes a bal-
ance between the expressiveness on the one hand and the need
to perform accurate code analysis on the other hand. To denote
such transformations, we introduce transformations themselves
as instances of a subclass of funcallable-standard-object
and choose a notation for them that is deliberately similar to a
lambda form. The body forms of a transformation may contain ar-
bitrary Common Lisp code, as long as the net effect is that of an
affine-linear operator2. Examples of transformations are given in
figure 2.

2There is no magic involved here — we evaluate the forms multiple times to uniquely
determine all coefficients of the transformation. With some further evaluations, we
can even detect and report most functions that are not affine-linear.

(τ () ()) ; mapping the empty space to itself
(τ (i) ((+ i a))) ; shifting all indices by a
(τ (i) ((* 2 i))) ; doubling all indices
(τ (i j) (j i)) ; switching 1st and 2nd dimension
(τ (i j) (i j 2)) ; increasing the dimension
(τ (i 1) (i)) ; decreasing the dimension

Figure 2: A notation for affine transformations.

Affine-linear transformations are automorphismswithmany de-
sirable properties: They can be stored using only three rational
numbers per dimension and the composition and inverse of such
transformation always exists and is again affine-linear. This knowl-
edge permits our implementation to perform surprisingly smart
code transformations later on.

3.3 Moving Data
The most important tool for data creation and movement is the ->
function3. It takes any array or scalar as its first argument and
produces a new data structure according to the supplied transfor-
mations and index spaces. Each index space is either interpreted as
a selection of a subset, or as a broadcasting operation — depending
on whether it is smaller or larger of the current index space.

(-> 0 (σ (0 9) (0 9))) ; a 10 × 10 array of zeros
(-> #(2 3) (σ (0 0))) ; the first element only
(-> A (τ (i j) (j i))) ; transposing A

Figure 3: Using the -> function.

Two further functions are provided to combine the values of
several arrays into a single one. The fuse function creates an array
containing the combined values of several supplied arrays. This
requires that the supplied arrays are non-overlapping and that the
union of their index spaces is again a strided array index space.
The fuse* function is almost identical, yet permits overlapping
arguments, in which case the values of the rightmost arguments
are chosen. Usage of these functions is illustrated in figure 4.

(defvar B (-> #(2) (τ (i) ((1+ i)))))

(fuse #(1) B) ; equivalent to (-> #(1 2))
(fuse #(1 3) B) ; an error!
(fuse* #(1 3) B) ; equivalent to (-> #(1 2))
(fuse* B #(1 3)) ; equivalent to (-> #(1 3))

Figure 4: Using fuse and fuse*.

3.4 Two Types of Parallelism
Up to now, we have shown how strided arrays can be created,
moved and combined, but not how to operate on them. Inspired by
CM-Lisp (Steele and Hillis 1986), we provide a function α to apply
3This function name seems hardly ideal. We welcome any constructive discussion
regarding the API of Petalisp.
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an n-ary function to n supplied data structures and a function β to
reduce the elements of a strided array along its last dimension with
a given binary function, as seen in figure 5. These functions are es-
sentially the parallel counterparts of map and reduce. A small,
but crucial difference is that the functions passed to α and β must
be referentially transparent.

(α #'+ 2 3) ; adding two numbers
(α #'+ A B C) ; adding three arrays element-wise
(α #'sin A) ; the sine of each entry

(β #'+ #(2 3)) ; adding two numbers
(defvar B #2A((1 2 3) (4 5 6)))
(β #'+ B) ; summing the rows of B

Figure 5: The functions α and β.

3.5 Triggering Evaluation
The observant reader might have noticed that, so far, we have not
shown any results of a call to a Petalisp function. This is where
the lazy, functional nature of the language comes into play. Each
result is an instance of a subclass of strided-array, whose di-
mension and element type are known, but whose values have not
been computed. This behavior is illustrated in figure 6.

(-> #(1 2 3))
=> #<strided-array-immediate #(1 2 3)>

(α #'cos #(4 5 6))
=> #<strided-array-application t (σ (0 1 2))>

(-> 1 (σ (2 2 8)))
=> #<strided-array-reference bit (σ (2 2 8))>

Figure 6: Petalisp calls return unevaluated strided arrays.

The reasoning behind this lazy semantics is that the high-level
behavior of parallel algorithms is often independent from the con-
tents of the data structures they manipulate. Whenever actual ar-
ray values are required, their evaluation must be triggered explic-
itly. To do so, we provide a function compute to force evaluation
and return a Common Lisp array with the contents of the given
strided array. For ease of use, any array strides and starting in-
dices are stripped in the process and zero dimensional arrays are
converted to corresponding scalars. Usage examples are shown in
figure 7.

(compute (-> 0.0 (σ (0 1)))) => #(0.0 0.0)
(defvar A #(1 2 3))
(compute (-> A)) => #(1 2 3)
(compute (β #'+ A)) => 6
(compute (-> A (τ (i) ((- i))))) => #(3 2 1)

Figure 7: Using the compute function.

(β #'+1

(α #'*2

(-> A (τ (m n) (m 1 n)))3

(-> B (τ (n k) (1 k n)))))4

Figure 8: The matrix multiplication of matrices A and B.

As an optimization, Petalisp also features another function —
schedule— that takes any number of strided arrays as arguments
and returns immediately. Its sole purpose is to hint that these val-
ues should be computed asynchronously. This way, it is possible
to overlap ordinary Lisp computation and Petalisp computation in
many cases.

3.6 Example: Matrix Multiplication
The preceding sections exhaustively describe the API of Petalisp.
To increase confidence that these few functions and macros are in-
deed sufficient to denote complex programs, we do now describe
an implementation of the product C of two matrices A and B, ac-
cording to the following definition:

Ci j =
n∑

p=1

AipBpj (1)

The equivalent Petalisp program is given in figure 8. It starts by
reshapingA and B to three dimensional arrays of sizem×1×n and
1 × k × n, respectively. Then it relies on the implicit broadcasting
of α to obtain a m × k × n cube of the products of the elements
of A and B. It then uses the β function to sum the elements of
the last dimension of this cube to obtain the m × k result matrix
C . While this notation is hardly intuitive, it perfectly captures the
data parallel nature of the problem and is almost as short as the
original definition.

4 IMPLEMENTATION
4.1 Evaluation of Petalisp Programs
The evaluation of Petalisp programs consists of two phases. In the
first phase, ordinary Common Lisp code calls Petalisp API func-
tions to define strided arrays. Each strided arrays is an ordinary
CLOS object that tracks how its elements could be computed from
the values of other strided arrays. In the second phase, the eval-
uation of certain strided arrays is initiated by a call to compute
or schedule. From this point on, we exploit the fact that each
strided array and its inputs can also be viewed as nodes in a data
flow graph. Our implementation differentiates between five differ-
ent kinds of nodes:

• immediate Values of these nodes can be accessed in
constant time, e.g. because they are internally stored in
a Common Lisp array.

• application These nodes represent the element-wise ap-
plication of a function of n arguments to n strided arrays.

• reduction These nodes represent the reduction of the
last dimension of a given strided array with some binary
function.
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• fusion A fusion node represents a strided array contain-
ing all the values of a given set of non-overlapping strided
arrays.

• reference These nodes represent a selection of a subset
of the values of a strided array, a transformation of the
index space of a strided array, or a broadcasting operation.

These five kinds of nodes exhaustively define the intermediate
language that is passed to our compiler. We further impose the
restriction on the user, that all Common Lisp functions that are
used to construct application or reduction nodes must be referen-
tially transparent. The result is a dream come true for any com-
piler writer — our intermediate language has only five statements,
no control flow and is far from Turing-complete. An example of
such a data flow graph is given in figure 9.

The price we have to pay for this simplicity is that each desired
operation must be constructed, compiled and executed at runtime.
Furthermore there is, at least conceptually, no reuse of compiled
code. Each program is immediately discarded after the evaluation.
And finally, each conditional statement that depends on the value
of a strided array introduces significant latency — at least as long
as it takes to return the value to Common Lisp, perform the test,
assemble a new Petalisp program and compile it.

Given these considerations, we see that the latency and through-
put of our compiler completely determines the applicability of our
method. In the next subsections, we will discuss how we deal with
this challenge.

4.2 Type Inference
We implemented a simple type inference engine to estimate the
return type of known functions. Known functions are these from
the CL package and functions that have been explicitly introduced
by the user. Because we only ever deal with data flow graphs, in-
ferring the element type of each node can be done directly during
node creation, using the type information of its inputs. Our type
system is pragmatic in that it only considers those types that can
be represented as a specialized array by the host Common Lisp im-
plementation. Luckily, this usually includes floating-point num-
bers and complex floating-point numbers, which are particularly
relevant to numerical applications.

4.3 Data Flow Graph Optimization
Conceptually, the API functions α, β, fuse, fuse* and -> allocate
one or more data flow nodes to express the relation between the
values of their inputs and output. To reduce the number of data
flow node allocations and also the size of the programs passed to
the compiler, we perform many optimizations already at node cre-
ation time. In particular, we perform the following optimizations:

• Consecutive reference nodes can be combined into a sin-
gle reference node, using the functional composition of
their transformations and by determining the appropri-
ate transformed subspace. This is unconditionally possi-
ble, because all Petalisp transformations are known to be
affine-linear.

• Reference nodes that neither transform, nor broadcast, nor
select only a subset of their input are replaced by their in-
put.

• Fusion nodes with a single input are meaningless and can
be replaced by their input.

• Application nodeswhose inputs are immediate nodeswith
only a single element are eagerly evaluated.

One consequence of these optimizations is that there can never
be more than a single consecutive reference node. Or put differ-
ently: User code can use any level of indirection, like switching
from zero-based arrays to one-based arrays or using different co-
ordinate systems, without any performance penalty.

4.4 Kernel Creation
In our terminology, a kernel is a computation that is identically
applied to all elements of a certain iteration space. Each kernel
can reference any number of arrays and write to a single target
array. The address computation of each array reference in a ker-
nel must be an affine-linear function of the current point in the
iteration space. A trivial way to obtain such kernels would be to
turn each application, reduction and reference node into a kernel
and each fusion node with n inputs into n kernels. However, the
performance of this approach would be abysmal — each function
call would reside in its own kernel and the result of each operation
would have to be written to main memory.

Our challenge is now twofold: We want to determine kernels of
maximal size and we want this algorithm to be extremely efficient.
The size of the kernel is important, because data within a kernel
can be passed via CPU registers instead of main memory. The ker-
nel creation efficiency is a concern because the partitioning of data
flow problems into kernels is a non-parallelizable bottleneck of ev-
ery Petalisp program.

The first step of our algorithm is the detection of critical nodes.
In our terminology, a critical node is a node that is referenced by
multiple other nodes, or appears as the input of a broadcast oper-
ation. These nodes are the only ones that must be stored in main
memory to avoid redundant computation. We obtain these nodes
with a single traversal of the data flow graph, using a hash table to
keep track of the users of each node.

Once the set of critical nodes has been found, we know that all
remaining nodes have at most one user. As a result, each critical
node, together with all its inputs up to the next critical node, form a
tree. Figure 9 is an example of such a tree, where the only critical
nodes are the immediate nodes and the final fusion node. Each
such tree can be further simplified by lifting all reference nodes
upwards until they reach the leaf nodes and merging them into
a single one. Additionally, all fusion nodes can be eliminated by
splitting the space of the target node into suitable fragments. Each
of these fragments is now the root of a tree whose only interior
nodes are application and reduction nodes and where each leaf is
a single reference to a critical node.

In the final step, each fragment space of each critical node is
turned into its own kernel. For the example in figure 9, we ob-
tain three kernels, corresponding to the three inputs of the fusion
node. The first two kernels simply copy boundary values from
some other immediate. The third kernel, that is executed for all
interior points of the grid, computes the sum of four references to
some other array, multiplies it by 0.25 and stores it at the respec-
tive place in the target array.
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fusion
(σ (0 1 9) (0 1 9))

reference
(τ (i j) (i j))

(σ (0 9 9) (0 9))

reference
(τ (i j) (i j))

(σ (1 8) (0 9 9))

application
*

(σ (1 8) (1 8))

immediate
(σ (0 9) (0 9))

reference
(τ (i j) ())

(σ (1 8) (1 8))

application
+

(σ (1 8) (1 8))

immediate
(σ)

#0A0.25

reference
(τ (i j) ((- i 1) j))

(σ (1 8) (1 8))

reference
(τ (i j) ((1+ i) j))

(σ (1 8) (1 8))

reference
(τ (i j) (i (- j 1)))

(σ (1 8) (1 8))

reference
(τ (i j) (i (1+ j)))

(σ (1 8) (1 8))

immediate
(σ (0 9) (0 9))

Figure 9: The data flow graph of a single Jacobi iteration on a 10×10 grid.

4.5 Modular Backends
Up to this point, all considerations were independent of the target
hardware. But for the next steps — scheduling and code genera-
tion — the available resources are significant. Modeling these re-
sources is a challenging problem. Modern hardware is increasingly
heterogeneous, with multiple cores, sockets and special purpose
accelerators. This problem is amplified in the case of distributed
computing.

Our solution is to introduce a flexible, CLOS-based protocol for
execution contexts. Every call to schedule or compute occurs in
the context of a particular execution context we call backend. A
backend is a CLOS object, featuring a single generic function as
entry point. This method receives a list of nodes and turns them
asynchronously into immediate nodes. It returns a request object
to wait for the asynchronous computation to finish.

This approach is essentially a variant of Context-oriented pro-
gramming (Hirschfeld et al. 2008). Petalisp programs are always
executed in the context of a particular backend. One of the bene-
fits of modeling the target platform this way is that functionality
like the scheduling algorithm or the caching of compiled code can
be shared between all backends by means of inheritance.

Our implementation contains already several specialized back-
ends. In particular, we provide a slow, obviously correct reference
backend and a fast backend that generates optimized Lisp code and
uses the Lisp compiler of the host system. The latter has been used
to conduct the performance measurements in section 5.

4.6 Scheduling
Once a data flow graph has been partitioned into kernels and ker-
nel targets, it is passed to a particular backend for execution. The

job of the backend is now to derive a valid order of execution and
memory allocation scheme.

At the moment, the scheduling strategy of our implementation
is to evaluate each critical node in depth-first order of dependen-
cies. This simple technique is sufficient for many iterative algo-
rithms, where there is only a single, long dependency chain. We
intend to use a more sophisticated scheme in the future. For mem-
ory management, we use a memory pool, where each allocation
first checks whether an array of suitable size and element type is
already in the pool and allocates one otherwise. Then we use a ref-
erence counter for each array and add it back to the memory pool
once this counter reaches zero. This scheme excels for algorithms
with many same-sized intermediate arrays, but is wasteful in the
general case.

4.7 Kernel Evaluation
The final step in the evaluation of a Petalisp program is the evalu-
ation of individual kernels. At this point, data dependencies and
memorymanagement have already been taken care of by the sched-
uler and the only remaining task is to generate fast code for each
kernel, compile it, and execute it for the given iteration space. Given
that kernels are the smallest unit of work in our system, it seems
prohibitively expensive to generate and compile code on each in-
vocation. Mitigating this problem is a key concern that decides
whether our evaluation model is viable or not.

We solve this problem by using aggressive memoization. From
each kernel, we extract all information we need to generate fast
code, i.e. the approximate size of the iteration space, the names of
operators with inline information and the relative offsets and ele-
ment types of each array reference. We call this structure a recipe.
Each recipe is stored using a specialized variant of hash consing,
such that similar recipes sharemost of their structure and such that
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identical recipes are eq to each other. The recipe of a kernel is then
used as sole input to the code generator, which caches its compiled
results in a hash table. Apart from the first use of a recipe, evalu-
ation consists of a single lookup in an eq hash table to obtain the
compiled recipe and the application of that compiled recipe to the
correct iteration space, inputs and non-inlined function handles.

4.8 Code Optimization
If the recipe of a kernel is not found in the code generator cache,
the backend has to generate, compile and cache such code. Com-
piling and caching are trivial in Common Lisp, because the lan-
guage standard provides functions for both tasks (compile and
gethash). It remains to generate efficient Common Lisp code for a
particular problem. Because kernel recipes are deliberately similar
to S-expressions, a straightforward translation can be done using
only a few lines of code. Unfortunately this task is complicated by
the limitations of the freely available Common Lisp compilers that
we use (CCL and SBCL). Neither of these compilers emits efficient
address computations for references to multi-dimensional arrays.

The problemwithmulti-dimensional address computation is that
we want the compiler to move as much as possible of the index
computation of aref outside of the innermost loop. Our solution
is to perform this lifting of loop invariant code ourselves. We di-
rectly emit calls to row-major-arefwith explicit address compu-
tation. We then determine for each subexpression the outermost
loop on which it depends, move the expression to this loop, bind
its value to a temporary variable and use this temporary variable
instead. While doing so, we also perform common subexpression
elimination where possible. The result is that we emit Lisp code
that is often considerably faster than manually written code.

As a final optimization, we parallelize the outermost loop of
each kernel whose iteration space exceeds a certain size. To do
so, we use the library lparallel. The decision procedure when and
how to parallelize is, in its current state, far from ideal and more
intended as a proof of concept. Nevertheless it can significantly
accelerate computations on large domains.

5 PERFORMANCE
In the previous sections, we have shown that Petalisp offers a high
level of abstraction, but with a potentially high runtime overhead.
In this section, we want to quantify this overhead and compare the
performance of Petalisp code with other well known technologies.

5.1 Jacobi’s Method
Thebenchmark program that wewill use throughout this section is
a simple variant of Jacobi’s method. It is an iterative algorithm for
solving elliptic partial differential equations. We will not discuss
its mathematical properties in detail. For the following consider-
ations, it is sufficient to note that it produces a sequence of grids
of identical size, where the value of each interior grid point is the
average of the values of its four neighboring points in the previ-
ous grid. In terms of computation, it consists of an update rule,
where for each interior point, four values are loaded, the sum is
computed with three additions, then turned into the average by
one multiplication and finally stored at the current position.

(defun jacobi (u iterations)1

(let ((it ; the interior2

(σ* u ((+ start 1) step (- end 1))3

((+ start 1) step (- end 1)))))4

(loop repeat iterations do5

(setf u6

(fuse* u7

(α #'* 0.258

(α #'+9

(-> u (τ (i j) ((1+ i) j)) it)10

(-> u (τ (i j) ((1- i) j)) it)11

(-> u (τ (i j) (i (1+ j))) it)12

(-> u (τ (i j) (i (1- j))) it)))))13

finally (return u))))14

Figure 10: Jacobi’s method in Petalisp.

def jacobi(src, dst):1

dst[1:-1, 1:-1] = \2

0.25 * ( src[0:-2,1:-1]3

+ src[2:,1:-1]4

+ src[1:-1,0:-2]5

+ src[1:-1,2:] )6

return dst7

8

for i in range(iterations // 2):9

jacobi(src, dst)10

jacobi(dst, src)11

Figure 11: Jacobi’s method in Python.

5.2 The Benchmark Setup
We implemented the same algorithm using three different tech-
niques. Our first implementation uses Petalisp on SBCL 1.3.21. It
is shown in figure 10. The second implementation (figure 11) uses
Python 3.5.2 and the numerics library NumPy, version 1.11. The
third implementation (figure 12) is written in C++ and compiled
with GCC version 5.4 and highest optimization settings. It serves
upper bound of we can hope to achieve some day. Our benchmark
system is an Intel Xeon E3-1275 CPU, running at 3.6GHz.

To ease comparison, each implementation is run single-threaded.
Furthermore, we measure two variants of the C++ code. Both are
compiled with highest optimization settings (-O3), but only one
of them uses native optimizations(-march=native). We do this, be-
cause we aim to reach the performance of the non-native code in
the near future, while reaching the other variant will require some
changes to SBCL itself, especially adding support for AVX2 opera-
tions.

5.3 Benchmark Results
The results of our benchmarks are given in figure 13. Wemeasured
the floating point operations per second for different problem sizes,
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1

void jacobi(size_t h, size_t w,2

double* src,3

double* dst) {4

for(size_t ih = 1; ih < h-1; ++ih) {5

for(size_t iw = 1; iw < w-1; ++iw) {6

size_t i = ih * w + iw;7

dst[i] = 0.25 * ( src[i+1]8

+ src[i-1]9

+ src[i+w]10

+ src[i-w]);}}}11

12

for(size_t i = 0; i < iterations/2; ++i) {13

jacobi(w, h, src, dst);14

jacobi(w, h, dst, src);}15

Figure 12: Jacobi’s method in C++.

starting from a grid with 8 × 8 double precision floating point val-
ues, increasing the number of grid points by powers of two, until
the problem domain started to exceed the cache size of our CPU.

On a first glance, the performance of Petalisp seems disappoint-
ing in comparison. However, NumPy and C++ are widely used
tools with decades of optimization under the hood, while Petalisp
is in an early stage of development. The numbers shown here are
some of the first Petalisp benchmarks ever conducted. Our cur-
rent implementation is naive in many respects and would benefit
a lot from improved scheduling, inter-kernel optimization and vec-
torization. Nevertheless, Petalisp already manages to outperform
NumPy (which calls optimized C code internally), and lands within
50% of non-vectorized C++ code. In this light, we are extremely
satisfied with these early performance results.

The only case where Petalisp performs much worse is for small
domains. This is not surprising, given the constant overhead of
about 200 microseconds per Jacobi iteration just to analyze and
schedule the code (a number we hope to decrease in the future).
But small domains are not the focus of our work. We are after the
large problems, where this constant overhead amortizes quickly.
And indeed our benchmarks confirm that we reach this point al-
ready at problems of about one megabyte in size.

6 CONCLUSIONS AND FUTURE WORK
We have presented a new programming technique, where a purely
functional programming language with inherent parallelism and
lazy semantics is integrated into the existing general purpose lan-
guage Common Lisp. We have implemented said approach and
studied its applicability to several real-world problems. Thereby,
we have made the following pleasant observations:

• Our compilation strategy is feasible. In order to have max-
imal knowledge about the dynamic state of each computa-
tion, we defer compilation of compute-intensive parts un-
til the very last moment. Yet by using efficient algorithms,
asynchronous compilation and different kinds of memo-
ization, we manage to compile and execute more than 105

Figure 13: Single-threaded floating point operations per sec-
ond for Jacobi’s method on a square domain.

parallel Petalisp instructions per second, with a latency of
less than 100 microseconds.

• By moving all optimization and analysis to the runtime,
our compiler has total knowledge. It can predict the exact
number of loads and stores, which instructions are used
and what bottlenecks may arise. Furthermore, it has un-
precedented freedom in the choice of memory layouts and
execution strategy. This is an enormous strategic advan-
tage over other optimizing compilers.

• With about 5000 lines of code, our implementation is —
with respect to the complexity of the task — simple and
maintainable. We attribute this to the decision to integrate
Petalisp tightly into Common Lisp and building on exist-
ing libraries and infrastructure where possible.

• Even in the current, early stage, our system is able to out-
perform the existing numerics framework NumPy.

• Our programming model leads to a clean separation be-
tween description and execution. Petalisp reliably normal-
izes every description of a particular algorithm to the same
intermediate representation, before determining a reason-
able execution strategy for it. The programmer can focus
entirely on correctness and clarity.

The last of these points — the separation of concerns — is the
most dear to us. In many fields of computer science, the need for
high performance encourages programmers to mix optimization
and description. Many of these optimizations, e.g. special purpose
memory layouts, are pervasive. They affect many functions and
greatly increase the cognitive burden on the developer. Our long
term goal is to make Petalisp a viable alternative in these cases, by
achieving competitive performance to hand-tuned applications.

A lot of work remains until the full potential of this program-
ming model is unlocked. In particular we intend to add the follow-
ing features over the next few years:
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• Performance Modeling Before doing further improve-
ments to the code generator and scheduler, we need a way
to determine the performance characteristics of a particu-
lar computation. In particular we care whether some code
is memory bound or compute bound. We intend to use the
Roofline (Williams et al. 2009) or ECM (Stengel et al. 2015)
model.

• Sophisticated Scheduling Currently, we evaluate each
array in depth-first fashion according to the data depen-
dency graph. The new scheduler should utilize the results
of the performance model to determine an order of execu-
tion and to change memory layouts to optimize locality.
In particular, we want to be able to apply temporal block-
ing on arbitrary memory-bound computations.

• Improved Shared-Memory Parallelization Instead of
naively parallelizing the outermost loop of a computation,
we want to base the division of labor on the memory ac-
cess patterns of a computation and on the result from the
performance analysis.

• DistributedMemory Parallelization The potential for
automatic parallelization in Petalisp is not limited to a sin-
gle node. Indeed, the whole system has been carefully
designed to permit concurrent execution on multiple ma-
chines. We intend to use the message passing standard
MPI for distributed communication.

• Vectorization Once performance analysis detects that
a particular step is compute bound, our code generator
should use vectorized instructions when possible.

• GPU Offloading We are not aware of any existing tech-
nique to run arbitrary Common Lisp functions on GPUs.
Nevertheless we could determine the subset of Petalisp
kernels that use only primitive hardware operations and
offload their evaluation to the GPU. Again, the capability
of Petalisp to exactly predict the cost of its operations can
help to make qualified decisions when such offloading is
profitable.

The name “Petalisp” emphasizes our commitment to provide an
enjoyable programming model for petascale systems, i.e. systems
able to execute around 1015 operations per second. With our cur-
rent results ranging between 108 and 1010 operations per second,
we still have a long way to go. Yet the capabilities of our system
so far make us confident that we may eventually succeed.
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ABSTRACT
Using a garbage collected language poses a challenge for latency-
sensitive applications. The garbage collector is an integral part
of a lisp implementation; optimizing or replacing the GC may be
infeasible without a substantial rewrite of the lisp compiler/runtime.
By taking advantage of the container whichmanymodern processes
run inside we can tune the garbage collector only to keep the lisp
process’s heap within the bounds provided by the container. We
make 3 simple changes to SBCL’s generational garbage collector
which result in improved application performance. We find that
the application’s runtime throughput and latency are improved,
with less time spent in the GC, and that behavior in a multi-core
environment is improved.
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1 INTRODUCTION
During early startup of a lisp process, the Steel Bank Common Lisp
(SBCL) GENerational Conservative Garbage Collector1 (gencgc)
uses mmap() to allocate the entire dynamic space that will be ac-
cessible for use by the lisp heap for the life of the process which
accounts for the process’s its virtual size (VSZ). This space is di-
vided into equal size cards or pages, which represent the smallest
unit of heap which can be allocated or garbage collected2. Each lisp
object on the heap is assigned to one or more of these GC cards.

Once a lisp process has allocated (consed) a specified number
of bytes the SBCL runtime halts all threads and triggers garbage
collection. The GC transitively searches objects which are live, or
presumed live (in the case of objects residing in an older GC gen-
eration), looking for references to other objects, which are thus
enlivened. Surviving objects are copied from their existing GC card
to a new card; objects which are not copied to a new card are

1SBCL also supports a precise or Cheney GC implementation on some platforms. This
paper does not address that GC implementation.
232kB on x86-64
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garbage. An object which survives garbage collection may be pro-
moted to an older GC generation, according to GC policy, meaning
that it may be presumed live during a subsequent GC. Generations
are numbered 0 to 5, with generation 0 holding the newest objects.
When SBCL finds it needs to collect garbage from a sufficiently old
generation (a large GC, typically: older than gen 1) it releases all
unused GC cards to the kernel via madvise() (i.e. so they are no
longer are part of the process’s resident space (RSS)).

2 PROBLEM
SBCL’s gencgc assumes several optimizations which make it very
useful for a general purpose computing: objects typically become
garbage in a roughly LIFO order; the existence of collectable garbage
is typically correlated with having allocated new objects; the flexi-
bility of having multiple generations allows the runtime to scale
to an application which may have unpredictable memory use over
time; and the GC can usually prevent the application from prema-
turely exhausting its preconfigured dynamic space size (e.g. due to
fragmentation), which would cause the process to fail. However
the constraints of the garbage collector make it suboptimal for a
latency-sensitive application – especially one running on a modern
platform with multiple processing cores and finite memory. One
root of these problems is that application code cannot run concur-
rently with garbage collection. Compounding this problem, the
runtime may trigger GC even if there is no garbage to collect or if
system memory reserved for the application is not yet scarce, and
while GC is running, the process utilizes only a single CPU core,
even if the application is otherwise multithreaded and capable of
utilizing many cores. System memory utilization is further com-
promised by the GC’s behavior, which may not return memory to
the kernel when memory reserved for the process is running out,
and when the GC does madvise() a GC card back to the system,
a subsequent write to the returned GC card requires the kernel to
remap the page, which takes time.

3 IMPROVEMENTS
We can significantly improve the performance characteristics of the
SBCL garbage collector with only very minor code changes to the
gencgc implementation. We propose three optimizations. The first
two optimizations cause gencgc to be more responsive to the host
platform inwhich the lisp process runs. These optimizations directly
benefit from use of a container API, used to manage the memory
and processing resources of the application by providing virtual
environment as opposed to "bare metal". The third optimization
allows gencgc to take advantage of information from the application
logic for some types of programs. The optimizations are best suited
to applications that process logically independent work items (e.g.
an RPC server or part of a data processing pipeline).
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3.1 Optimization #1: Trigger GC based on host
memory constraints

The first optimization is to use memory utilization metrics to indi-
cate to the lisp runtime when collecting garbage is actually required
to avoid an out of memory condition. This entails configuring up to
two memory thresholds. For an application running within a con-
tainer, these thresholds are most logically expressed as a fraction of
the container’s total memory size. When the container’s memory in
use crosses a specified threshold, the lisp process is notified of the
impending need to collect garbage. These triggers may replace the
standard behavior of beginning garbage collection after allocating
a fixed number of bytes on the lisp heap.

At the first threshold, free memory is low and garbage should
be collected soon. The application is signaled that it should stop
processing additional work items. The application waits for out-
standing work items to complete, performs garbage collection, and
then resumes processing new work items. Deferring the GC until
the process is idle means the GC pause does not adversely affect
latency-sensitive processing.

At the higher threshold free memory is critical. The process
runs GC immediately, even if it has work items in progress. The
GC pause still imposes latency on concurrent work items, but the
work items have an opportunity to complete before the process
completely runs out of memory.

3.2 Optimization #2: Control when memory is
given back to the system.

SBCL gencgc’s conventional behavior is to release memory back
to the system only after a large GC. After such a GC it releases the
memory associated with all disused GC cards. This optimization
changes gencgc’s behavior to always release memory, but to only
release a number of GC cards sufficient to bring resident memory
below a specified threshold. As with optimization #1, if the appli-
cation runs inside of a container, the GC aims to shrink resident
memory below a given fraction of the container’s total memory size.
When gencgc has released enough GC cards to bring the resident
memory size below the specified threshold, the container provides
notification back to the lisp process that no further GC cards need
to be released.

SBCL gencgc3 normally loops through free pages sequentially
from 0 up to the largest page index used, returning each contiguous
block of pages to the operating system. This loop is reversed, such
that the first card to be reused for subsequent heap allocations
would be the last card released back to the system, and the loop is
halted once enough pages have been released to bring the processes
resident size down below the specified threshold.

The target number of total GC cards held by the runtime after
garbage collection is allowed to float, as some of the process’s resi-
dent space is consumed by memory other than the lisp heap. This
approach allows the garbage collector to keep the application’s res-
ident size within acceptable limits, and avoids the penalty incurred
by the kernel remapping the GC card memory, unless and until the
lisp heap subsequently grows to exceed the previous threshold.

3Specifically, remap_free_pages().

This optimization may be used in combination with optimization
#1, which allows the garbage collector to run when and only when
memory needs to be returned back to the system. Used together,
and with appropriate thresholds configured, the two optimizations
form a positive feedback loop: the GC runs only when too much
memory is in use, and every GC reduces the amount of memory in
use back to an acceptable level.

3.3 Optimization #3: A generational garbage
collector aware of application request
processing

Arena allocation or region-based memory management is an ap-
proach allowing a program to efficiently deallocate objects with a
known lifetime. Lisp doesn’t natively support arena allocation, but
an application which processes logically independent work items
can make use of SBCL’s garbage collector’s generation 0 to achieve
some of the benefit of allocation against a single arena. When the
GC runs while one or more work items are in progress, only gen-
eration 0 is scavenged, and no surviving objects are promoted to
an older generation4. Heap objects which survive a gen 0 GC are
presumed to be logically associated with in-progress work items
and are expected to be garbage when those work items complete.
When the GC runs while no work items are in progress, generation
1 is scavenged, and all surviving objects are promoted to gen 1.
Since no work items are in-progress (e.g. the server is quiescent),
surviving heap objects are assumed to be persistent or long-lived
structures. For best results, this optimization may require changes
to application code to not keep live references to obsolete state after
the end of a request.

4 PUTTING IT ALL TOGETHER
Used in combination, these 3 optimizations yield a system that GCs
only when it needs to release memory to the system, always releases
memory to the system when resident space is too high, and never
prematurely pessimizes the performance of future GC card use. At
the high memory threshold the system waits for the application
to become idle before issuing a slow (gen 1) GC. At the critical
memory threshold the system performs an immediate fast (gen 0)
GC. Objects on the heap are not promoted to an older generation
when short-lived work items are known to be in progress.

5 RESULTS
The performance impact of each of these 3 optimizations depends
on the particular application. Each application will have its own
particular memory usage pattern under conventional GC, and its
performance will suffer proportionally to how frequently it needs
to collect garbage and how many threads are blocked from doing
useful work because the garbage collector needs to run. The more
total memory allowed for an application, the more optimization #1
will reduce unnecessary collections and therefore benefit the appli-
cation’s performance. Optimization #2 can benefit any application,
but the magnitude of the benefit is bounded by the frequency with
which the application needs to perform large GCs and the amount

4Controlled via (sb-ext:generation-number-of-gcs-before-promotion 0).
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of memory the application subsequently needs to reclaim after-
wards. An application which never reaches a quiescent state will
not benefit from optimization #3; this optimization is most benefi-
cial to an application which is given enough memory to completely
eschew garbage collections during work item processing.

5.1 Latency sensitive RPC server
A production low latency RPC server using a single service thread
is able to process most queries without needing to collect garbage
during any single query. The infrequent garbage collections there-
fore impact only the tail latency of the service. However increasing
the parallelism of the process aggravates the latency imposed by
garbage collection. The same server running with 9 service threads
offers 9x the throughput, but also allocates into its heap 9x as fast,
triggering garbage collection 9x as often, and with every concurrent
RPC suffering the full latency penalty imposed by GC.

By enabling all 3 of the optimizations described here, we find
that in the service running with 9 threads, tail latency at the 99.9th
percentile is improved by by 65%, and 21% at the 95th percentile,
with no adverse impact to overall throughput caused by the slower,
less frequent GCs. The optimized server declines to process new
inbound RPCs once it detects it must GC soon, and since it has
enough memory to process a query on every service thread without
GCing, it is able to defer effectively all GCs to time where the
server is idle – GC does not impact tail latency. Each of the less
frequent GCs takes longer, but there is no adverse effect on overall
throughput.

5.2 SBCL Compilation
Whereas the benefit of optimizations #1 and #3 is very much partic-
ular to a given application, optimization #2 lends itself to a much
more straightforward and concrete measurement. We use the fa-
miliar benchmark of the SBCL compiler repeatedly compiling itself.
We compare the baseline performance of the SBCL self-build to two
alternate configurations in order to demonstrate the efficacy of op-
timization #2. In both variations, the garbage collector is triggered
using SBCL’s conventional settings, and the peak observed size of
the lisp heap is around 450MB.

The baseline uses gencgc’s default behavior, which only returns
GC cards when collecting generations older than gen 1.

In the first variation, gencgc is made to never release memory
back to the system after GC. That is, the GC runs just as often as it
does in the baseline, but the process’s resident size never recedes
from its peak. This configuration is 2.42% faster than the baseline.
Faster GCs make up a tiny portion of the time savings, with the
vast majority being attributable to obviating the work the kernel
needs to do remap pages back to the application that the garbage
collector had previously returned. This figure serves as an upper
bound on the amount of savings we can expect from optimization
#2.

The second variation employs the optimization in a configuration
such that gencgc (still triggered by the conventional mechanisms)
always releases memory to the system after every GC, but retains
the lowest 250MB of lisp heap, regardless of the actual heap size.
This configuration is 1.71% faster than the baseline. That is, opti-
mization #2 preserves nearly three quarters of the performance

benefit of not returning memory to the system, while keeping the
process’s resident size significantly below its peak.
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ABSTRACT
In a text editor for writing Common Lisp [1] source code, it is
desirable to have an accurate analysis of the buffer contents, so
that the role of the elements of the code can be indicated to the
programmer. Furthermore, the buffer contents should preferably
be analyzed after each keystroke so that the programmer has up-
to-date information resulting from the analysis.

We describe an incremental parser that can be used as a key
component of such an analyzer. The parser, itself written in Com-
mon Lisp, uses a special-purpose implementation of the Common
Lisp read function in combination with a cache that stores existing
results of calling the reader.

Since the parser uses the standard Common Lisp reader, the re-
sulting analysis is very accurate. Furthermore, the cache makes the
parser very fast in most common cases; re-parsing a buffer in which
a single character has been altered takes only a few milliseconds.
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1 INTRODUCTION
Whether autonomous or part of an integrated development envi-
ronment, an editor that caters to Common Lisp programmers must
analyze the buffer contents in order to help the programmer un-
derstand how this contents would be analyzed when submitted to
the Common Lisp compiler or interpreter. Furthermore, the editor
analysis must be fast so that it is up to date shortly after each key-
stroke generated by the programmer. Miller [5] indicates that an
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upper bound on the delay between a keystroke and the updated
result is around 0.1 seconds.

In order to obtain such speed for the analysis, it must be incre-
mental. A complete analysis of the entire buffer for each keystroke
is generally not feasible, especially for buffers with a significant
amount of code.

Furthermore, the analysis is necessarily approximate. The reader
macro #. (hash dot) and the macro eval-when allow for arbitrary
computations at read time and at compile time, and these com-
putations may influence the environment in arbitrary ways that
may invalidate subsequent, or even preceding analyses, making an
analysis that is both precise and incremental impossible in general.

The question, then, is how approximate the analysis has to be,
and how much of it we can allow ourselves to recompute, given
the performance of modern hardware and modern Common Lisp
implementations.

In this paper, we describe an analysis technique that represents
an improvement compared with the ones used by the most wide-
spread editors for Common Lisp code used today. The technique is
more precise than existing ones, because it uses the Common Lisp
read function, which is a better approximation than the regular-
expression techniques most frequently used. We show that our
analysis is sufficiently fast because it is done incrementally, and
it requires very little incremental work for most simple editing
operations.

The work in this paper is specific to the Common Lisp language.
This language has a number of specific features in terms of its
syntax, some of which make it harder to write a parser for it, and
some of which make it easier:

• The reader algorithm is defined in terms of a non-tokenizing
recursive descent parser. This fact makes our task easier,
because the result of calling read at any location in the
source code is well defined and yields a unique result. For
other languages, the meaning of some sequence of characters
may depend on what comes much later.
• The Common Lisp reader is programmable in that the ap-
plication programmer can define reader macros that invoke
arbitrary code. This feature makes our task harder, because
it makes it impossible to establish fixed rules for the mean-
ing of a sequence of characters in the buffer. The technique
described in this paper can handle such arbitrary syntax
extensions.
• As previously mentioned, arbitrary Common Lisp code may
be invoked as part of a call to read, and that codemaymodify
the readtable and/or the global environment. This possibility
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makes our task harder, and we are only able to address some
of the problems it creates.

2 PREVIOUS WORK
In this section, we present a selection of existing editors, and in
particular, we discuss the technique that each selected editor uses
in order to analyze a text buffer containing Common Lisp code.

We do not cover languages other than Common Lisp, simply
because our technique crucially depends on ability to analyse the
buffer contents with a non-tokenizing (i.e, based on reading a char-
acter at a time) recursive descent parser. The Common Lisp read
function is defined this way, but most other languages require more
sophisticated parsing techniques for a correct analysis.

2.1 Emacs
GNU Emacs [2, 3] is a general-purpose text editor written partly in
C but mostly in a special-purpose dialect of Lisp [4].

In the editing mode used for writing Common Lisp source code,
highlighting is based on string matching, and no attempt is made
to determine the symbols that are present in the current package.
Even when the current package does not use the common-lisp
package, strings that match Common Lisp symbols are highlighted
nevertheless.

In addition, no attempt is made to distinguish between the role of
different occurrences of a symbol. In Common Lisp where a symbol
can simultaneously be used to name a function, a variable, etc., it
would be desirable to present occurrences with different roles in a
different way.

Indentation is also based on string matching, resulting in the
text being indented as Common Lisp code even when it is not.
Furthermore, indentation does not take into account the role of
a symbol in the code. So, for example, if a lexical variable named
(say) prog1 is introduced in a let binding and it is followed by a
newline, the following line is indented as if the symbol prog1 were
the name of a Common Lisp function as opposed to the name of a
lexical variable.

2.2 Climacs
Climacs1 is an Emacs-like editor written entirely in Common Lisp. It
usesMcCLIM [9] for its user interface, and specifically, an additional
library called ESA [10].

The framework for syntax analysis in Climacs [6] is very general.
The parser for Common Lisp syntax is based on table-driven parsing
techniques such as LALR parsing, except that the parsing table was
derived manually. Like Emacs, Climacs does not take the current
package into account. The parser is incremental in that the state of
the parser is saved for certain points in the buffer, so that parsing
can be restarted from such a point without requiring the entire
buffer to be parsed from the beginning.

Unlike Emacs, the Climacs parser is more accurate when it comes
to the role of symbols in the program code. In many cases, it is able
to distinguish between a symbol used as the name of a function
and the same symbol used as a lexical variable.

1See: https://common-lisp.net/project/climacs/

2.3 Lem
Lem2 is a relatively recent addition to the family of Emacs clones.
It is written in Common Lisp and it uses curses to display buffer
contents.

Like Emacs (See Section 2.1.), it uses regular expressions for
analyzing Common Lisp code, with the same disadvantages in
terms of precision of the analysis.

3 OUR TECHNIQUE
3.1 Buffer update protocol
Our incremental parser parses the contents of a buffer, specified
in the form of a CLOS protocol[8]. We include a brief summary of
that protocol here.

The protocol contains two sub-protocols:
(1) The edit protocol is used whenever items are inserted or

deleted from the buffer. An edit operation is typically invoked
as a result of a keystroke, but an arbitrary number of edit
operations can happen as a result of a keystroke, for example
when a region is inserted or deleted, or when a keyboard
macro is executed.

(2) The update protocol is used when the result of one or more
edit operations must be displayed to the user. This protocol
is typically invoked for each keystroke, but it can be invoked
less frequently if some view of the buffer is temporarily
hidden. Only when the view becomes visible is the update
protocol invoked.

This organization solves several problems with the design of
similar protocols:
• The edit protocol does not trigger any updates of the views.
The edit operations simply modify the buffer contents, and
marks modified lines with a time stamp. Therefore the op-
erations of the edit protocol are fast. As a result, complex
operations such as inserting or deleting a region, or execut-
ing a complicated keyboard macro, can be implemented as
the repeated invocation of simpler operations in the edit
protocol. No special treatment is required for such complex
operations, which simplifies their overall design.
• There is no need for the equivalent of observers as many
object-oriented design methods require. Visible views are
automatically updated after every keystroke. Each view con-
tains a time stamp corresponding to the previous time it was
updated, and this time stamp is transmitted to the buffer
when the update protocol is invoked.
• Views that are invisible are not updated as a result of a
keystroke. Such views are updated if and when they again
become visible.

When a view invokes the update protocol, in addition to trans-
mitting its time stamp to the buffer, it also transmits four callback
functions. Conceptually, the view contains some mirror representa-
tion of the lines of the buffer. Before the update protocol is invoked,
the view sets an index into that representation to zero, meaning
the first line. As a result of invoking the update protocol, the buffer
informs the view of changes that happened after the time indicated
by the time stamp by calling these callback functions as follows:
2See https://github.com/cxxxr/lem.
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• The callback function skip indicates to the view that the index
should be incremented by a number given as argument to
the function.
• The callback function modify indicates a line that has been
modified since the last update. The line is passed as an ar-
gument. The view must delete lines at the current index
until the correct line is the one at the index. It must then
take appropriate action to reflect the modification, typically
by copying the new line contents into its own mirror data
structure.
• The callback function insert indicates that a line has been
inserted at the current index since the last update. Again, the
line is passed as an argument. The view updates its mirror
data structure to reflect the new line.
• The callback function sync is called with a line passed as an
argument. The view must delete lines at the current index
until the correct line is the one at the index.

Notice that there is no delete callback function. The buffer does
not hold on to lines that have been deleted, so it is incapable of
supplying this information. Instead, themodify and sync operations
provide this information implicitly by supplying the next line to be
operated on. Any lines preceding it in the mirror data structure are
no longer present in the buffer and should be deleted by the view.

The buffer protocol is line-oriented in two different ways:
(1) The editing operations specified by the protocol define a line

abstraction, in contrast to a buffer of GNU Emacs [2] which
exposes a single sequence containing newline characters to
indicate line separation.

(2) The update protocol works on the granularity of a line. An
entire line can be reported as being modified or inserted.

In the implementation of the buffer protocol, a line being edited
is represented as a gap buffer. Therefore, editing operations are very
fast, even for very long lines. However, the update protocol works
on the granularity of an entire line. This granularity is acceptable
for Common Lisp code, because lines are typically short. For other
languages it might be necessary to use a different buffer library.

For the purpose of this paper, we are only interested in the update
protocol, because we re-parse the buffer as a result of the update
protocol having been invoked.We can think of such an invocation as
resulting in a succession of operations, sorted by lines in increasing
order. There can be three different update operations:
• Modify. The line has been modified.
• Insert. A new line has been inserted.
• Delete. An existing line has been deleted.

Although the presence of a delete operation may seem to con-
tradict the fact that no such operation is possible, it is fairly trivial
to derive this operation from the ones that are actually supported
by the update protocol. Furthermore, this derived set of operations
simplifies the presentation of our technique in the rest of the paper.

In order to parse the buffer contents, we use a custom read
function. This version of the read function differs from the standard
one in the following ways:
• Instead of returning S-expressions, it returns a nested struc-
ture of instances of a standard class named parse-result.
These instances contain the corresponding S-expression and

the start and end position (line, column) in the buffer of the
parse result.
• The parse results returned by the reader also include enti-
ties that would normally not be returned by read such as
comments and, more generally, results of applying reader
macros that return no values.
• Instead of attempting to call intern in order to turn a token
into a symbol, the custom reader returns an instance of a
standard class named token.

The reader from the SICL project3 was slightly modified to al-
low this kind of customization, thereby avoiding the necessity of
maintaining the code for a completely separate reader.

No changes to the mechanism for handling reader macros is
necessary. Therefore, we handle custom reader macros as well.
Whenever a reader macro calls read recursively, a nested parse
result is created in the same way as with the standard reader macros.
More information about the required modifications to the reader
are provided in Appendix B.

For a visible view, the buffer update protocol is invoked after
each keystroke generated by the end user, and the number of modi-
fications to the buffer since the previous invocation is typically very
modest, in that usually a single line has been modified. It would be
wasteful, and too slow for large buffers, to re-parse the entire buffer
character by character, each time the update protocol is invoked.
For that reason, we keep a cache of parse results returned by the
customized reader.

3.2 Cache organization
The cache is organized as a sequence4 of top-level parse results.
Each top-level parse result contains the parse results returned by
nested calls to the reader. Here, we are not concerned with the
details of the representation of the cache. Such details are crucial in
order to obtain acceptable performance, but they are unimportant
for understanding the general technique of incremental parsing.
Refer to appendix A for an in-depth description of these details.

When the buffer is updated, we try to maintain as many parse
results as possible in the cache. Updating the cache according to a
particular succession of update operations consists of two distinct
phases:

(1) Invalidation of parse results that span a line that has been
modified, inserted, or deleted.

(2) Rehabilitation of the cache according to the updated buffer
contents.

3.3 Invalidation phase
As mentioned in Section 3.1, the invocation of the buffer-update
protocol results in a sequence of operations that describe how the
buffer has changed from the previous invocation.

As far as the invalidation phase is concerned, there are only mi-
nor variations in how the different types of operations are handled.
In all cases (line modification, line insertion, line deletion), the exist-
ing parse results that straddle a place that has been altered must be

3See: https://github.com/robert-strandh/SICL.
4Here, we use the word sequence in the meaning of a set of items organized con-
secutively, and not in the more restrictive meaning defined by the Common Lisp
standard.
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invalidated. Notice that when a top-level parse result straddles such
a modification, that parse result is invalidated, but it is very likely
that several of its children do not straddle the point of modification.
Therefore such children are not invalidated, and are kept in the
cache in case they are needed during the rehabilitation phase.

In addition to the parse results being invalidated as described in
the previous paragraph, when the operation represents the insertion
or the deletion of a line, remaining valid parse results following the
point of the operation must be modified to reflect the fact that they
now have a new start-line position.

As described in Appendix A, we designed the data structure
carefully so that both invalidating parse results as a result of these
operations, and modifying the start-line position of remaining valid
parse results can be done at very little cost.

3.4 Rehabilitation phase
Conceptually, the rehabilitation phase consists of parsing the entire
buffer from the beginning by calling read until the end of the
buffer is reached. However, three crucial design elements avoid the
necessity of a full re-analysis:
• Top level parse results that precede the first modification to
the buffer do not have to be re-analyzed, because they must
return the same result as before any modification.
• When read is called at a buffer position corresponding to a
parse result that is in the cache, we can simply return the
cache entry rather than re-analyzing the buffer contents at
that point.
• If a top-level call to read is made beyond the lastmodification
to the buffer, and there is a top-level parse result in the cache
at that point, then every remaining top-level parse result
in the cache can be re-used without any further analysis
required.

4 PERFORMANCE OF OUR TECHNIQUE
The performance of our technique can not be stated as a single
figure, nor even as a function of the size of the buffer, simply because
it depends on several factors such as the exact structure of the buffer
contents and the way the user interacts with that contents.

Despite these difficulties, we can give some indications for certain
important special cases. We ran these tests on a 4-core Intel Core
processor clocked at 3.3GHz, running SBCL version 1.3.11.

4.1 Parsing with an empty cache
When a buffer is first created, the cache is empty. The buffer con-
tents must then be read, character by character, and the cache must
be created from the contents.

We timed this situation with a buffer containing 10000 lines of
representative Common Lisp code. The total time to parse was
around 1.5 seconds. This result deserves some clarifications:
• It is very unusual to have a file of Common Lisp code with
this many lines. Most files contain less than 2000 lines, which
is only 1/5 of the one in our test case.
• This result was obtained from a very preliminary version of
our parser. In particular, to read a character, several generic
functions where called, including the stream-read-char

function of the Gray streams library, and then several oth-
ers in order to access the character in the buffer. Further
optimizations are likely to decrease the time spent to read a
single character.
• This situation will happen only when a buffer is initially read
into the editor. Even very significant subsequent changes to
the contents will still preserve large portions of the cache,
so that the number of characters actually read will only be a
tiny fraction of the total number of characters in the buffer.
• Parsing an entire buffer does not exercise the incremental
aspect of our parser. Instead, the execution time is a com-
plex function of the exact structure of the code, the perfor-
mance of the reader in various situations, the algorithm for
generic-function dispatch of the implementation, the cost
of allocating standard objects, etc. For all these reasons, a
more thorough analysis of this case is outside the scope of
this paper, and the timing is given only to give the reader a
rough idea of the performance in this initial situation.
• This particular case can be handled by having the parser
process the original stream from which the buffer contents
was created, rather than giving it the buffer protocol wrapped
in a stream protocol after the buffer has been filled. That way,
the entire overhead of the Gray-stream protocol is avoided
altogether.

4.2 Parsing after small modifications
Wemeasured the time to update the cache of a buffer with 1200 lines
of Common Lisp code. We used several variations on the number of
top-level forms and the size of each top-level form. Three types of
representative modifications were used, namely inserting/deleting
a constituent character, inserting/deleting left parenthesis, and in-
serting/deleting a double quote. All modifications were made at the
very beginning of the file, which is the worst-case scenario for our
technique.

For inserting and deleting a constituent character, we obtained
the results shown in Table 1. For this benchmark, the performance
is independent of the distribution of forms and sub-forms, and also
of the number of characters in a line. The execution time is roughly
proportional to the number of lines in the buffer. For that reason, the
form size is given only in number of lines. The table shows that the
parser is indeed very fast for this kind of incremental modification
to the buffer.

nb forms form size time
120 10 0.14ms
80 15 0.14ms
60 20 0.14ms
24 100 0.23ms
36 100 0.32ms

Table 1: Inserting and deleting a constituent character.

For inserting and deleting a left parenthesis, we obtained the
results shown in Table 2. For this benchmark, the performance is
independent of the size of the sub-forms of the top-level forms.
For that reason, the form size is given only in number of lines. As
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shown in the table, the performance is worse for many small top-
level forms, and then the execution time is roughly proportional
to the number of forms. When the number of top-level forms is
small, the execution time decreases asymptotically to around 0.5ms.
However, even the slowest case is very fast and has no impact on
the perceived overall performance of the editor.

nb forms form size time
120 10 1.3ms
80 15 1.0ms
60 20 0.5ms
40 30 0.7ms
30 40 0.6ms
24 50 0.5ms
12 100 0.5ms

Table 2: Inserting and deleting a left parenthesis.

Finally, for inserting and deleting a double quote, we obtained
the results shown in Table 3. For this benchmark, the performance
is roughly proportional to the number of characters in the buffer
when the double quote is inserted, and completely dominated by the
execution time of the reader when the double quote is deleted. The
execution time thus depends not only on the number of characters
in the buffer, but also on how those characters determine what
the reader does. As shown by the table, these execution times are
borderline acceptable. In the next section, we discuss possible ways
of improving the performance for this case.

nb forms form size characters per line time
120 10 1 18ms
80 15 1 15ms
60 20 1 17ms
24 100 1 33ms
36 100 1 50ms
120 10 30 70ms

Table 3: Inserting and deleting a double quote.

5 CONCLUSIONS AND FUTUREWORK
Currently, parse results that are not part of the final structure of the
buffer are discarded. When the user is not using an editor mode that
automatically balances characters such as parentheses and double
quotes, inserting such a character often results in a large number
of parse results being discarded, only to have to be created again
soon afterward, when the user inserts the balancing character of
the pair. We can avoid this situation by keeping parse results that
are not part of the final structure in the cache, in the hopes that
they will again be required later. We then also need a strategy for
removing such parse results from the cache after some time, so as
to avoid that the cache grows without limits.

Parsing Common Lisp source code is only the first step in the
analysis of its structure. In order to determine the role of each
symbol and other information such as indentation, further analysis
is required. Such analysis requires a code walker, because the role of

a symbol may depend on the definitions of macros to which it is an
argument. Similarly, computing standard indentation, also requires
further analysis. To implement this code walker, we consider using
the first phase of the Cleavir compiler framework.5

We plan to investigate the use of a new implementation of first-
class global environments [7]. This new implementation of the exist-
ing CLOS protocol would use incremental differences to the startup
environment6 so as to define a compilation environment7 that is
different for each top-level form in the editor buffer. This tech-
nique would allow us to restart the compiler in an appropriate
environment without having to process the entire buffer from the
beginning.

The combination of the use of the first pass of the Cleavir com-
piler framework and the use of incremental first-class global envi-
ronments will allow us to handle compile-time evaluation of certain
top-level forms in a way that corresponds to the semantics of the
file compiler. In particular, imperative environment operations such
as changing the current package or modifying the readtable in the
middle of a buffer will have the expected consequences, but only to
subsequent forms in the buffer.

A more precise analysis of Common Lisp code opens the possi-
bility for additional functionality that requires knowledge about
the role of each expression. In particular, such an analysis could be
the basis for sophisticated code transformations such as variable
renaming and code refactoring.
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A CACHE REPRESENTATION
Figure 1 illustrates the representation of the cache for parse results.
The buffer contents that corresponds to that cache contents might
for instance be:
(a
(b c))

(d)
(e
f)

(g
(h))

The sequence of top-level parse results is split into a prefix and
a suffix, typically reflecting the current position in the buffer being
edited by the end user. The suffix contains parse results in the order
they appear in the buffer, whereas the prefix contains parse results
in reverse order, making it easy to move parse results between the
prefix and the suffix.

Depending on the location of the parse result in the cache data
structure, its position may be absolute or relative. The prefix con-
tains parse results that precede updates to the buffer. For that reason,
these parse results have absolute positions. Parse results in the suf-
fix, on the other hand, follow updates to the buffer. In particular,
if a line is inserted or deleted, the parse results in the suffix will
have their positions changed. For that reason, only the first parse
result of the suffix has an absolute position. Each of the others
has a position relative to its predecessor. When a line is inserted
or deleted, only the first parse result of the suffix has to have its
position updated. When a parse result is moved from the prefix to
the suffix, or from the suffix to the prefix, the positions concerned
are updated to maintain this invariant.

To avoid having to traverse all the descendants of a parse result
when its position changes, we make the position of the first child
of some parse result P relative to that of P , and the children, other
than the first, of some parse result P , have positions relative to the
previous child in the list.

As a result of executing the invalidation phase, a third sequence
of parse results is created. This sequence is called the residue, and it
contains valid parse results that were previously children of some
top-level parse result that is no longer valid. So, for example, if the
line containing the symbol f in the buffer corresponding to the
cache in Figure 1 were to be modified, the result of the invalidation
phase would be the cache shown in Figure 2.

As Figure 2 shows, the top-level parse result corresponding to
the expression (e f) has been invalidated, in addition the child
parse result corresponding to the expression f. However, the child
parse result corresponding to the expression e is still valid, so it is
now in the residue sequence. Furthermore, the suffix sequence now
contains only the parse result corresponding to the expression (g
(h)).

For the rehabilitation phase, we can imagine that a single char-
acter was inserted after the f, so that the line now reads as fi).

At the start of the rehabilitation phase, the position for reading is
set to the end of the last valid top-level parse result in the prefix, in

prefix

suffix

absolute position relative position

(a (b c) a

(b c) b

c(d) d

(e f) e

f

(g (h) g

(h) h

Figure 1: Representation of the cache.

prefix

(a (b c) a

(b c) b

c(d) d

(g (h) g

(h) h

suffix

residue

e

Figure 2: Cache contents after invalidation.

this case at the end of the line containing the expression (d). When
the reader is called, it skips whitespace characters until it is posi-
tioned on the left parenthesis of the line containing (e. There is no
cache entry, neither in the residue nor in the suffix, corresponding
to this position, so normal reader operation is executed. Thus, the
reader macro associated with the left parenthesis is invoked, and
the reader is called recursively on the elements of the list. When the
reader is called with the position corresponding to the expression
e, we find that there is an entry for that position in the residue, so
instead of this expression being read by normal reader operation,
the contents of the cache is used instead. As a result, the position
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suffix

prefix

(a (b c) a

(b c) b

c(d) d

e

(g (h) g

(h) h

fi

(e fi)

Figure 3: Cache contents after read.

in the buffer is set to the end of the cached parse result, i.e. at the
end of the expression e. The remaining top-level expression is read
using then normal reader operation resulting in the expression (e
fi). This parse result is added to the prefix resulting in the cache
contents shown in figure 3.

The reader is then invoked again in order to read another top-
level expression. In this invocation, whitespace characters are first
skipped until the reader is positioned immediately before the ex-
pression (g (h)). Not only is there a parse result in the cache
corresponding to this position, but that parse result is the first in
the suffix sequence. We therefore know that all parse results on in
the suffix are still valid, so the we can terminate the rehabilitation
phase.

B READER CUSTOMIZATION
In order for it to be possible for the Common Lisp read function to
serve as a basis for the incremental parser described in this paper,
it must be adapted in the ways described below.

B.1 Returning parse results
In addition to the nested expressions returned by an unmodified
read function, it must also return a nested structure of parse results,
i.e. expressions wrapped in standard instances that also contain
information about the location in the source code of the wrapped
expressions.

To accomplish this additional functionality, it is not possible to
create a custom read function that returns parse results instead
of expressions, simply because the function must handle custom
reader macros, and those reader macros return expressions, and
not parse results. Also, it would create unnecessary maintenance
work if all standard reader macros had to be modified in order to
return parse results instead of expressions.

It is also not possible to modify the read function to return the
parse result as a second value, in addition to the normal expression.
One reason is that we would like for the modified read function to
be compatible with the standard version, and it is not permitted by
the Common Lisp standard to return additional values.

Instead, the modified read function maintains an explicit stack
of parse results in parallel with the expressions that are normally
returned. This explicit stack is kept as the value of a special variable
that our parser accesses after a call to read.

B.2 Returning parse results for comments
The modified read function must return parse results that corre-
spond to source code that the standard read function does not
return, such as comments and expressions that are not selected by
a read-time conditional. We solve this problem by checking when
a reader macro returns no values, and in that case, a correspond-
ing parse result is pushed onto the explicit stack mentioned in the
previous section.

B.3 Intercepting symbol creation
The modified read function must not call intern in all situations
that the ordinary read function would, and it must not signal an
error when a symbol with an explicit package prefix does not exist.
For that reason, the modified reader calls a generic function with
the characters of a potential token instead. The unmodified read
function just calls intern, whereas the custom read function cre-
ates a particular parse result that represents the token, and that can
be exploited by the editor.
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ABSTRACT
We contrast two approaches to optimizing the Common Lisp typecase
macro expansion. The first approach is based on heuristics intended
to estimate run time performance of certain type checks involving
Common Lisp type specifiers. The technique may, depending on
code size, exhaustively search the space of permutations of the
type checks, intent on finding the optimal order. With the second
technique, we represent a typecase form as a type specifier, en-
capsulating the side-effecting non-Boolean parts so as to appear
compatible with the Common Lisp type algebra operators. The en-
capsulated expressions are specially handled so that the Common
Lisp type algebra functions preserve them, and we can unwrap
them after a process of Boolean reduction into efficient Common
Lisp code, maintaining the appropriate side effects but eliminating
unnecessary type checks. Both approaches allow us to identify un-
reachable code, test for exhaustiveness of the clauses and eliminate
type checks which are calculated to be redundant.
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1 INTRODUCTION
The typecase macro is specified in Common Lisp [4] as is a run-
time mechanism for selectively branching as a function of the type
of a given expression. Figure 1 summarizes the usage. The type
specifiers used may be simple type names such as fixnum, string, or
my-class, but may also specify more expressive types such as range
checks (float -3.0 3.5), membership checks such as (member 1 3

5), arbitrary Boolean predicate checks such as (satisfies oddp),
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(typecase keyform

(Type.1 body-forms-1 ...)

(Type.2 body-forms-2 ...)

(Type.3 body-forms-3 ...)

...

(Type.n body-forms-n ...))

Figure 1: Synopsis of typecase syntax.

or logical combinations of other valid type specifiers such as (or
string (and fixnum (not (eql 0))) (cons bignum)).

In this article we consider several issues concerning the compi-
lation of such a typecase usage.
• Redundant checks1 — The set of type specifiers used in a
particular invocation of typecasemay have subtype or inter-
section relations among them. Consequently, it is possible
(perhaps likely in the case of auto-generated code) that the
same type checks be performed multiple times, when evalu-
ating the typecase at run-time.
• Unreachable code — The specification suggests but does not
require that the compiler issue a warning if a clause is not
reachable, being completely shadowed by earlier clauses.
We consider such compiler warnings desirable, especially in
manually written code.
• Exhaustiveness — The user is allowed to specify a set of
clauses which is non-exhaustive. If it can be determined at
compile time that the clauses are indeed exhaustive, even in
the absence of a t/otherwise clause, then in such a case, the
final type check may be safely replaced with otherwise, thus
eliminating the need for that final type check at run-time.

The etypecase macro (exhaustive type case) promises to signal a
run-time error if the object is not an element of any of the specified
types. The question of whether the clauses are exhaustive is a
different question, namely whether it can be determined at compile
time that all possible values are covered by at least one of the
clauses.

Assuming we are allowed to change the typecase evaluation
order, we wish to exploit evaluation orders which are more likely to
be faster at run-time. We assume that most type checks are fast, but
some are slower than others. In particular, a satisfies check may
be arbitrarily slow. Under certain conditions, as will be seen, there
are techniques to protect certain type checks to allow reordering
without effecting semantics. Such reordering may consequently
enable particular optimizations such as elimination of redundant
1Don’t confuse redundant check with redundancy check. In this article we address the
former, not the latter. A type check is viewed as redundant, and can be eliminated, if
its Boolean result can determined by static code analysis.
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checks or the exhaustiveness optimization explained above. Elimi-
nation of redundant type checks has an additional advantage apart
from potentially speeding up certain code paths, it also allows the
discovery of unreachable code.

In this article we consider different techniques for evaluating the
type checks in different orders than that which is specified in the
code, so as to maintain the semantics but to eliminate redundant
checks.

In the article we examine two very different approaches for per-
forming certain optimizations of typecase. First, we use a natural
approach using s-expression based type specifiers (Section 2), op-
erating on them as symbolic expressions. In the second approach
(Section 3) we employ Reduced Ordered Binary Decision Diagrams
(ROBDDs). We finish the article with an overview of related work
(Section 4) and a summary of future work (Section 5).

2 TYPE SPECIFIER APPROACH
We would like to automatically remove redundant checks such as
(eql 42), (member 40 41 42), and fixnum in Example 1.

Example 1 (typecase with redundant type checks).
(typecase OBJ

((eql 42)

body-forms-1 ...)

((and (member 40 41 42) (not (eql 42)))

body-forms-2 ...)

((and fixnum (not (member 40 41 42)))

body-forms-3 ...)

((and number (not fixnum ))

body-forms-4 ...))

The code in Example 2 is semantically identical to that in Ex-
ample 1, because a type check is only reached if all preceding type
checks have failed.

Example 2 (typecase after removing redundant checks).
(typecase OBJ

((eql 42) body-forms-1 ...)

(( member 40 41 42) body-forms-2 ...)

(fixnum body-forms-3 ...)

(number body-forms-4 ...))

In the following sections, we initially show that certain dupli-
cate checks may be removed through a technique called forward-
substitution and reduction (Section 2.2). A weakness of this tech-
nique is that it sometimes fails to remove particular redundant type
checks. Because of this weakness, a more elaborate technique is
applied, in which we augment the type tests to make themmutually
disjoint (Section 2.4). With these more complex type specifiers in
place, the typecase has the property that its clauses are reorderable,
which allows the forward-substitution and reduction algorithm to
search for an ordering permitting more thorough reduction (Sec-
tion 2.6). This process allows us to identify unreachable code paths
and to identify exhaustive case analyses, but there are still situations
in which redundant checks cannot be eliminated.

2.1 Semantics of type specifiers
There is some disagreement among experts of how to interpret
certain semantics of type specifiers in Common Lisp. To avoid
confusion, we state explicitly our interpretation.

There is a statement in the typecase specification that each
normal-clause be considered in turn. We interpret this requirement
not to mean that the type checks must be evaluated in order, but
rather than each type test must assume that type tests appearing
earlier in the typecase are not satisfied. Moreover, we interpret this
specified requirement so as not to impose a run-time evaluation
order, and that as long as evaluation semantics are preserved, then
the type checks may be done in any order at run-time, and in partic-
ular, that any type check which is redundant or unnecessary need
not be preformed.

The situation that the user may specify a type such as (and

fixnum (satisfies evenp)) is particularly problematic, because the
Common Lisp specification contains a dubious, non-conforming
example in the specification of satisfies. The problematic example
in the specification says that (and integer (satisfies evenp)) is
a type specifier and denotes the set of all even integers. This claim
contradicts the specification of the AND type specifier which claims
that (and A B) is the intersection of types A and B and is thus the
same as (and B A). This presents a problem, because (typep 1.0

’(and fixnum (satisfies evenp))) evaluates to nil while (typep

1.0 ’(and (satisfies evenp) fixnum)) raises an error.We implicitly
assume, for optimization purposes, that (and A B) is the same as
(and B A).

Specifically, if the AND and OR types are commutative with respect
to their operands, and if type checks have side effects (errors, con-
ditions, changing of global state, IO, interaction with the debugger),
then the side effects cannot be guaranteed when evaluating the
optimized code. Therefore, in our treatment of types we consider
that type checking with typep is side-effect free, and in particular
that it never raises an error. This assumption allows us to reorder
the checks as long as we do not change the semantics of the Boolean
algebra of the AND, OR, and NOT specifiers.

Admittedly, that typep never raise an error is an assumption
we make knowing that it may limit the usefulness of our results,
especially since some non-conforming Common Lisp programsmay
happen to perform correctly absent our optimizations. That is to
say, our optimizations may result in errors in some non-conforming
Common Lisp programs. The specification clearly states that certain
run-time calls to typep even with well-formed type specifiers must
raise an error, such as if the type specifier is a list whose first element
is values or function. Also, as mentioned above, an evaluation of
(typep obj ’(satisfies F)) will raise an error if (F obj) raises an
error. One might be tempted to interpret (typep obj ’(satisfies

F)) as (ignore-errors (if (F obj) t nil)), but that would be a
violation of the specification which is explicit that the form (typep

x ’(satisfies p)) is equivalent to (if (p x) t nil).
There is some wiggle room, however. The specification of

satisfies states that its operand be the name of a predicate, which
is elsewhere defined as a function which returns. Thus one might be
safe to conclude that (satisfies evenp) is not a valid type specifier,
because evenp is specified to signal an error if its argument is not
an integer.

We assume, for this article, that no such problematic type speci-
fier is used in the context of typecase.
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2.2 Reduction of type specifiers
There are legitimate cases in which the programmer has specifi-
cally ordered the clauses to optimize performance. A production
worthy typecase optimization system should take that into account.
However, for the sake of simplicity, the remainder of this article
ignores this concern.

We introduce a macro, reduced-typecase, which expands to a
call to typecase but with cases reduced where possible. Latter cases
assuming previous type checks fail. This transformation preserves
clause order, but may simplify the executable logic of some clauses.
In the expansion, in Example 3 the second float check is eliminated,
and consequently, the associated AND and NOT.

Example 3 (Simple invocation and expansion of reduced-typecase).

(reduced-typecase obj

(float body-forms-1 ...)

((and number (not float)) body-forms-2 ...))

(typecase obj

(float body-forms-1 ...)

(number body-forms-2 ...))

How does this reduction work? To illustrate we provide a sightly
more elaborate example. In Example 4 the first type check is (not
(and number (not float))). In order that the second clause be
reached at run-time the first type check must have already failed.
This means that the second type check, (or float string (not

number)), may assume that obj is not of type (not (and number

(not float))).

Example 4 (Invocation and expansion reduced-typecase with un-
reachable code path).
(reduced-typecase obj

((not (and number (not float ))) body-forms-1 ...)

((or float string (not number )) body-forms-2 ...)

(string body-forms-3 ...))

(typecase obj

((not (and number (not float ))) body-forms-1 ...)

(string body-forms-2 ...)

(nil body-forms-3 ...))

The reduced-typecase macro rewrites the second type test (or
float string (not number)) by a technique called forward-substitution.
At each step, it substitutes implied values into the next type speci-
fier, and performs Boolean logic reduction. Abelson et al. [1] discuss
lisp2 algorithms for performing algebraic reduction; however, in
addition to the Abelson algorithm reducing Boolean expressions
representing Common Lisp types involves additional reductions
representing the subtype relations of terms in question. For exam-
ple (and number fixnum ...) reduces to (and fixnum ...) because
fixnum is a subtype of number. Similarly, (or number fixnum ...)

reduces to (or number ...). Newton et al. [21] discuss techniques
of Common Lisp type reduction in the presence of subtypes.

2In this article we use lisp (in lower case) to denote the family of languages or the
concept rather than a particular language implementation, and we use Common Lisp
to denote the language.

(not (and number (not float))) = nil

=⇒ (and number (not float)) = t

=⇒ number = t

and (not float) = t

=⇒ float = nil

(or float string

(not number)) = (or nil string (not t))

= (or nil string nil)

= string

With this forward substitution, reduced-typecase is able to rewrite
the second clause ((or float string (not number)) body-forms-2...)

simply as (string body-forms-2...). Thereafter, a similar forward
substitution is made to transform the third clause from (string

body-forms-3...) to (nil body-forms-3...).
Example 4 illustrates a situation in which a type specifier in one

of the clauses reduces completely to nil. In such a case we would
like the compiler to issue warnings about finding unreachable code,
and in fact it does (at least when tested with SBCL3) because the
compiler finds nil as the type specifier. The clauses in Example 5 are
identical to those in Example 4, and consequently the expressions
body-forms-3... in the third clause cannot be reached. Yet contrary
to Example 4, SBCL, AllegroCL4, and CLISP5 issue no warning at
all that body-forms-3... is unreachable code.

Example 5 (Invocation of typecase with unreachable code).
(typecase obj

((not (and number (not float ))) body-forms-1 ...)

((or float string (not number )) body-forms-2 ...)

(string body-forms-3 ...))

2.3 Order dependency
We now reconsider Examples 1 and 2. While the semantics are
the same, there is an important distinction in practice. The first
typecase contains mutually exclusive clauses, whereas the second
one does not. E.g., if the (member 40 41 42) check is moved before the
(eql 42) check, then (eql 42)will never match, and the consequent
code, body-forms-2... will be unreachable.

For the order of the type specifiers given Example 1, the types
can be simplified, having no redundant type checks, as shown in
Example 2. This phenomenon is both a consequence of the partic-
ular types in question and also the order in which they occur. As
a contrasting example, consider the situation in Example 6 where
the first two clauses of the typecase are reversed with respect to
Example 1. In this case knowing that OBJ is not of type (and (member

40 41 42) (not (eql 42))) tells us nothing about whether OBJ is
of type (eql 42) so no reduction can be inferred.

Example 6 (Re-ordering clauses sometimes enable reduction).
(typecase OBJ

((and (member 40 41 42) (not (eql 42)))

body-forms-2 ...)

3We tested with SBCL 1.3.14. SBCL is an implementation of ANSI Common Lisp.
http://www.sbcl.org/
4We tested with the International Allegro CL Free Express Edition, version 10.1 [32-bit
Mac OS X (Intel)] (Sep 18, 2017 13:53). http://franz.com
5We tested with GNU CLISP 2.49, (2010-07-07). http://clisp.cons.org/
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((eql 42)

body-forms-1 ...)

((and fixnum (not (member 40 41 42)))

body-forms-3 ...)

((and number (not fixnum ))

body-forms-4 ...))

Programmatic reductions in the typecase are dependent on the
order of the specified types. There are many possible approaches
to reducing types despite the order in which they are specified.
We consider two such approaches. Section 2.6 discusses automatic
reordering of disjoint clauses, and Section 3 uses decision diagrams.

As already suggested, a situation as shown in Example 6 can be
solved to avoid the redundant type check, (eql 42), by reordering
the disjoint clauses as in Example 1. However, there are situations
for which no reordering alleviates the problem. Consider the code
shown in Example 7. We see that some sets of types are reorderable,
allowing reduction, but for some sets of types such ordering is
impossible. We consider in Section 3 typecase optimization where
reordering is futile. For now we concentrate on efficient reordering
where possible.

Example 7 (Re-ordering cannot always enable reduction).
(typecase OBJ

((and unsigned-byte (not bignum ))

body-forms-1 ...)

((and bignum (not unsigned-byte ))

body-forms-2 ...))

2.4 Mutually disjoint clauses
As suggested in Section 2.3, to arbitrarily reorder the clauses, the
typesmust be disjoint. It is straightforward to transform any typecase
into another which preserves the semantics but for which the
clauses are reorderable. Consider a typecase in a general form.

Example 8 shows a set of type checks equivalent to those in
Figure 1 but with redundant checks, making the clauses mutually
exclusive, and thus reorderable.

Example 8 (typecase with mutually exclusive type checks).
(typecase OBJ

(Type.1

body-forms-1 ...)

((and Type.2

(not Type .1))

body-forms-2 ...)

((and Type.3

(not (or Type.1 Type .2)))

body-forms-3 ...))

...

((and Type.n

(not (or Type.1 Type.2 ... Type.n-1)))

body-forms-n ...))

In order to make the clauses reorderable, we make them more
complex which might seem to defeat the purpose of optimization.
However, as we see in Section 2.6, the complexity can sometimes
be removed after reordering, thus resulting in a set of type checks
which is better than the original. We discuss what we mean by
better in Section 2.5.

We proceed by first describing a way to judge which of two
orders is better, and with that comparison function, we can visit
every permutation and choose the best.

One might also wonder why we suffer the pain of establishing
heuristics and visiting all permutations of the mutually disjoint

types in order to find the best order. One might ask, why not just put
the clauses in the best order to begin with. The reason is because
in the general case, it is not possible to predict what the best order
is. As is discussed in Section 4, ordering the Boolean variables
to produce the smallest binary decision diagram is an NP-hard
problem. The only solution in general is to visit every permutation.
The problem of ordering a set of type tests for optimal reduction
must also be NP-hard because if we had a better solution, we would
be able to solve the BDD NP-hard problem as a consequence.

2.5 Comparing heuristically
Given a set of disjoint and thus reorderable clauses, we can now
consider finding a good order. We can examine a type specifier,
typically after having been reduced, and heuristically assign a cost.
A high cost is assigned to a satisfies type, a medium cost to AND,
OR, and NOT types which takes into account the cost of the types
specified therein, and a low cost to atomic names.

To estimate the relative goodness of two given semantically iden-
tical typecase invocations, we can heuristically estimate the com-
plexity of each by using aweighted sum of the costs of the individual
clauses. The weight of the first clause is higher because the type
specified therein will be always checked. Each type specifier there-
after will only be checked if all the preceding checks fail. Thus the
heuristic weights assigned to subsequent checks is chosen succes-
sively smaller as each subsequent check has a smaller probability
of being reached at run-time.

2.6 Reduction with automatic reordering
Now that we have a way to heuristically measure the complexity
of a given invocation of typecase we can therewith compare two
semantically equivalent invocations and choose the better one. If
the number of clauses is small enough, we can visit all possible
permutations. If the number of clauses is large, we can sample the
space randomly for some specified amount of time or specified
number of samples, and choose the best ordering we find.

We introduce the macro, auto-permute-typecase. It accepts the
same arguments as typecase and expands to a typecase form. It
does so by transforming the specified types into mutually disjoint
types as explained in Section 2.4, then iterating through all per-
mutations of the clauses. For each permutation of the clauses, it
reduces the types, eliminating redundant checks where possible
using forward-substitution as explained in Section 2.2, and assigns
a cost heuristic to each permutation as explained in Section 2.5. The
auto-permute-typecase macro then expands to the typecase form
with the clauses in the order which minimizes the heuristic cost.

Example 9 shows an invocation and expansion of
auto-permute-typecase. In this example auto-permute-typecase does
a good job of eliminating redundant type checks.

Example 9 (Invocation and expansion of auto-permute-typecase).

(auto-permute-typecase obj

((and unsigned-byte (not (eql 42)))

body-forms-1 ...)

((eql 42)

body-forms-2 ...)

((and number (not (eql 42)) (not fixnum ))

body-forms-3 ...)

(fixnum
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body-forms-4 ...))

(typecase obj

((eql 42) body-forms-2 ...)

(unsigned-byte body-forms-1 ...)

(fixnum body-forms-4 ...)

(number body-forms-3 ...))

As mentioned in Section 1, a particular optimization can be
made in the situation where the type checks in the typecase are
exhaustive; in particular the final type check may be replaced with
t/otherwise. Example 10 illustrates such an expansion in the case
that the types are exhaustive. Notice that the final type test in the
expansion is t.

Example 10 (Invocation and expansion of auto-permute-typecase
with exhaustive type checks).
(auto-permute-typecase obj

((or bignum unsigned-byte) body-forms-1 ...)

(string body-forms-2 ...)

(fixnum body-forms-3 ...)

((or (not string) (not number )) body-forms-4 ...))

(typecase obj

(string body-forms-2 ...)

((or bignum unsigned-byte) body-forms-1 ...)

(fixnum body-forms-3 ...)

(t body-forms-4 ...))

3 DECISION DIAGRAM APPROACH
In Section 2.6 we looked at a technique for reducing typecase based
solely on programmatic manipulation of type specifiers. Now we
explore a different technique based on a data structure known as
Reduced Ordered Binary Decision Diagram (ROBDD).

Example 7 illustrates that redundant type checks cannot always
be reduced via reordering. Example 11 is, however, semantically
equivalent to Example 7. Successfully mapping the code from of a
typecase to an ROBDD will guarantee that redundant type checks
are eliminated. In the following sections we automate this code
transformation.

Example 11 (Suggested expansion of Example 7).
(if (typep OBJ 'unsigned-byte)

(if (typep obj 'bignum)

nil

(progn body-forms-1 ...))

(if (typep obj 'bignum)

(progn body-forms-2 ...)

nil))

The code in Example 11 also illustrates a concern of code size
explosion. With the two type checks (typep OBJ ’unsigned-byte)

and (typep obj ’bignum), the code expands to 7 lines of code. If
this code transform be done naïvely, the risk is that each if/then/-
else effectively doubles the code size. In such an undesirable case,
a typecase having N unique type tests among its clauses, would
expand to 2N+1 − 1 lines of code, even if such code has many
congruent code paths. The use of ROBDD related techniques allows
us to limit the code size to something much more manageable. Some
discussion of this is presented in Section 4.

ROBDDs (Section 3.1) represent the semantics of Boolean equa-
tions but do not maintain the original evaluation order encoded
in the actual code. In this sense the reordering of the type checks,

which is explicit and of combinatorical complexity in the previ-
ous approach, is automatic in this approach. A complication is
that normally ROBDDs express Boolean functions, so the mapping
from typecase to ROBDD is not immediate, as a typecase may con-
tain arbitrary side-effecting expressions which are not restricted to
Boolean expressions. We employ an encapsulation technique which
allows the ROBDDs to operate opaquely on these problematic ex-
pressions (Section 3.1). Finally, we are able to serialize an arbitrary
typecase invocation into an efficient if/then/else tree (Section 3.3).

ROBDDs inherently eliminate duplicate checks. However, ROB-
DDs cannot easily guarantee removing all unnecessary checks as
that would involve visiting every possible ordering of the leaf level
types involved.

3.1 An ROBDD compatible type specifier
An ROBDD is a data structure used for performing many types
of operations related to Boolean algebra. When we use the term
ROBDD we mean, as the name implies, a decision diagram (di-
rected cyclic graph, DAG) whose vertices represent Boolean tests
and whose branches represent the consequence and alternative
actions. An ROBDD has its variablesOrdered, meaning that there is
some ordering of the variables {v1,v2, ...,vN } such that whenever
there is an arrow from vi to vj then i < j. An ROBDD is determin-
istically Reduced so that all common sub-graphs are shared rather
than duplicated. The reader is advised to read the lecture nodes of
Andersen [3] for a detailed understanding of the reduction rules.
It is worth noting that there is variation in the terminology used
by different authors. For example, Knuth [18] uses the unadorned
term BDD for what we are calling an ROBDD.

A unique ROBDD is associated with a canonical form represent-
ing a Boolean function, or otherwise stated, with an equivalence
class of expressions within the Boolean algebra. In particular, inter-
section, union, and complement operations as well as subset and
equivalence calculations on elements from the underlying space of
sets or types can be computed by straightforward algorithms. We
omit detailed explanations of those algorithms here, but instead we
refer the reader to work by Andersen [3] and Castagna [13].

We employ ROBDDs to convert a typecase into an if/then/else
diagram as shown in Figure 2. In the figure, we see a decision
diagram which is similar to an ROBDD, at least in all the internal
nodes of the diagram. Green arrows lead to the consequent if a
specified type check succeeds. Red arrows lead to the alternative.
However, the leaf nodes are not Boolean values as we expect for an
ROBDD.

We want to transform the clauses of a typecase as shown in
Figure 1 into a binary decision diagram. To do so, we associate a
distinct satisfies type with each clause of the typecase. Each such
satisfies type has a unique function associated with it, such as P1,
P2, etc, allowing us to represent the diagram shown in Figure 2 as
an actual ROBDD as shown in Figure 3.

In order for certain Common Lisp functions to behave properly
(such as subtypep) the functions P1, P2, etc. must be real functions,
as opposed to place-holder functions types as Baker[7] suggests,
so that (satisfies P1) etc, have type specifier semantics. P1, P2,
etc, must be defined in a way which preserves the semantics of the
typecase.
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unsigned-byte

bignum bignum

⊥(progn body-forms-2...) (progn body-forms-1...)

Figure 2: Decision Diagram representing irreducible
typecase. This is similar to an ROBDD, but does not fulfill
the definition thereof, because the leaf nodes are not simple
Boolean values.

unsigned-byte

bignum bignum

⊥

(satisfies P2) (satisfies P1)

T

Figure 3: ROBDD with temporary valid satisfies types

Ideally we would like to create type specifiers such as the fol-
lowing:
(satisfies (lambda (obj)

(typep obj '(and (not unsigned-byte)

bignum ))))

Unfortunately, the specification of satisfies explicitly forbids
this, and requires that the operand of satisfies be a symbol rep-
resenting a globally callable function, even if the type specifier is
only used in a particular dynamic extent. Because of this limitation
in Common Lisp, we create the type specifiers as follows. Given
a type specifier, we create such a functions at run-time using the
technique shown in the function define-type-predicate defined in
Implementation 1, which programmatically defines function with
semantics similar to those shown in Example 12.

Implementation 1 (define-type-predicate).
(defun define-type-predicate (type-specifier)

(let (( function-name (gensym "P")))

(setf (symbol-function function-name)

#'(lambda (obj)

(typep obj type-specifier )))

function-name ))

Example 12 (Semantics of satisfies predicates).
(defun P1 (obj)

(typep obj '(and (not unsigned-byte) bignum )))

(defun P2 (obj)

(typep obj '(and (not bignum) unsigned-byte )))

The define-type-predicate function returns the name of a named
closure which the calling function can use to construct a type spec-
ifier. The name and function binding are generated in a way which
has dynamic extent and is thus friendly with the garbage collector.

To generate the ROBDD shown in Figure 3 we must construct a
type specifier equivalent to the entire invocation of typecase. From
the code in Figure 1 we have to assemble a type specifier such as
in Example 13. This example is provided simply to illustrate the
pattern of such a type specifier.

Example 13 (Type specifier equivalent to Figure 1).
(let ((P1 (define-type-predicate 'Type .1))

(P2 (define-type-predicate

'(and Type.2 (not Type .1))))

(P3 (define-type-predicate

'(and Type.3 (not (or Type.1 Type .2)))))

...

(Pn (define-type-predicate

'(and Type.n (not (or Type.1 Type.2

... Type.n-1 ))))))

`(or (and Type.1

(satisfies ,P1))

(and Type.2

(not Type .1)

(satisfies ,P2))

(and Type.3

(not (or Type.1 Type .2))

(satisfies ,P3))

...

(and Type.n

(not (or Type.1 Type.2

... Type.n-1))

(satisfies ,Pn))))

3.2 BDD construction from type specifier
Functions which construct an ROBDD need to understand a com-
plete, deterministic ordering of the set of type specifiers via a com-
pare function. To maintain semantic correctness the corresponding
compare function must be deterministic. It would be ideal if the
function were able to give high priority to type specifiers which
are likely to be seen at run time. We might consider, for example,
taking clues from the order specified in the typecase clauses. We do
not attempt to implement such decision making. Rather we choose
to give high priority to type specifiers which are easy to check at
run-time, even if they are less likely to occur.

We use a heuristic similar to that mentioned in Section 2.5 except
that type specifiers involving AND, OR, and NOT never occur, rather
such types correspond to algebraic operations among the ROB-
DDs themselves such that only non-algebraic types remain. More
precisely, the heuristic we use is that atomic types such as number
are considered fast to check, and satisfies types are considered
slow. We recognize the limitation that the user might have used
deftype to define a type whose name is an atom, but which is slow
to type check. Ideally, we should fully expand user defined types
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fixnum

unsigned-byte

number

(eql 42)

(satisfies P4)

unsigned-byte

nil

(satisfies P2)(satisfies P1)

T

(satisfies P3)

Figure 4: ROBDD generated from typecase clauses in Exam-
ple 14

into Common Lisp types. Unfortunately this is not possible in a
portable way, and we make no attempts to implement such expan-
sion in implementation specific ways. It is not even clear whether
the various Common Lisp implementations have public APIs for
the operations necessary.

A crucial exception in our heuristic estimation algorithm is that
to maintain the correctness of our technique, we must assure that
the satisfies predicates emanating from define-type-predicate

have the lowest possible priority. I.e., as is shown in Figure 3, we
must avoid that any type check appear below such a satisfies type
in the ROBDD.

There are well known techniques for converting an ROBDD
which represents a pure Boolean expression into an if/then/else
expression which evaluates to true or false. However, in our case
we are interested in more than simply the Boolean value. In partic-
ular, we require that the resulting expression evaluate to the same
value as corresponding typecase. In Figure 1, these are the values re-
turned from body-forms-1..., body-forms-2..., ... body-forms-n....
In addition we want to assure that any side effects of those ex-
pressions are realized as well when appropriate, and never realized
more than once.

We introduce themacro bdd-typecasewhich expands to a typecase
form using the ROBDD technique. When the macro invocation in
Example 14 is expanded, the list of typecase clauses is converted
to a type specifier similar to what is illustrated in Example 13. That
type specifier is used to create an ROBDD as illustrated in Figure 4.
As shown in the figure, temporary satisfies type predicates are
created corresponding to the potentially side-effecting expressions
body-forms-1, body-forms-2, body-forms-3, and body-forms-4. In re-
ality these temporary predicates are named by machine generated
symbols; however, in Figure 4 they are denoted P1, P2, P3, and P4.

Example 14 (Invocation of bdd-typecase with intersecting types).

(bdd-typecase obj

((and unsigned-byte (not (eql 42)))

body-forms-1 ...)

((eql 42)

body-forms-2 ...)

((and number (not (eql 42)) (not fixnum ))

body-forms-3 ...)

(fixnum

body-forms-4 ...))

3.3 Serializing the BDD into code
The macro bdd-typecase emits code as in Example 15, but just
as easily may output code as in Example 16 based on tagbody/go.
In both example expansions we have substituted more readable
labels such as L1 and block-1 rather than the more cryptic machine
generated uninterned symbols #:l1070 and #:|block1066|.

Example 15 (Macro expansion of Example 14 using labels).
(( lambda (obj-1)

(labels ((L1 () (if (typep obj-1 'fixnum)

(L2)

(L7)))

(L2 () (if (typep obj-1 'unsigned-byte)

(L3)

(L6)))

(L3 () (if (typep obj-1 '(eql 42))

(L4)

(L5)))

(L4 () body-forms-2 ...)

(L5 () body-forms-1 ...)

(L6 () body-forms-4 ...)

(L7 () (if (typep obj-1 'number)

(L8)

nil))

(L8 () (if (typep obj-1 'unsigned-byte)

(L5)

(L9)))

(L9 () body-forms-3 ...))

(L1)))

obj)

The bdd-typecase macro walks the ROBDD, such as the one il-
lustrated in Figure 4, visiting each non-leaf node therein. Each node
corresponding to a named closure type predicate is serialized as a
tail call to the clauses from the typecase. Each node correspond-
ing to a normal type test is serialized as left and right branches,
either as a label and two calls to go as in Example 16, or a local
function definition with two tail calls to other local functions as in
Example 15.

Example 16 (Alternate expansion of Example 14 using tagbody/go).

(( lambda (obj-1)

(block block-1

(tagbody

L1 (if (typep obj-1 'fixnum)

(go L2)

(go L7))

L2 (if (typep obj-1 'unsigned-byte)

(go L3)

(go L6))

L3 (if (typep obj-1 '(eql 42))

(go L4)

(go L5))

L4 (return-from block-1

(progn body-forms-2 ...))

L5 (return-from block-1

(progn body-forms-1 ...))

L6 (return-from block-1

(progn body-forms-4 ...))

L7 (if (typep obj-1 'number)
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(go L8)

(return-from block-1 nil))

L8 (if (typep obj-1 'unsigned-byte)

(go L5)

(go L9))

L9 (return-from block-1

(progn body-forms-3 ...)))))

obj)

3.4 Emitting compiler warnings
The ROBDD, as shown in Figure 4, can be used to generate the
Common Lisp code semantically equivalent to the correspond-
ing typecase as already explained in Section 3.3, but we can do
even better. There are two situations where we might wish to emit
warnings: (1) if certain code is unreachable, and (2) if the clauses
are not exhaustive. Unfortunately, there is no standard way to in-
corporate these warnings into the standard compiler output. One
might tempted to simply emit a warning of type style-warning as
is suggested by the typecase specification. However, this would be
undesirable since there is no guarantee that the corresponding code
was human-generated—ideally we would only like to see such style
warnings corresponding to human generated code.

The list of unreachable clauses can be easily calculated as a func-
tion of which of the P1, P2 ... predicates are missing from the serial-
ized output. As seen in Figure 4, each of body-forms-1, body-forms-2,
body-forms-3, and body-forms-4 is represented as P1, P2, P3, and P4,
so no such code is unreachable in this case.

We also see in Figure 4 that there is a path from the root node to
the nil leaf node which does not pass through P1, P2, P3, or P4. This
means that the original typecase is not exhaustive. The type of any
such value can be calculated as the particular path leading to nil.
In the case of Figure 4, (and (not fixnum) (not number)), which
corresponds simply to (not number), is such a type. I.e., the original
bdd-typecase, shown in Example 14, does not have a clause for non
numbers.

4 RELATEDWORK
This article references the functions make-bdd and bdd-cmp whose
implementation is not shown herein. The code is available via Git-
Lab from the EPITA/LRDE public web page:
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git. That
repository contains several things. Most interesting for the context
of BDDs is the Common Lisp package, LISP-TYPES.

As there are many individual styles of programming, and each
programmer of Common Lisp adopts his own style, it is unknown
howwidespread the use of typecase is in practice, and consequently
whether optimizing it is effort well spent. A casual look at the code
in the current public Quicklisp6 repository reveals a rule of thumb.
1 out of 100 files, and 1 out of 1000 lines of code use or make refer-
ence to typecase. When looking at the Common Lisp code of SBCL
itself, we found about 1.6 uses of typecase per 1000 lines of code.
We have made no attempt to determine which of the occurrences
are comments, trivial uses, or test cases, and which ones are used
in critical execution paths; however, we do loosely interpret these
results to suggest that an optimized typecase either built into the
cl:typecase or as an auxiliary macro may be of little use to most

6https://www.quicklisp.org/

currently maintained projects. On the contrary, we suggest that
having such an optimized typecase implementation, may serve
as motivation to some programmers to make use of it, at least in
machine generated code such as Newton et al. [20] explain. Since
generic function dispatch conceptually bases branching choices
on Boolean combinations of type checks, one naturally wonders
whether our optimizations might be of useful within the implemen-
tation of CLOS[17].

Newton et al. [20] present a mechanism to characterize the type
of an arbitrary sequence in Common Lisp in terms of a rational
language of the types of the sequence elements. The article explains
how to build a finite statemachine and from that construct Common
Lisp code for recognizing such a sequence. The code associates the
set of transitions existing from each state as a typecase. The article
notes that such a machine generated typecase could greatly benefit
from an optimizing typecase.

The map-permutations function (Section 2.6) works well for small
lists, but requires a large amount of stack space to visit all the per-
mutations of large lists. Knuth[18] explores several iterative (not
recursive) algorithms using various techniques, in particular by
plain changes[18, Algorithm P, page 42], by cyclic shifts[18, Algo-
rithm C, page 56], and by Erlich swaps[18, Algorithm E, page 57]. A
survey of these three algorithms can also be found in the Cadence
SKILL Blog7 which discussions an implementation in SKILL[8],
another lisp dialect.

There is a large amount of literature about Binary Decision
Diagrams of many varieties [2, 3, 9, 10, 14]. In particular Knuth
[18, Section 7.1.4] discusses worst-case and average sizes, which
we alluded to in Section 3. Newton et al. [21] discuss how the
Reduced Ordered Binary Decision Diagram (ROBDD) can be used
to manipulate type specifiers, especially in the presence of subtypes.
Castagna [13] discusses the use of ROBDDs (he calls them BDDs
in that article) to perform type algebra in type systems which treat
types as sets [4, 12, 16].

BDDs have been used in electronic circuit generation[15], verifi-
cation, symbolic model checking[11], and type system models such
as in XDuce [16]. None of these sources discusses how to extend
the BDD representation to support subtypes.

Common Lisp does not provide explicit pattern matching [5]
capabilities, although several systems have been proposed such as
Optima8 and Trivia9. Pierce [23, p. 341] explains that the addition
of a typecase-like facility (which he calls typecase) to a typed λ-
calculus permits arbitrary run-time pattern matching.

Decision tree techniques are useful in the efficient compilation
of pattern matching constructs in functional languages[19]. An im-
portant concern in pattern matching compilation is finding the best
ordering of the variables which is known to be NP-hard. However,
when using BDDs to represent type specifiers, we obtain repre-
sentation (pointer) equality, simply by using a consistent ordering;
finding the best ordering is not necessary for our application.

In Section 2.2 we mentioned the problem of symbolic algebraic
manipulation and simplification. Ableson et al. [1, Section 2.4.3] dis-
cuss this with an implementation of rational polynomials. Norvig

7https://community.cadence.com/tags/Team-SKILL, SKILL for the Skilled, Visit-
ing all Permutations
8https://github.com/m2ym/optima
9https://github.com/guicho271828/trivia
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[22, Chapter 8] discusses this in a use case of a symbolic mathemat-
ics simplification program. Both the Ableson and Norvig studies
explicitly target a lisp-literate audience.

5 CONCLUSION AND FUTUREWORK
As illustrated in Example 9, the exhaustive search approach used
in the auto-permute-typecase (Section 2.6) can often do a good
job removing redundant type checks occurring in a typecase in-
vocation. Unfortunately, as shown in Example 7, sometimes such
optimization is algebraically impossible because the particular type
interdependencies. In addition, an exhaustive search becomes un-
reasonable when the number of clauses is large. In particular there
are N ! ways to order N clauses. This means there are 7! = 5040
orderings of 7 clauses and 10! = 3, 628, 800 orderings of 10 clauses.

On the other hand, the bdd-typecase macro, using the ROBDD
approach (Section 3.2), is always able to remove duplicate checks,
guaranteeing that no type check is performed twice. Nevertheless,
it may fail to eliminate some unnecessary checks which need not
be performed at all.

It is known that the size and shape of a reduced BDD depends
on the ordering chosen for the variables [9]. Furthermore, it is
known that finding the best ordering is NP-hard, and in this article
we do not address questions of choosing or improving variable
orderings. It would be feasible, at least in some cases, to apply the
exhaustive search approach with ROBDDs. I.e., we could visit all
orders of the type checks to find which gives the smallest ROBDD.
In situations where the number of different type tests is large, the
development described in Section 3.1 might very well be improved
employing some known techniques for improving BDD size though
variable ordering choices[6]. In particular, we might attempt to use
the order specified in the typecase as input to the sorting function,
attempting in at least the simple cases to respect the user given
order as much as possible.

In Section 2.4, we presented an approach to approximating the
cost a set of type tests and commented that the heuristics are sim-
plistic. We leave it as a matter for future research as to how to
construct good heuristics, which take into account how compute
intensive certain type specifiers are to manipulate.

We believe this research may be useful for two target audiences:
application programmers and compiler developers. Even though
the currently observed use frequency of typecase seems low in the
majority of currently supported applications, programmers may
find the macros explained in this article (auto-permute-typecase
and bdd-typecase) to be useful in rare optimization cases, but more
often for their ability to detect certain dubious code paths. There
are, however, limitations to the portable implementation, namely
the lack of a portable expander for user defined types, and an ability
to distinguish between machine generated and human generated
code. These shortcomings may not be significant limitations to
the compiler implementer, in which case the compiler may be able
to better optimize user types, implement better heuristics regard-
ing costs of certain type checks, and emit useful warnings about
unreachable code.
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ABSTRACT
In traditional object-oriented languages, the dynamic dispatch al-
gorithm is hardwired: for every polymorphic call, only the most
speci�c method is used. Clos, the Common Lisp Object System,
goes beyond the traditional approach by providing an abstraction
known as method combinations: when several methods are applica-
ble, it is possible to select several of them, decide in which order
they will be called, and how to combine their results, essentially
making the dynamic dispatch algorithm user-programmable.

Although a powerful abstraction,method combinations are under-
speci�ed in the Common Lisp standard, and the Mop, the Meta-
Object Protocol underlying many implementations of Clos, wors-
ens the situation by either contradicting it or providing unclear pro-
tocols. As a consequence, too much freedom is granted to conform-
ing implementations. The exact or intended behavior of method
combinations is unclear and not necessarily coherent with the rest
of Clos.

In this paper, we provide a detailed analysis of the problems
posed by method combinations, the consequences of their lack of
proper speci�cation in one particular implementation, and a Mop-
based extension called method combinators, aiming at correcting
these problems and possibly o�er new functionality.
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1 INTRODUCTION
Common Lisp was the �rst programming language equipped with
an object-oriented (OO) layer to be standardized [16]. Although
in the lineage of traditional class-based OO languages such as
Smalltalk and later C++ and Java, Clos, the Common Lisp Ob-
ject System [2, 5, 7, 9], departs from those in several important
ways.

First of all, Clos o�ers native support for multiple dispatch [3, 4].
Multiple dispatch is a generalization of single dispatch a.k.a. inclu-
sion polymorphism [12]. In the classic message-passing style of
single dispatch, the appropriate method is selected according to the
type of the receiver (the object through which the method is called).
In multiple dispatch however, the method selection algorithm may
use as many arguments as requested in the generic call. Because this
kind of polymorphism doesn’t grant any object argument a particu-
lar status (message receiver), methods (herein calledmulti-methods)
are naturally decoupled from classes and generic function calls
look like ordinary function calls. The existence of multi-methods
thus pushes dynamic dispatch one step further in the direction of
separation of concerns: polymorphism and inheritance are clearly
separated.

Next, Clos itself is written on top of a meta-object protocol, the
Clos Mop [10, 13]. Although not part of the ANSI speci�cation,
the Clos Mop is a de facto standard well supported by many imple-
mentations. In supporting implementations, theMop layer not only
allows for Clos to be implemented in itself (classes being instances
of their meta-classes etc.), but also lets the programmer extend or
modify its very semantics, hence providing a form of homogeneous
behavioral re�ection [11, 14, 15].

Yet another improvement over the classical OO approach lies
in the concept of method combination. In the traditional approach,
the dynamic dispatch algorithm is hardwired: every polymorphic
call ends up executing the most speci�c method available (appli-
cable) and using other, less speci�c ones requires explicit calls to
them. In Clos however, a generic function can be programmed to
implicitly call several applicable methods (possibly all of them), not
necessarily by order of speci�city, and combine their results (not
necessarily all of them) in a particular way. Along with multiple
dispatch, method combinations constitute one more step towards
orthogonality [8, chapter 8]: a generic function can now be seen as
a 2D concept: 1. a set of methods and 2. a speci�c way of combin-
ing them. As usual with this language, method combinations are
also fully programmable, essentially turning the dynamic dispatch
algorithm into a user-level facility.

Richard P. Gabriel reports1 that at the time Common Lisp was
standardized, the standardization committee didn’t believe that

1in a private conversation
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(defgeneric details (human)
(:method-combination append :most-specific-last))

(defmethod details append ((human human)) ...)
(defmethod details append ((employee employee)) ...))

Figure 1: Short Method Combination Usage Example

method combinations were mature enough to make people im-
plement them in one particular way (the only industrial-strength
implementation available back then was in Flavors on Lisp Ma-
chines). Consequently, they intentionally under-speci�ed them in
order to leave room for experimentation. At the time, the Mop was
not ready either, and only added later, sometimes with unclear or
contradictory protocols. The purpose of this paper is to provide a
detailed analysis of the current status of method combinations, and
also to o�er possible improvements over them.

Section 2 provides a detailed analysis of the speci�cation for
method combinations (both Clos and the Mop) and points out
its caveats. Section 3 describes how Sbcl2 implements method
combinations, and exhibits some of their inconsistent or unfor-
tunate (although conformant) behavior. Sections 4 and 5 provide
an extension to method combinations, called method combinators,
aimed at �xing the problems previously described. Finally, Section 6
demonstrates an additional feature made possible with method com-
binators, which increases yet again the orthogonality of generic
functions in Common Lisp.

2 METHOD COMBINATIONS ISSUES
In this section, we provide an analysis of how method combina-
tions are speci�ed and point out a set of important caveats. This
analysis is not only based on what the Common Lisp standard
claims, but also on the additional requirements imposed by the
Clos Mop. In the remainder of this paper, some basic knowledge
on method combinations is expected, notably on how to de�ne
them in both short and long forms. The reader unfamiliar with
define-method-combination is invited to look at the examples
provided in the Common Lisp standard �rst3.

2.1 Lack of Orthogonality
As already mentioned, method combinations help increase the sep-
aration of concerns in Common Lisp’s view on generic functions.
The orthogonality of the concept goes only so far however, and
even seems to be hindered by the standard itself occasionally. This
is particularly true in the case of method combinations de�ned in
short form (or built-in ones, which obey the same semantics).

Figure 1 demonstrates the use of the append built-in combina-
tion, concatenating the results of all applicable methods. In this
particular example, and given that employees are humans, calling
details on an employee would collect the results of both methods.
Short combinations require methods to have exactly one quali�er:
either the combination’s name for primary methods (append in our
example), or the :around tag4. This means that one cannot change
a generic function’s (short) method combination in a practical way,
2http://www.sbcl.org
3http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm
4http://www.lispworks.com/documentation/lw70/CLHS/Body/07_�d.htm

as it would basically render every primary method unusable (the
standard also mandates that an error be signaled if methods without
a quali�er, or a di�erent one are found). Hence, method combina-
tions are not completely orthogonal to generic functions. On the
other hand, :around methods remain valid after a combination
change, a behavior inconsistent with that of primary methods.

Perhaps the original intent was to improve readability or safety:
when adding a new method to a generic function using a short
method combination, it may be nice to be reminded of the com-
bination’s name, or make sure that the programmer remembers
that it’s a non-standard one. If such is the case, it also fails to do so
in a consistent way. Indeed, short method combinations support
an option a�ecting the order in which the methods are called, and
passed to the :method-combination option of a defgeneric call
(:most-specific-first/last, also illustrated in Figure 1). Thus,
if one is bound to restate the combination’s name anyway, why not
restate the potential option as well? Finally, one may also wonder
why short method combinations didn’t get support for :before
and :after methods as well as :around ones.

Because short method combinations were added to enshrine
common, simple cases in a shorter de�nition form, orthogonality
was not really a concern. Fortunately, short method combinations
can easily be implemented as long ones, without the limitations
exhibited in this section (see Appendix A).

2.2 Lack of Structure
The Common Lisp standard provides a number of concepts related
to object-orientation, such as objects, classes, generic functions, and
methods. Such concepts are usually gracefully integrated into the
type system through a set of classes called system classes. Generic
functions, classes, and methods are equipped with two classes: a
class named C serving as the root for the whole concept hierarchy,
and a class named standard-C serving as the default class for ob-
jects created programmatically. In every case, the standard explicitly
names the APIs leading to the creation of objects of such standard
classes. For example, standard-method is a subclass of method
and is “the default class of methods de�ned by the defmethod and
defgeneric forms”5.

Method combinations, on the other hand, only get one standard-
ized class, the method-combination class. The Mop further states
that this class should be abstract (not meant to be instantiated), and
also explicitly states that it “does not specify the structure of method
combination metaobjects”[10, p. 140]. Yet, because the standard also
requires that method combination objects be “indirect instances”
of the method-combination class6, it is mandatory that subclasses
are provided by conforming implementations (although no pro-
visions are made for a standard-method-combination class for
instance). Although this design may seem inconsistent with the
rest of Clos, the idea, again, was to leave room for experimen-
tation. For example, knowing that method combinations come in
two forms, short and long, and that short combinations may be
implemented as long ones, implementations can choose whether
to represent short and long combinations in a single or as separate
hierarchies. The unfortunate consequence, however, is that it is

5http://www.lispworks.com/documentation/lw70/CLHS/Body/t_std_me.htm
6http://www.lispworks.com/documentation/lw70/CLHS/Body/t_meth_1.htm
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impossible to specialize method combinations in a portable way,
because implementation-dependent knowledge of the exact method
combination classes is needed in order to subclass them.

Yet another unfortunate consequence of this under-speci�cation
lies in whether method combinations should be objects or classes
to be instantiated, although the original intent was to consider
them as some kind of macros involved in method de�nition. The
Common Lisp standard consistently talks of “method combina-
tion types”, and in particular, this is what is supposed to be cre-
ated by define-method-combination7. This seems to suggest
the creation of classes. On the other hand, method combina-
tions can be parametrized when they are used. The long form
allows a full ordinary lambda-list to be used when generic func-
tions are created. The short form supports one option called
:identity-with-one-argument, in�uencing the combination’s
behavior at creation-time (originally out of a concern for e�ciency),
and another one, the optional order argument, to be used by generic
functions themselves. The long form also has several creation-time
options for method groups such as :order and :required, but it
turns out that these options can also be set at use-time, through
the lambda-list.

2.3 Unclear Protocols
The third and �nal issue we see with method combinations is that
theMop, instead of clarifying the situation, worsens it by providing
unclear or inconsistent protocols.

2.3.1 find-method-combination. In Common Lisp, most
global objects can be retrieved by name one way or another. For
example, symbol-function and symbol-value give you access to
the Lisp-2 namespaces [6], and other operators perform a similar
task for other categories of objects (compiler-macro-function
being an example). The Common Lisp standard de�nes a num-
ber of find-* operators for retrieving objects. Amongst those are
find-method and find-class which belong to the Clos part of
the standard, but there is no equivalent for method combinations.

The Mop, on the other hand, provides a generic function called
find-method-combination [10, p. 191]. However, this protocol
only adds to the confusion. First of all, the arguments to this func-
tion are a generic function, a method combination type name, and
some method combination options. From this prototype, we can
deduce that contrary to find-class for example, it is not meant to
retrieve a globally de�ned method combination by name. Indeed,
the description of this function says that it is “called to determine
the method combination object used by a generic function”. Exactly
who calls it and when is unspeci�ed however, and if the purpose
is to retrieve the method combination used by a generic function,
then one can wonder what the second and third arguments (method
combination type and options) are for, and what happens if the
requested type is not the type actually used by the generic func-
tion. In fact, the Mop already provides a more straightforward
way of inquiring a generic function about its method combina-
tion. generic-function-method-combination is an accessor do-
ing just that.

7http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm

2.3.2 compute-effective-method. Another oddity of method
combinations lies in the design of the generic function invocation
protocol. This protocol is more or less a two steps process. The
�rst step consists in determining the set of applicable methods for
a particular call, based on the arguments (or their classes). The
Common Lisp standard speci�es a function (which theMop later
re�nes), compute-applicable-methods, which unsurprisingly ac-
cepts two arguments: a generic function and its arguments for
this speci�c call. The second step consists in computing (and then
calling) the e�ective method, that is, the combination of applicable
methods, precisely combined in a manner speci�ed by the generic
function’s method combination. While the Common Lisp standard
doesn’t specify how this is done, theMop does, via a function called
compute-effective-method. Unsurprisingly again, this function
accepts two arguments: a generic function and a set of (applicable)
methods that should be combined together. More surprisingly how-
ever, it takes a method combination as a third (middle) argument.
One can’t help but wonder why such an argument exists, as the
generic function’s method combination can be retrieved through
its accessor which, as we saw earlier, is standardized. Here again,
we may be facing a aborted attempt at more orthogonality. Indeed,
this protocol makes it possible to compute an e�ective method
for any method combination, not just the one currently in use by
the generic function (note also that the Mop explicitly mentions
that compute-effective-method may be called by the user [10,
p. 176]). However, the rest of Clos or theMop doesn’t support using
compute-effective-method in this extended way. It is, however,
an incentive for more functionality (see Section 6).

2.3.3 Memoization. One �nal remark in the area of protocols
is about the care they take for performance. The Mop describes
precisely how and when a discriminating function is allowed to
cache lists of applicable methods [10, p. 175]. Note that nothing
is said about the location of such a cache however (within the
discriminating function, in a lexical closure over it, globally for
every generic function etc.), but it doesn’t really matter. On the other
hand, the Mop says nothing about caching of e�ective methods.
This means that conforming implementations are free to do what
they want (provided that the semantics of Clos is preserved). In
particular, if caching of e�ective methods is done, whether such a
cache is maintained once for every generic function, or once for
every generic function/method combination pair is unspeci�ed.
This is rather unfortunate, both for separation of concerns, and also
for the extension that we propose in Section 6.

3 THE CASE OF SBCL
In this section, we analyse Sbcl’s implementation of Clos, and
speci�cally the consequences of the issues described in the previous
section. Note that with one exception, the analysis below also stands
for Cmucl8 from which Sbcl is derived, and which in turn derives
its implementation of Clos from Pcl [1].

3.1 Classes
The Sbcl method combination classes hierarchy is depicted in Fig-
ure 2. It provides the standard-method-combination class that

8https://www.cons.org/cmucl/
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standard-method-combination
type-name
options

short-method-combination
operator
identity-with-one-argument

long-method-combination
function
args-lambda-list

Figure 2: Sbcl Method Combination Classes Hierarchy

was missing from the standard (see Section 2.2), although this class
doesn’t serve as the default implementation for method combina-
tions, as two subclasses are provided for that, one for each com-
bination form. The options slot in the base class stores the use-
time options (the ones passed to the :method-combination option
to a defgeneric call). New method combination de�nitions are
not represented by new classes; only by instances of either the
short or long-method-combination ones. As a result, method
combinations retrieved later on are objects containing a mix of
de�nition-time and use-time options.

3.2 Short Method Combinations
Investigating how short method combinations are created in Sbcl
uncovers a very peculiar behavior. define-method-combination
expands to a call to load-short-defcombin, which in turn creates
a method on find-method-combination, eql-specialized on the
combination’s name and ignoring its �rst argument (the generic
function). This method is encapsulated in a closure containing the
method combination’s parameters, and recreates and returns a new
method combination object on the �y every time it is called.

This has at least three important consequences.

(1) Short method combinations never actually globally exist
per se (they don’t have a namespace proper). Indeed, what is
de�ned is not a method combination object (not even a class),
but a means to create one on-demand. In particular, every
generic function gets its own brand new object representing
its method combination.

(2) find-method-combination neither does what its name sug-
gests, nor what theMop seems to imply. Indeed, because the
generic function argument is ignored, it doesn’t “determine
the method combination object used by a generic function”,
but just creates whatever method combination instance you
wish, of whichever known type and use-time option you
like.

(3) It also turns out that rede�ning a short method combina-
tion (for example by calling define-method-combination
again) doesn’t a�ect the existing generic functions using it
(each have a local object representing it). This is in contradic-
tion with how every other Clos component behaves (class
changes are propagated to live instances, method rede�ni-
tions update their respective generic functions etc.).

3.3 Long Combinations
The case of long method combinations is very similar, although
with one additional oddity. Originally in Pcl (and still the case in
Cmucl), long method combinations are compiled into so-called
combination functions, which are in turn called in order to com-
pute e�ective methods. In both Pcl and Cmucl, these functions
are stored in the function slot of the long method combination
objects (see Figure 2). In Sbcl however, this slot is not used any-
more. Instead, Sbcl stores those functions in a global hash table
named *long-method-combination-functions* (the hash keys
being the combination names). The result is that long method com-
binations are represented half-locally (local objects in generic func-
tions), half-globally with this hash table.

Now suppose that one particular long method combination is re-
de�ned while some generic functions are using it. As for the short
ones, this rede�nition will not (immediately) a�ect the generic
functions in question, because each one has its own local object rep-
resenting it. However, the combination function in the global hash
table will be updated. As a result, if any concerned generic function
ever needs to recompute its e�ectivemethod(s) (for instance, if some
methods are added or removed, if the set of applicable methods
changes from one call to another, or simply if the generic function
needs to be reinitialized), then the updated hash table entry will be
used and the generic function’s behavior will indeed change accord-
ing to the updated method combination. With e�ective methods
caching (as is the case in Sbcl) and a little (bad) luck, one may even
end upwith a generic function using di�erent method combinations
for di�erent calls at the same time (see Appendix B).

4 METHOD COMBINATORS
In this section, we propose an extension to method combinations
called method combinators, aiming at correcting the problems de-
scribed in Sections 2 and 3. Most importantly, method combinators
have a global namespace and generic functions using them are
sensitive to their modi�cation. Method combinators come with a
set of new protocols inspired from what already exists in Clos, thus
making them more consistent with it. As an extension to method
combinations, they are designed to work on top of them, in a non-
intrusive way (regular method combinations continue to work as
before). Finally, their implementation tries to be as portable as pos-
sible (although, as we have already seen, some vendor-speci�c bits
are unavoidable).

4.1 Method Combinator Classes
Figure 3 depicts the implementation of method combinators in Sbcl.
We provide two classes, short/long-method-combinator, them-
selves subclasses of their corresponding, implementation-dependent,
method combination classes. A method-combinator-mixin is also
added as a superclass for both, maintaining additional information
(the clients slot will be explained in Section 5.3) and serving as
a means to specialize on both kinds of method combinators at the
same time.

4.2 Method Combinators Namespace
Method combinators are stored globally in a hash table and accessed
by name. This hash table is manipulated through an accessor called
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method-combinator-mixin
clients

short-method-combination long-method-combination

short-method-combinator long-method-combinator

Figure 3: Method Combinator Classes Hierarchy

find-method-combinator (and its accompanying setf function).
This accessor can be seen as the equivalent of find-class for
method combinators, and has the same prototype. It thus consid-
erably departs from the originalMop protocol, but is much more
consistent with Clos itself.

4.3 Method Combinators Management
4.3.1 Protocols. The short method combinator protocol is de-

signed in the same layered fashion as the rest of the Mop. First,
we provide a macro called define-short-method-combinator be-
having as the short form of define-method-combination, and
mostly taking care of quoting. This macro expands to a call to
ensure-short-method-combinator. In turn, this (regular) func-
tion calls the ensure-short-method-combinator-using-class
generic function. Unsurprisingly, this generic function takes a
method combinator as its �rst argument, either null when a new
combinator is created, or an existing one in case of a rede�ni-
tion. Note that theMop is not always clear or consistent with its
ensure-* family of functions, and their relation to the macro layer.
In method combinators, we adopt a simple policy: while the func-
tional layer may default some optional or keyword arguments, the
macro layer only passes down those arguments which have been
explicitly given in the macro call.

The same protocol is put in place for long method combinators.
Note that it is currently undecided whether we want to keep dis-
tinct interfaces and protocols for short and long forms. The current
choice of separation simply comes from the fact that Pcl imple-
ments them separately. Another yet undecided feature is how to
handle de�nition-time vs. use-time options. Currently, in order to
simplify the matter as a proof of concept, the (normally) use-time
option :most-specific-first/last is handled when a short com-
binator is de�ned rather thanwhen it is used, and the lambda-list for
long forms is deactivated. In other words, use-time options are not
supported. Note that this is of little consequence in practice: instead
of using the same combination with di�erent use-time arguments,
one would just need to de�ne di�erent (yet similar) combinations
with those arguments hard-wired in the code.

4.3.2 Creation. A new method combinator is created in 3 steps.
(1) define-method-combination is bypassed. Because regu-

lar method combinations do not have any other protocol
speci�ed, we use Sbcl’s internal functions directly. Recall
that the e�ect of these functions is to add a new method to
find-method-combination.

standard-generic-function funcallable-standard-class

combined-generic-function
functions

«instanceof»

Figure 4: Combined Generic Functions

(2) We subsequently call this new method in order to retrieve
an actual combination object, and upgrade it to a combinator
by calling change-class.

(3) Finally, this upgraded object is stored in the global combina-
tors hash table by calling (setf find-method-combinator).

All of this is done in layer 3 of the protocols, except that in the case
of long combinators, the combination function is computed at the
macro level (this is how Sbcl does it). Additionally, as Cmucl still
does, but contrary to Sbcl, we update the function slot in the long
combinator objects.

The advantage of this process is that de�ning a combinator also
inserts a regular method combination in the system. Regular generic
functions may thus use the new combination without any of the
combinator extensions.

4.3.3 Modification. An existing method combinator may be up-
dated by the user via the �rst two protocol layers (the define-*
macro layer or the ensure-* functional one). The updating process
is quite simple: it merely involves a call to reinitialize-instance
or to change-class if we are switching combinator forms. The
de�nition change is also propagated to the regular combination
layer, and in the case of the long form, care is taken to update
not only the function slot of the combinator object, but Sbcl’s
*long-method-combination-functions* hash table as well.

4.3.4 Built-in Combinators. Finally, we provide new versions
of the standard and built-in method combinations as combinators.
These combinators are named with keywords, so as to both co-exist
gracefully with the original Common Lisp ones, and still be easily
accessible by name. On top of that, the built-in method combinators
are de�ned in long forms, so as to provide support for :before
and :after methods, and also avoid requiring the combinator’s
name as a quali�er to primary methods. In fact, a user-level macro
called define-long-short-method-combinator is provided for
de�ning such “pseudo-short” combinators easily.

5 COMBINED GENERIC FUNCTIONS
At that point, generic functions can seamlessly use method com-
binators as regular combinations, although with not much bene�t
(apart from the extended versions of the built-in ones). Our next
goal is to ensure that the global method combinator namespace is
functioning properly.

5.1 Generic Functions Subclassing
As usual, in order to remain unobtrusive with standard Clos, we
specialize the behavior of generic functions with a subclass han-
dling method combinators in the desired way. This class, called
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combined-generic-function, is depicted in Figure 4 (an explana-
tion for the functions slot will be provided in Section 6.2.2). For
convenience, a macro called defcombined is provided as a wrapper
around defgeneric. This macro takes care of setting the generic
function class to combined-generic-function (unless otherwise
speci�ed). Also for convenience, a new :method-combinator op-
tion is provided to replace the regular :method-combination one,
but ultimately transformed back into

Finally, the (not portable) method-combination slot of generic
functions is extended to recognize a :method-combinator initarg,
and a method-combinator accessor.

5.2 Method Combinator Management
5.2.1 Initialization. In the absence of an explicit method com-

binator option, new combined generic functions should use the
:standard one. This is easily done by providing a default initarg for
:method-combinator to the combined-generic-function class,
with a value of (find-method-combinator :standard).

The case of a provided method combinator name is more in-
teresting. Normally, we would wrap ensure-generic-function/-
using-class with specialized versions to look up a combinator
instead of a combination. However, at the expense of portability
(a necessity anyway), we can do a little simpler. As it turns out,
Sbcl initializes a generic function’s method combination by calling
find-method-combination on the generic function’s class proto-
type. Consequently, we can simply specialize this function with an
eql specializer on the combined-generic-function class proto-
type, and look up for the appropriate global method combinator
object there. Note that in order to specialize on a class prototype,
the class needs to have been �nalized already. Because of that, we
need to call finalize-inheritance explicitly and very early on
the class combined-generic-function.

5.2.2 Sanitation. This is also a good opportunity for us to sani-
tize the find-method-combination protocol for combined generic
functions. A new method specialized on such functions is provided.
Contrary to the default behavior, this method ensures that the re-
quested method combinator is indeed the one in use by the function,
and then returns it (recall that this is a global object). Otherwise,
an error is signaled.

5.2.3 Updating. In order to change a combined generic func-
tion’s method combinator, we provide a convenience function called
change-method-combinator. This function accepts a combined
generic function (to be modi�ed) and a method combinator desig-
nator (either a name, or directly an object) which it canonicalizes.
In the ideal case, this function should be able to only invalidate
the generic function’s e�ective method cache. Unfortunately, this
cannot be done in a portable way. Thus, the only thing we can do
portably is to call reinitialize-instance with the new method
combinator.

5.3 Client Maintenance
The last thing we need to do is make sure that method combinator
updates are correctly propagated to relevant combined generic
functions. A combined generic function using a method combinator

is called its client. Every method combinator maintains a list of
clients, thanks to the the clients slot of the mixin (see Figure 3).

5.3.1 Registration. Registering a combined generic function as
a method combinator client is implemented via two methods. One,
on initialize-instance, adds a new combined generic func-
tion to its method combinator’s clients slot. The other one, on
reinitialize-instance, checks whether an existing combined
generic function’s combinator has changed, and performs the up-
dating accordingly (recall that reinitializing the instance is the only
portable way to change a generic function’s method combination).

Note that while the Common Lisp standard allows a generic func-
tion’s class to change, provided that both classes are “compatible”
(a term which remains unde�ned)9, theMop seems to imply that
meta-classes are only compatible with themselves (it is forbidden to
change a generic function’s meta-class [10, p. 187]). This restriction
makes the client registration process simpler, as a regular generic
function cannot become a combined one, or vice versa.

5.3.2 Updating. When a method combinator is rede�ned, it can
either remain in the same form, or switch from short to long and
vice versa. These two situations can be easily detected by special-
izing reinitialize-instance and u-i-f-d-c10 (we could also
use shared-initialize). Two such :aftermethods are provided,
which trigger updating of all the method combinator’s clients.

Client updating is implemented thanks to a new protocol inspired
from the instance updating one: we provide a generic function
called make-clients-obsolete, which starts the updating process.
During updating, the generic function u-c-g-f-f-r-m-c11 is called
on every client. As mentioned previously, there is no portable way
to invalidate an e�ective methods cache in the Clos Mop, so the
only thing we can do safely is to completely reinitialize the generic
function.

The problem we have here is that while the method combinator
has been rede�ned, the object identity is preserved. Still, we need to
trick the implementation into believing that the generic function’s
method combinator object has changed. In order to do that, we �rst
set the combined generic function’s method-combination slot to
nil manually (and directly; bypassing all o�cial protocols), and
then call reinitialize-instance with a :method-combinator
option pointing to the same combinator as before. The implementa-
tion then mistakenly thinks that the combinator has changed, and
e�ectively reinitializes the instance, invalidating previously cached
e�ective methods.

6 ALTERNATIVE COMBINATORS
In Section 4.3.4, we provided new versions of the built-in method
combinations allowing primary methods to remain unquali�ed.
In Section 5.2.3 we o�ered a convenience function to change the
method combinator of a combined generic function more easily
(hence the use for unquali�ed methods). In the spirit of increasing
the separation of concerns yet again, the question of alternative
combinators follows naturally: what about calling a generic function

9http://www.lispworks.com/documentation/lw70/CLHS/Body/f_ensure.htm
10update-instance-for-different-class
11update-combined-generic-function-for-redefined-method-combinator

ELS 2018 37



Method Combinators ELS’18, April 16–17 2018, Marbella, Spain

with a di�erent, temporary method combinator, or even maintain-
ing several combinators at once in the same generic function?

In the current state of things, we can already change the method
combinator temporarily, call the generic function, and then switch
the combinator back to its original value. Of course, the cost of
doing it this way is prohibitive, as the generic function would need
to be reinitialized as many times as one changes its combinator.
There is however, a way to do it more e�ciently. While highly
experimental, it has been tested and seems to work properly in
Sbcl.

6.1 Protocols
At the lowest level lies a function called call-with-combinator.
This function takes a combinator object, a combined generic func-
tion object and a &rest of arguments. Its purpose is to call the
generic function on the provided arguments, only with the tempo-
rary combinator instead of the original one. On top of this func-
tion, we provide a macro called call/cb (pun intended) accepting
designators (e.g. names) for the combinator and generic function
arguments, instead of actual objects. Finally, it is not di�cult to
extend the Lisp syntax with a reader macro to denote alternative
generic calls in a concise way. For demonstration purposes, a #!
dispatching macro character may be installed and used like this:

#!combinator(func arg1 arg2 ...)

This syntax is transformed into the following macro call:

(call/cb combinator func arg1 arg2 ...)

In turn, this is �nally expanded into:

(call-with-combinator
(find-method-combinator 'combinator)

#'func arg1 arg2 ...)

6.2 Implementation
Method combinations normally only a�ect the computation of ef-
fective methods. Unfortunately, we have already seen that the Clos
Mop doesn’t specify how or when e�ective methods may be cached.
Consequently, the only portable way of changing them is to reini-
tialize a generic function with a di�erent combination. Although
e�ective methods cannot be portably accessed, the generic func-
tion’s discriminating function can, at least in a half-portable fashion.
This gives us an incentive towards a possible implementation.

6.2.1 Discriminating Functions / Funcallable Instances. A generic
function is an instance of a funcallable class (see Figure 4), which
means that generic function objects may be used where functional
values are expected. When a generic function (object) is “called”,
its discriminating function is actually called. The Mop speci�es
that discriminating functions are installed by the (regular) func-
tion set-funcallable-instance-function. This strongly sug-
gests that the discriminating function is stored somewhere in the
generic function object. Unfortunately, the Mop doesn’t specify
a reader for that potential slot, although every implementation
will need one (this is why we said earlier that discriminating func-
tions could be accessed in a half-portable way). In Sbcl, it is called
funcallable-instance-fun.

6.2.2 Discriminating Function Caches. The idea underlying our
implementation of alternative combinators is thus the following.
Every combined generic function maintains a cache of discrimi-
nating functions, one per alternative combinator used (this is the
functions slot seen in Figure 4). When an alternative combinator
is used for the �rst time (via a call to call-with-combinator), the
generic function is reinitialized with this temporary combinator,
called, and the new discriminating function is memoized. The func-
tion is then reinitialized back to its original combinator, and the
values from the call are returned. It is important to actually execute
the call before retrieving the new discriminating function, because
it may not have been calculated before that.

If the alternative combinator was already used before with this
generic function, then the appropriate discriminating function is
retrieved from the cache and called directly. Of course, care is
also taken to call the generic function directly if the alternative
combinator is in fact the generic function’s default one.

6.2.3 Client Maintenance. Alternative combinators complicate
client maintenance (see Section 5.3), but the complication is not
insurmountable. When an alternative combinator is used for the
�rst time, the corresponding generic function is registered as one
of its clients. The client updating protocol (see Section 5.3.2) is
extended so that if the modi�ed combinator is not the generic
function’s original one, then the generic function is not reinitialized.
Instead, only the memoized discriminating function corresponding
to this combinator is invalidated.

6.2.4 Disclaimer. Generic functions were never meant to work
with multiple combinations in parallel, so there is no guarantee on
how or where applicable and e�ective method caches, if any, are
maintained. Our implementation of alternative combinators can
only work if each discriminating function gets its own set of caches,
for example by closing over them. According to both the result
of experimentation and some bits of documentation12, it appears
to be the case in Sbcl. If, on the other hand, an implementation
maintains a cache of e�ective methods outside the discriminating
functions (for instance, directly in the generic function object), then,
this implementation is guaranteed to never work.

7 PERFORMANCE
Because method combinators are implemented in terms of regular
combinations, the cost of a (combined) generic call shouldn’t be
impacted. In Sbcl, only the standard combination is special-cased
for bootstrapping and performance reasons, so some loss could
be noticeable with the :standard combinator. Method combinator
updates or changes do have a cost, as clients need to be reinitialized,
but this is not di�erent from updating a regular generic function
for a new method combination. Again, the only portable way to do
so is also to completely reinitialize the generic function.

Alternative combinators, on the other hand, do come at a cost,
and it is up to the programmer to decide whether the additional ex-
pressiveness is worth it. Using an alternative combinator for the �rst
time is very costly, as the generic function will be reinitialized twice

12http://www.sbcl.org/sbcl-internals/Discriminating-Functions.html#
Discriminating-Functions
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Figure 5: Benchmarks

(hence a�ecting the next regular call to it as well) and client mainte-
nance will be triggered. Once an alternative discriminating function
has been memoized, an “alternative call” will essentially require
looking it up in a hash table (twice if find-method-combinator is
involved in the call) before calling it.

In order to both con�rm and illustrate those points, some rough
performance measurements have been conducted and are reported
in Figure 5. The �rst batch of timings involve a generic functionwith
4 methods simply returning their (numerical) argument. The second
one involves a generic function with 4 methods printing their argu-
ment on a stream with format. The idea is that the methods in the
numerical case are extremely short, while the ones performing I/O
take much longer to execute. The timings are presented in seconds,
for 108 and 107 consecutive iterations respectively.

The �rst two bars show the timings for a regular generic function
with the standardmethod combination, and an equivalent combined
generic function with the :standard combinator. In the numerical
case, we observe a 45% performance loss, while in the I/O case, the
di�erence is of 5%. This is due to Sbcl optimizing the standard
method combination but not the :standard combinator.

The next two bars show the timings for a built-in method combi-
nation compared to its equivalent combinator (+ for the numerical
case, progn for the I/O one). Recall that short combinators are in fact
implemented as long ones, so the comparison is not necessarily fair.
Nevertheless, the di�erence in either case is not measurable. Again,
this is due to the fact that method combinators are implemented in
terms of regular combinations.

Finally, the last bars show the timings involved in calling a
generic function with an alternative combinator. Recall that this
simply means calling a memoized discriminating function (hence
taking the time displayed by the 4th bars) after having looked it up
in a hash table. The large number of iterations measured ensures
that the overhead of �rst-time memoization is cushioned). In the
�rst (numerical) case, the overhead of using the :+ combinator as
an alternative instead of as the original one is of 90%. The methods
being very short, the impact of an additional has table lookup is
important. In the (longer) I/O case and for the :progn combinator
however, this impact is amortized and falls down to 8%.

8 RELATEDWORK
Greg Pfeil has put up a set of useful method combination utilities on
Github13. These utilities include functions and macros frequently
used in the development of new combinations or helping in the
debugging of their expansion, and also some pre-made ones.

His library addresses some of the orthogonality concerns raised
in Section 2.1. In particular, the append/nconc combination allows
one to switch between the append and nconc operators without
the need for requalifying all the primary methods (they still need
to be quali�ed as append/nconc though, so are short forms de�ned
with the basic combination).

Greg Pfeil’s library does not attempt to address the primary
concern of this paper, namely the overall consistence of the design
of method combinations, and more speci�cally their namespace
behavior. In one particular case, it even takes the opposite direction.
The basic combination implements an interesting idea: it serves
as a unique short form, making the operator a use-time value. In
this way, it is not necessary anymore to de�ne short combinations
globally before using them. Every short combination essentially
becomes local to one generic function.

Note that even though we attempted to do the exact opposite
with method combinators, it is also possible to use them locally.
Indeed, one can always break the link from a name to a combi-
nator by calling (setf (find-method-combinator name) nil).
After this, the combinator will only be shared by combined generic
functions already using it. Again, this behavior is similar to that of
find-class14.

Finally, the basic combination also addresses some of the con-
cerns raised in Section 2.2. On top of allowing :before and :after
methods in short forms, the distinction between de�nition-time
and use-time options is removed. Indeed, since the operator has
become a use-time option itself, the same holds for the option
:identity-with-one-argument. What we have done, on the con-
trary, is to turn the order option into a de�nition-time one (see
Section 4.3.1).

9 CONCLUSION
Method combinations are one of the very powerful features of
Clos, perhaps not used as much as they deserve, due to their ap-
parent complexity and the terse documentation that the standard
provides. The additional expressiveness and orthogonality they aim
at providing is also hindered by several weaknesses in their design.

In this paper, we have provided a detailed analysis of these prob-
lems, and the consequences on their implementation in Sbcl. Ba-
sically, the under-speci�cation or inconsistency of the associated
protocols can lead to non-portable, obscure, or even surprising, yet
conforming behavior.

We have also proposed an extension called method combinators
designed to correct the situation. Method combinators work on
top of regular combinations in a non-intrusive way and behave in
a more consistent fashion, thanks to a set of additional protocols
following some usual patterns in the Clos Mop. The full code is
available on Github15. It has been successfully tested on Sbcl.

13https://github.com/sellout/method-combination-utilities
14http://www.lispworks.com/documentation/lw70/CLHS/Issues/iss304_w.htm
15https://github.com/didierverna/ELS2018-method-combinators
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10 PERSPECTIVES
Method combinators are currently provided as a proof of concept.
They still require some work and also raise a number of new is-
sues. First of all, it is our intention to properly package them and
provide them as an actual Asdf system library. Next, we plan on
investigating their implementation for vendors other than Sbcl,
and in particular �guring out whether alternative combinators are
possible or not. As of this writing, the code is in fact already ported
to Cmucl, but surprisingly enough, it doesn’t work as it is. Most of
the tests fail or even trigger crashes of the Lisp engine. It seems that
Cmucl su�ers from many bugs in its implementation of Pcl, and it
is our hope that �xing those bugs would su�ce to get combinators
working.

One still undecided issue is whether to keep long and short forms
implemented separately (as in Pcl), or unify everything under the
long form. We prefer to defer that decision until more information
on how other vendors implement combinations is acquired. The
second issue is on the status of the long form’s lambda-list (currently
deactivated) and consequently whether new combinators should
be represented by new classes or only instances of the general one
(see Section 4.3.1).

As we have seen, the lack of speci�cation makes it impossible to
implement method combinators in a completely portable way, and
having to resort to reinitialize-instance is overkill in many
situations, at least in theory. Getting insight on how exactly the
di�erent vendors handle applicable and e�ective methods caches
could give us hints on how to implement method combinators more
e�ciently, alternative combinators in particular.

Apart from the additional functionality, several aspects ofmethod
combinators and their protocols only �ll gaps left open in the Mop.
Ultimately, these protocols (generic function updating notably)
should belong in the Mop itself, although a revised version of it is
quite unlikely to see the day. It is our hope, however, that this paper
would be an incentive for vendors to re�ne their implementations
of method combinations with our propositions in mind.

Finally, one more step towards full orthogonality in the generic
function design can still be taken. The Common Lisp standard for-
bids methods to belong to several generic functions simultaneously.
By relaxing this constraint, we could reach full 3D separation of
concerns. Method combinators exist as global objects, so would
“�oating” methods, and generic functions simply become muta-
ble sets of shareable methods, independent from the way(s) their
methods are combined.
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A LONG SHORT METHOD COMBINATIONS
The Common Lisp standard provides several examples of built-
in method combinations, and their equivalent de�nition in long
form16. In a similar vein, the macro proposed in Figure 6 de�nes
method combinations similar to those created with the short form,
only with the following di�erences:

(1) the primary methods must not be quali�ed,
(2) :before and :after methods are available.

As in the original short form of define-method-combination,
identity-with-one-argument is available as an optimization avoid-
ing the call to the operator when a single method is invoked. The
long form’s lambda-list is used to de�ne the order optional argu-
ment, directly passed along as the value of the :order keyword to
the primary method group.

B LONG METHOD COMBINATIONWOES
This section demonstrates an inconsistent behavior of generic func-
tions using long method combinations in Sbcl, when the com-
bination is rede�ned. First, we de�ne a progn-like long method
combination, ordering the methods in the default, most speci�c
�rst way.
(define-method-combination my-progn ()

((primary () :order :most-specific-first :required t))
`(progn ,@(mapcar (lambda (method)

16http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm
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(defmacro define-long-short-method-combination
(name &key documentation identity-with-one-argument (operator name))

"Define NAME as a long-short method combination.
OPERATOR will be used to define a combination resembling a short method
combination, with the following differences:
- the primary methods must not be qualified,
- :before and :after methods are available."

(let ((documentation (when documentation (list documentation)))
(single-method-call (if identity-with-one-argument

'`(call-method ,(first primary))
``(,',operator (call-method ,(first primary))))))

`(define-method-combination ,name (&optional (order :most-specific-first))
((around (:around))
(before (:before)) ;; :before methods provided
(primary (#| combination name removed |#) :order order :required t)
(after (:after))) ;; :after methods provided
,@documentation
(flet ((call-methods (methods)

(mapcar (lambda (method) `(call-method ,method)) methods)))
(let* ((primary-form (if (rest primary)

`(,',operator ,@(call-methods primary))
,single-method-call))

(form (if (or before after)
`(multiple-value-prog1

(progn ,@(call-methods before) ,primary-form)
,@(call-methods (reverse after)))

primary-form)))
(if around

`(call-method
,(first around) (,@(rest around) (make-method ,form)))

form))))))

Figure 6: Long Short Method Combinations

`(call-method ,method))
primary)))

Next, we de�ne a generic function using it with two methods.

(defgeneric test (i) (:method-combination my-progn)
(:method ((i number)) (print 'number))
(:method ((i fixnum)) (print 'fixnum)))

Calling it on a fixnum will execute the two methods from most to
least speci�c.

CL-USER> (test 1)
FIXNUM
NUMBER

Next, we rede�ne the combination to reverse the ordering of the
methods.

(define-method-combination my-progn ()
((primary () :order :most-specific-last :required t))
`(progn ,@(mapcar (lambda (method)

`(call-method ,method))
primary)))

This does not (yet) a�ect the generic function.

CL-USER> (test 1)
FIXNUM
NUMBER

We now add a new method on float, which normally reinitializes
the generic function.
(defmethod test ((i float)) (print 'float))

However, a fixnum call is not a�ected, indicating that some caching
of the previous behavior is still going on.
CL-USER> (test 1)
FIXNUM
NUMBER

A �rst float call, however, will notice the new combination func-
tion.
CL-USER> (test 1.5)
NUMBER
FLOAT

Meanwhile, fixnum calls continue to use the old one.
CL-USER> (test 1)
FIXNUM
NUMBER
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ABSTRACT
We describe computational considerations of the Pauli and
Clifford groups—including efficient data structures—for the
purpose of randomized benchmarking of superconducting
quantum computers. We then show particular implementation
details in Common Lisp, including embedded domain-specific
languages for specifying complex mathematical objects as Lisp
macros.
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1 INTRODUCTION
There are many ways to characterize the quality of a quantum
computer. Consider a given collection of qubits whose compos-
ite state resides in a finite dimensional Hilbert space H , and
whose state is initiallyv ∈ H . One pattern of characterization
is to perform some unitary operation f : H → H on v to
produce f (v), and then perform the inverse f −1(f (v)) to again
produce v . On real devices however, the process of computing
f −1◦ f won’t exactly have the same effect as an identity opera-
tor, due to noise and limited execution fidelity. We distinguish
between the ideal mathematical model of f −1 ◦ f , and the
physical process of computing the composition. In notation,
we consider the transformation of v to v ′ identified by

v
the physical process of f −1◦f−−−−−−−−−−−−−−−−−−−−−−−−→ v ′.

We can characterize our qubits with respect to an operator
f or a family of such operators. Let us look at one simple
example.

For a one-qubit system, we might consider rotations on the
Bloch sphere about the x-axis. These are simple operations that
are fundamental to quantum computation, and evaluating our
ability to perform them would be helpful in characterizing our
quantum computing system. The rotations are a continuous
family of operators, which we can write down as the set

Rx :=
{
exp(− 1

2 iθX ) : 0 ≤ θ < 2π
}
,
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where X is the Pauli X operator. Starting in the ground state
v := |0⟩, we select an element fθ ∈ Rx which amounts to
selecting a θ , then we perform the rotation, and then perform
the inverse rotation. Pictorially, we have

|0⟩ the physical process of f−θ ◦fθ−−−−−−−−−−−−−−−−−−−−−−−−→ v ′ := v ′0 |0⟩ +v ′1 |1⟩ .
What can we diagnose from v ′? If v ′ always lies on the yz-
plane, that is, if v ′ assumes the form(

v ′0
v ′1

)
=

(
cos α

2
−i sin α

2

)

for some α , 0, then we might conclude that our x-rotations
are improperly tuned since we are overshooting by α .

The family of operations Rx forms a group under composi-
tion because of the following facts:
• Any composition of elements of Rx will also be in Rx .
• Composition of rotations is associative.
• Every rotation has an inverse rotation.
• There exists an identity rotation (i.e., θ = 0).

Since Rx forms a group, it constrains the space being charac-
terized. The constraints are able to help one diagnose issues
when the constraints are violated. This is a pattern we want
to maintain in other families of operations.

While Rx has nice algebraic properties, and also has a nice
corresponding physical interpretation, it also comes with dif-
ficulties.

First, the group is continuous and hence infinite, which
doesn’t allow for any exhaustive testing. We might consider
resolving this by choosing some discrete subgroup, like those
generated integer multiples of some angle that partition the
circle. But which subgroup? What does the fineness of angular
resolution have to do with the quality of our qubits? These
questions don’t have a clean answer.

Second, even the continuous group doesn’t explore much of
the state space of the qubit, which in its entirety is the Bloch
sphere. By attempting to extend Rx with other rotations, we
quickly “saturate” the Bloch sphere. This also has the issue of
being difficult to discretize.

Third, the group Rx (or any naive extension) doesn’t gener-
alize to multi-qubit systems well. Properties such as entangle-
ment aren’t explored by taking direct products of Rx .

One such collection of groups that satisfy all of our desired
properties are the Clifford groups, denoted Cn . They have
many benefits:
• They are discrete subgroups ofU (2n ), yet they broadly
sample all dimensions ofU (2n ).
• They contain many operators of interest in quantum
computing, such as controlled gates, phase gates, and
even the Hadamard gate.
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• The elements of the Clifford groups of any order are
efficiently classically simulatable operators [6]. This
means a classical computer can be used, with perfect
accuracy, to verify computations a quantum computer
makes.
• They use the familiar Pauli spin operators as a founda-
tional construction.
• They are generated by comparatively few operators.
• They are, in some sense, the largest interesting groups
that aren’t computationally universal1.

In this paper, we explore the Clifford groups, and talk about
how we can compute with them2. We then prototype a way
to do a specific kind of characterization of the above flavor
called randomized benchmarking, using our development of
the Clifford groups. We present in traditional mathematical
style, interleaved with how the mathematics presents itself in
Common Lisp.

We do not expound on exactly how quantum computer
characterization works or how to do an analysis of data gener-
ated by a randomized benchmarking procedure. We also don’t
delve into important and relevant mathematical topics, such
as the symplectic3 representation of Clifford groups.

2 THE PAULI GROUPS
Before attempting to wrangle the Clifford groups, it’s neces-
sary to have a thorough understanding of the so-called Pauli
group Pn , which forms the foundation of the definition of the
Clifford groups. As we shall see, the Pauli groups are easy to
define based off of the Pauli spin matrices

I :=
(
1 0
0 1

)
, X :=

(
0 1
1 0

)
,

Y :=
(
0 −i
i 0

)
, and Z :=

(
1 0
0 −1

)
.

However, we wish to have an efficient means of manipulation
on a computer, so we will transform the Pauli group into a
series of more convenient representations. In particular, we
will establish the following homomorphisms:

Pn
epimorphism−−−−−−−−−−→ F2n

2
isomorphism←−−−−−−−−→ (Z/4Z)n .

The first homomorphism (an epimorphism in particular) will
reveal a vector space structure on the group, and the second
homomorphism (an isomorphism) will provide an efficient
means of storage and manipulation of group elements.

The transformations between groups are not without com-
plication, however. We will need to take care to maintain
information about accumulated phases, which are complex
numbers of unit modulus. A crescendo of algebra will finally
climax at a computational representation of Pn—in fact, a
family of isomorphic groups—called the computational Pauli
1For n ≥ 1, the addition of any operator inU (2n ) \Cn to the Clifford group
of two or more qubits will make it suitable for universal computation [9].
2While the fundamental representations presented here are not new, the au-
thor feels they’ve hitherto lacked clear exposition, especially in the context of
computer implementation.
3For the interested reader, the symplectic groups are in some sense the best
and most compact way to understand the structure of the Clifford groups,
particularly in regards to preserving commutation relations in the basis maps,
as we will see in Lemma 23.

groups Pn . The computational Pauli groups will be used to
efficiently construct the Clifford groups.

We start by defining the phases we will care about, and give
an efficient representation of them. This will be used to define
the Pauli groups.

Definition 1. The phase group Γ := ⟨i⟩ is the group under
multiplication generated by i =

√−1. This is exactly Γ =
{1, i,−1,−i}.
Lemma 2. The phase group is isomorphic to the additive group
of Z/4Z, via the isomorphism ik 7→ k .

Proof. Every element of Γ can be written as an integer
power of i . Consider д = im and h = in . Then дh = imin =
im+n . The rest is straightforward to verify. □

Definition 3. The Pauli group of order n is the group under
multiplication defined by

Pn :=
{
γσn ⊗ · · · ⊗ σ1 : σk ∈ {I ,X ,Y ,Z }

}
,

where γ ∈ Γ is called the phase of an element.

Lemma 4. The size of the Pauli group |Pn | = 4n+1.

Proof. The Pauli group is equivalent to all length-n strings
of the four Pauli spin matrices with any of the |Γ | = 4 phases.
This is 4 · 4n = 4n+1. □

Fact 5. The Pauli group Pn is indeed a group, and is a subgroup
of the unitary groupU (2n ).

Proof. By direct computation, it can be shown that P1 is
closed under multiplication and is a subgroup of U (2). This
structure lifts trivially to an n-fold tensor product of P1, which
is homomorphic to Pn . □

Oftenwewill want to embed lower-dimensional Pauli group
elements in a higher-dimensional Pauli group. We can do this
with a rather trivial homomorphism.

Fact 6. The group Pn−1 is homomorphic to Pn via f defined by

f : Pn−1 → Pn

:= σ 7→ I ⊗ σ .
As is, the elements of the Pauli groups would have a cum-

bersome representation on a computer, either as matrices or
as formal symbols. We wish to create a data structure for the
Pauli group elements. Because Y = iXZ , in some sense we
might considerY to be redundant, so long as we can keep track
of the phases properly. Redundancy is best expressed by way
of linear dependence, so we wish to identify a vector space
to which we can map the Pauli groups. To go about this, we
break the Pauli group into its phase portion Γ and a phaseless
portion P1/Γ, and attempt to construct something like looks
like Γ × P1/Γ.

First, we will consider P1 up to phases and then generalize
to Pn .

2
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Lemma 7. Consider the map φ1 : P1/Γ → F2
2 defined exhaus-

tively by

φ1(σ ) =




(0, 0)⊺ for σ = I ,
(1, 0)⊺ for σ = X ,
(0, 1)⊺ for σ = Z , and
(1, 1)⊺ for σ = Y .

The map φ1 is an isomorphism between (P1/Γ, ·) and (F2
2,+).

Proof. It is straightforward to verify that F2
2 forms a group.

To show that the group structure is maintained up to phase, we
note that the identity elements of each group—I and (0, 0)⊺—are
in correspondence by definition, and thatY ∼ XZ corresponds
to (1, 1)⊺ = (1, 0)⊺ + (0, 1)⊺, where ∼ is equality up to Γ-
factors. □

The space F2
2 forms a vector space over F2 whose natural

basis is {φ1(X ),φ1(Z )}. We can create many copies of φ1 to
generalize to F2n

2 .

Lemma 8. Consider the map φn : Pn/Γ → F2n
2 defined by

φn (σn ⊗ · · · ⊗ σ1) :=
n?

k=1
φ1(σk ).

The map φn is an isomorphism between (Pn/Γ, ·) and (F2n
2 ,+).

Proof. This is a direct consequence of the fact that
Pn/Γ = P1/Γ × · · · × P1/Γ︸                 ︷︷                 ︸

n copies

. □

The space F2n
2 also forms a vector space, and has a natural

basis.

Definition 9. Define the set

Bn :=
n⋃

k=1
{Xk ,Zk }

called the Pauli basis of order n, where the subscript k indi-
cates a tensor product ofn−1 identity factors with the operator
in the kth position from the right.

The notational conventions Xk and Zk will be used for the
remainder of the paper.

Lemma 10. The set φn (Bn ) forms a basis for F2n
2 .

Proof. The Pauli matrices X and Z are in direct correspon-
dence with the standard basis ofF2

2 from Lemma 7. The natural
basis of a direct product of vector spaces is just the union of
the original basis elements of each vector space with the zero
element of each vector in all other positions of the product. □

The vector space structure of F2n
2 , and hence the existence

of a basis, is all that’s important to us. We will reap its benefits,
but we want to transform into an isomorphic space useful for
building efficient data structures. The natural representation
of F2n

2 would be 2n-tuples of binary digits. While these can
be stored compactly on a computer as bit arrays, their access
and manipulation as Pauli operators are inconvenient. These
can be transformed into length-n arrays of integers mod 4,
which have many nice properties on a computer. As with our

previous constructions, we will start with defining a base case,
and then generalize.

Lemma 11. The group (F2
2,+) is isomorphic to (Z/4Z, ⊕),

where the symbol ⊕ denotes a binary exclusive-or on the transver-
sal {0, 1, 2, 3} of Z/4Z.

Proof. Binary exclusive-or is a bitwise operation equiva-
lent to addition mod 2. The element (b0,b1) ∈ F2

2 corresponds
to the binary number b1b0 ∈ Z/4Z written in positional nota-
tion. □

This representation is convenient on a computer since com-
puting exclusive-or is very efficient, and storing integers as
opposed to pairs of binary numbers is more convenient. Note
that this lemma implies a particular choice of coset represen-
tative.

This construction generalizes to direct products easily.

Lemma 12. The group (F2n
2 ,+) is isomorphic to

((Z/4Z)n , ⊕) ,
where ⊕ is understood to operate componentwise.

Proof. This is a direct consequence of the construction of
direct products of groups and Lemma 11. □

While (Z/4Z)n � Z/22nZ, which means that we can store
elements of F2n

2 as arbitrary precision integers of 2n bits, it
will be useful to query the terms of the direct product easily
within a computer program for the purpose of phase tracking,
which is the next order of business.

Since we have accomplished an efficient computer repre-
sentation of the essential objects of the Pauli group—namely
Γ � Z/4Z and Pn/Γ � (Z/4Z)n—all that is left to fix up is the
way phases accumulate under our group operation. As such,
we make the group operation richer over the direct product
of our isomorphic spaces.

Definition 13. The computational Pauli group of first or-
der P1 is defined by elements of the form Z/4Z ×Z/4Z with
the operation ⊙ defined by

(α ,u) ⊙ (β ,v) := (α + β + εu,v ,u ⊕ v),
where

ε•,• : Z/4Z × Z/4Z︸           ︷︷           ︸
�P1/Γ×P1/Γ

→ Z/4Z︸︷︷︸
�Γ

is a non-standard Levi–Civita symbol defined by

εu,v :=



1 if (u,v) ∈ {(1, 3), (3, 2), (2, 1)},
3 if (v,u) ∈ {(1, 3), (3, 2), (2, 1)}, and
0 otherwise.

This symbol comes directly from the multiplication rules of
the Pauli spin matrices.

The group P1 is very nearly isomorphic to the group
Γ × P1/Γ—the phase group together with the phaseless Pauli
elements—except for the additional phase correction deter-
mined by the elements being considered in P1/Γ. Again, we
can generalize to direct products.

3
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Definition 14. The computational Pauli group of order
n, denoted Pn , is defined by elements of the form Z/4Z ×
(Z/4Z)n with the operation ⊙ defined by

(α , ®u) ⊙ (β , ®v) = (α + β + ε ®u, ®v , ®u ⊕ ®v), (2.1)
where

ε•,• : (Z/4Z)n × (Z/4Z)n︸                    ︷︷                    ︸
�Pn/Γ×Pn/Γ

→ Z/4Z︸︷︷︸
�Γ

is a generalized non-standard Levi–Civita symbol defined by

ε ®u, ®v :=
n∑

k=1
εuk ,vk .

Now we present the most important result of this section,
which gives us a conveniently computable representation of
Pn .

Theorem 15. The group (Pn , ·) is isomorphic to (Pn , ⊙).
Proof. We have shown that Γ � Z/4Z and that Pn/Γ �

(Z/4Z)n , so we can conclude the set under consideration is the
right size and contains the requisite information to construct
a bijection between the sets Pn and Pn . We have also shown
isomorphism up to phase by way of Lemma 7 and Lemma 12.
What is left to show is that we recover our group structure
via the Levi–Civita term in the phase.

Label the Pauli matrices (X ,Y ,Z ) as (σ1,σ2,σ3). Then the
multiplication rule for σa and σb is

σaσb = δab I +
3∑

c=1
iϵabcσc . (2.2)

Here, ϵabc is the standard three-dimensional Levi–Civita sym-
bol, equal to 1 when abc is an even permutation, −1 when it
is odd, and 0 otherwise. (Note that this means the sum will
always have a single non-vanishing term.) This relates to our
Levi–Civita symbol in the following way. Let c , a,b. Then
the accumulated phase is

iϵabc = i
επa,πb ,

where π = (1, 2, 3) 7→ (1, 3, 2) is used to translate between in-
dexing conventions. Since (2.2) is an equation relating objects
in Pn , we invoke the isomorphism of Lemma 2 to recover the
phase found in (2.1). This is the only additional phase that gets
accumulated. □

2.1 Implementation in Lisp
In the presentation of Lisp code throughout this paper, we
omit unnecessary definitions and details, and provide the code
to give a sense of its efficient implementation in Lisp.

The main data structures involved in the representation of
Pauli operators are as follows. Using Steel Bank Common Lisp
(SBCL), the simple-array of Z/4Z will be a specialized array.
(deftype Z/4Z ()

`(mod 4))

(deftype pauli-components ()
'(simple-array Z/4Z (*)))

(defstruct pauli
(components nil :type pauli-components))

(defmethod num-qubits ((p pauli))

(1- (length (pauli-components p))))

(defun make-components (num-qubits)
(make-array (1+ num-qubits) :element-type 'Z/4Z

:initial-element 0))

(defun phase-factor (p)
(aref (pauli-components p) 0))

(defun pauli-tensor-product (p)
(coerce (subseq (pauli-components p) 1) 'list))

The principle operation of interest is the implementation
of the group operation.

(defmacro pair-membership (u v &rest cases)
`(or ,@(loop :for (ui vi) :in cases

:collect `(and (= ,u ,ui)
(= ,v ,vi)))))

(defun levi-civita (u v)
(cond

((pair-membership u v (1 3) (3 2) (2 1))
1)

((pair-membership v u (1 3) (3 2) (2 1))
3)

(t
0)))

(defun multiply-components (a b)
(let* ((n (length a))

(c (make-components (1- n))))
;; Get the initial phase.
(setf (aref c 0) (%phase-mul (aref a 0) (aref b 0)))
;; Get the tensor components, modifying the
;; phase along the way.
(loop :for i :from 1 :below n

:for ai :of-type Z/4Z := (aref a i)
:for bi :of-type Z/4Z := (aref b i)
:do (setf (aref c i) (logxor ai bi))

(setf (aref c 0) (%phase-mul (aref c 0)
(levi-civita ai bi))))

c))

The function %phase-mul is as described earlier.
Finally, we share a function to convert Pauli Y operators

into XZ products.

(defun pauli-basis-decompose (pauli)
(let ((p (phase-factor pauli))

(n (num-qubits pauli)))
(loop :for idx :below (num-qubits pauli)

:for base4-rep := (aref (pauli-components pauli)
(1+ idx))

:append (ecase base4-rep
(0 nil)
(1 (list (embed +X+ n (list idx))))
(2 (list (embed +Z+ n (list idx))))
(3 ; side-effect: update the phase *= i
(setq p (%phase-mul p 1))
(list (embed +X+ n (list idx))

(embed +Z+ n (list idx)))))
:into b

:finally (return (values b p)))))

3 THE CLIFFORD GROUPS
Now we turn our attention to the Clifford groups. As outlined,
the Clifford groups are a particularly interesting subgroup of
the unitary group that remain computationally efficient to
explore and manipulate. The Clifford groups, roughly speak-
ing, consist of the unitary matrices which conjugate Paulis to
Paulis. These “conjugation invariant” groups are called “nor-
malizers.”

4
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Definition 16. Consider a group G and a subgroup S ⊆ G.
The normalizer of S with respect to G is defined by

NG (S) := {д ∈ G : ∀s ∈ S, дsд−1 ∈ S}.
We consider normalizers with respect to the unitary group,

where all non-projective quantum operators live. Without
consideration of a particular subgroup S , the unitary group
presents a slight problem: the normalizers are infinite. This
can be seen easily. Consider an element eiθ I ∈ U (2n ). Then
this element is in NU (2n )(S) because4

(eiθ I )S(eiθ I )−1 = (eiθ I )S(e−iθ I ) = S .

Various remedies to this issue have been presented in the liter-
ature. Calderbank et al. [3] decide to limit the ring over which
matrix elements of the normalizer can live—in particular, over
the ring5 Q[η] for η := eiπ /4 = (1 + i)/√2. This is convenient
algebraically and computationally, because all elements can
be represented precisely as formal polynomials of a variable
η, but this representation over-counts quantum-mechanically
equivalent operators by a factor of 8, because η is a primitive
eighth root of unity.

Another remedy is to brute force the issue by modding out
the normalizer by all complex phases, i.e., U (1). This is the
approach we take with our definition of the Clifford group,
but will require care in the representation of elements.

Definition 17. The Clifford group of order n is

Cn := NU (2n )(Pn )/U (1)
under matrix multiplication.

This definition is concise, and is equivalent to the group of
equivalence classes of

{U ∈ U (2n ) : ∀σ ∈ Pn , UσU † ∈ Pn }
under the equivalence relationU ∼ eiθU .

We wish to show that the Clifford groups actually form
groups. The following simple algebra fact will assist us.

Lemma 18. For an invertible matrix U , the map κU (x) :=
UxU −1 is a group homomorphism.

Proof. To show that κU is a homomorphism, we show
how it transforms products. Consider the product of square
matrices AB. We show that κU (AB) = κU (A)κU (B). This is
straightforward algebra:

κU (AB) = U (AB)U −1

= UA(U −1U )BU −1

= (UAU −1)(UBU −1)
= κU (A)κU (B).

One can additionally easily see that κU (I ) = I , concluding the
proof. □

4These elements are said to be at the center of the normalizer.
5This turns out to be the “smallest” ring you can choose to represent all matrices
of the Clifford group.

This is important because it means that in order to verify a
product στ ∈ Pn gets conjugated back into Pn , we must only
verify that each factor σ and τ get conjugated into Pn . This
homomorphic property is critical to proving some later results
(e.g., Lemma 22).

Theorem 19. The Clifford groups are groups under matrix
multiplication.

Proof. We enumerate each of the group axioms.
Identity The identity matrix is the identity element of

the Clifford group. It is straightforward to verify this.
Closure If A,B ∈ Cn , then by Lemma 18, AB is also in

Cn .
Associativity Matrix multiplication is associative.
Inverses First, it’s clear that all elements of Cn are in-

vertible because they are unitary. Second, we show the
inverses are also inCn . LetA ∈ Cn and letA′ = A−1. By
definition, for all σ ∈ Pn , there exists a τ ∈ Pn such that
AσA−1 = τ . Rewriting this as σ = A′τ (A′)−1 shows
that A′ ∈ Cn . □

So far, the Clifford groups have an implicit definition; they’re
defined by their relationship with the Pauli groups. As we did
with the Pauli groups, we would like to find an isomorphism
betweenCn and some computable representation ofCn . To do
this, we start by probing the structure of the group to get to a
computable representation of the group. We first show that
no element, except identity, can be conjugated to identity.

Lemma 20. For all д ∈ Cn , the only σ ∈ Pn that gets conju-
gated by д to identity is identity.

Proof. Consider an arbitrary д ∈ Cn and a σ ∈ Pn such
that дσд−1 = I . Then дσ = д and therefore σ = I . □

We can use Lemma 18 and the vector space structure of
Pn/Γ to derive an important structural theorem about the
Clifford groups.

Definition 21. For д ∈ Cn , define Mд : Bn → Pn as

Mд(b) := дbд−1.
Call this the basis map of д.

While basis maps are defined with maps on Pn , one would
actually use Pn in a computer implementation. Practically, if
we order6 the basis map, this amounts to storing a length-2n
array of length-(n + 1) integer arrays.
Lemma 22. The basis map of д determines д uniquely.

Proof. Because of Lemma 10, every element σ ∈ Pn can
be written uniquely as a possibly empty product γb1 · · ·bl for
bi ∈ Bn and γ ∈ Γ. If σ ′ := дσд−1, which is also in Pn by
definition, then σ ′ can be written as

γ
l∏

k=1
дbkд

−1

by Lemma 18. As such, for a particular σ , it suffices to only con-
sider how д conjugates each bk . Considering every element of
6For instance, Xi 7→ 2i and Zi 7→ 2i + 1.
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Pn as opposed to just one, we conclude that all elements of Bn
shall be considered. The collection of such maps forms a total
function on Bn . Since conjugation by unitaries is invertible,
no two independent bk will conjugate equally. Therefore, the
map is unique. □

This theorem doesn’t tell us how to recover д from Mд in
any particular representation (e.g., matrix), and doesn’t tell us
exactly which basis maps in general (i.e., any such map from
Bn to Pn ) are representative of Clifford group elements. One
approach to answering the latter question is to consider how
the operators should commute.

Lemma 23. All pairs of elements in Bn either commute or
anti-commute.

Proof. All pairs of elements of Bn trivially commute, ex-
cept for Xi and Zi for 1 ≤ i ≤ n. □

Lemma24. If Pauli basis elementsb andb ′ commute (resp. anti-
commute), thenMд(b) andMд(b ′) commute (resp. anti-commute).

Proof. We show both of these implications through direct
computation. First we consider commuting b and b ′ :

[Mд(b),Mд(b ′)] =Mд(b)Mд(b ′) −Mд(b ′)Mд(b)
= (дbд−1)(дb ′д−1) − (дb ′д−1)(дbд−1)
= дbb ′д−1 − дb ′bд−1

= дbb ′д−1 − дbb ′д−1
= 0.

Next we consider the anti-commuting b and b ′:

{Mд(b),Mд(b ′)} =Mд(b)Mд(b ′) +Mд(b ′)Mд(b)
= (дbд−1)(дb ′д−1) + (дb ′д−1)(дbд−1)
= дbb ′д−1 + дb ′bд−1

= дbb ′д−1 − дbb ′д−1
= 0. □

Another way to probe the structure of the basis maps is to
look at how unitary operators conjugate Hermitian operators.
This leads to a result about the properties of the image of Mд .

Lemma 25. Let U be a unitary matrix and A be Hermitian.
ThenUAU −1 is Hermitian.

Proof. Recall thatUU † = I soU −1 = U †. We wish to show
thatUAU −1 = (UAU −1)† by expanding the right-hand side:

(UAU −1)† = (UAU †)†

= (U †)†A†U †

= UA†U †

= UAU † (A = A† because A is Hermitian)

= UAU −1. □

Lemma 26. The image of a basis map consists only of Her-
mitian operators, and as such, Pauli operators with eigenvalues
±1.

Proof. The basis map is a collection of maps of the form
σ 7→ дσд−1 for σ ∈ B and a unitary operator д. Since σ is
Hermitian, then so is дσд−1. Since unitary transformations
are isometries, the eigenvalues of σ remain ±1. □

Now we can construct a computationally convenient ver-
sion of the Clifford groups.

Definition 27. The computationalClifford group of order
n, denoted Cn , is defined as the group of basis maps under
composition. Specifically, it is the set

Cn := {Mд : д ∈ Cn }.
Lemma 28. The computational Clifford group is a group and
is isomorphic to Cn .

Proof. The essential fact to verify is thatMf д =Mf ◦Mд ,
i.e., that u 7→ Mu is an isomorphism. To this end, we have
shown the existence of a bijection between Cn and Cn in
Lemma 22. Now, we do algebra:

Mf д = b 7→ (f д)b(f д)−1

= b 7→ (f д)b(д−1 f −1)
= b 7→ f (дbд−1)f −1

= (b 7→ f b f −1) ◦ (b 7→ дbд−1)
=Mf ◦Mд . □

The proof of this lemma actually has a very computation-
ally convenient tool: the composition of elements of the com-
putable Clifford group. In fact, we can calculate its computa-
tional complexity.

Fact 29. The time complexity of composition in Cn is O(n2).
Proof. Consider two elements f ,д ∈ Cn . Elements of Cn

are maps whose domain is Bn , which has a cardinality of 2n. So
f ◦ д amounts to iterating through the map of д, a linear-time
operation, which are essentially (b,γp) pairs, and computing
(b,γ f (p)). Since p may contain Pauli Y operators, it must be
re-expressed as basis elements (linear in the length of p, which
is n). In the worst case, for each pair in д, we may have to do a
linear-time operation to multiply by the elements of f , giving
O(n2). □

We are finally equipped with enough structure on the basis
maps to prove an important result about the Clifford groups:
their size.

Theorem 30. The sizes of the Clifford groups can be calculated
by the recurrence |C1 | = 24 and |Cn | = 2(4n − 1)4n |Cn−1 |.

Proof. The size of the Pauli basis is |Bn | = 2n.We proceed
to construct the base case |C1 | and then calculate a recurrence
for |Cn | based on Lagrange’s theorem.

Let P ′n be the Hermitian subset of Pn\{±I ,±iI }, whose size
is 1

2 (4n+1 − 4) = 2(4n − 1), which we consider because of
Lemma 20 and Lemma 26. The size ofC1 consists of all possible
ways to map X into P ′1, which gives |P ′1 | = 2(41 − 1) = 6 ways,
and all possible ways of mapping Z into elements of P ′1 which
anti-commute with the image of X , of which there will be two
fewer choices, giving |C1 | = 6 · 4 = 24.
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n |Cn |
1 24
2 11,520
3 92,897,280
4 12,128,668,876,800
5 25,410,822,678,459,187,200

Table 1: Sizes of the first few Clifford groups.

Computing |Cn | amounts to selecting a map for Xn and
Zn , then computing |Cn−1 |. This is because fixing {Xn ,Zn }
amounts to constructing a group isomorphic to Cn−1, and by
Lagrange’s theorem, |Cn | = |Cn/Cn−1 | · |Cn−1 |.

Let us fix the image of Xn ; call it M (Xn ). We can choose
any element of P ′n , giving us |P ′n | choices.

After fixing M (Xn ), we must fix an image of Zn , call it
M (Zn ), which anticommutes with M (Xn ). To do this, we
select an arbitrary non-identity factor of the tensor product
M (Xn ), and freely select any Hermitian operators in Pn for
the other n−1 factors. There are 4n−1 choices here. For the last
factor, we choose one of {I ,X ,Y ,Z } to make sure the operator
anticommutes. (This will be based on the previousn−1 choices,
of course.) There will be 2 such choices. Lastly, we can choose
our eigenvalue, ±1, giving us 2 more choices. In total, there
are 2 · 2 · 4n−1 = 4n choices for M (Zn ).

In total, there are |P ′n | · 4n = 2(4n − 1)4n choices for
M ({Xn ,Zn }), which are the number of cosets |Cn/Cn−1 |. This
gives us

|Cn | = 2(4n − 1)4n |Cn−1 |,
our desired result. □

The recurrence can be written in closed form bymultiplying
it out:

|Cn | = 2n
2+2n

n∏
k=1
(4k − 1).

The first few values of this can be seen in Table ??.

3.1 Implementation in Lisp
The following code shows the fundamentals of how to imple-
ment Clifford group elements in Common Lisp. We show one
optimization where we can store the basis map as a vector,
where the indexes (2j, 2j+1) correspond to the Pauli operators
(X j ,Z j ) respectively.
(defun map-pauli-basis (n f)

(dotimes (idx n)
(funcall f (* 2 idx) (embed +X+ n (list idx)))
(funcall f (1+ (* 2 idx)) (embed +Z+ n (list idx)))))

(defstruct clifford
(basis-map nil :type simple-vector))

;; clifford * pauli
(defun apply-clifford (c p)

(multiple-value-bind (b ph) (pauli-basis-decompose p)
(reduce #'group-mul b

:initial-value (pauli-identity (num-qubits p) ph)
:key (lambda (e)

(aref (basis-map c)
(pauli-to-index e))))))

(defun clifford-identity (n)

(let ((bm (make-array (* 2 n))))
(map-pauli-basis n (lambda (j p) (setf (aref bm j) p)))
(make-clifford :basis-map bm)))

;; clifford * clifford
(defmethod group-mul ((c1 clifford) (c2 clifford))

(let ((c1c2 (clifford-identity (num-qubits c1))))
(map-into (basis-map c1c2)

(lambda (c2p) (apply-clifford c1 c2p))
(basis-map c2))

c1c2))

3.2 A Lisp Macro for Specifying Clifford
Elements

Specifying Clifford group elements is cumbersome if we use
make-pauli and make-cliffordmanually. Writing a Clifford
element in the notation of mathematics, however, is straight-
forward. We adopt the mathematical notation as a domain
specific language, allowing us to write Clifford elements like
so:
(defvar *hadamard*

(clifford-element
X -> Z
Z -> X))

(defvar *phase*
(clifford-element

X -> Y))

(defvar *cnot*
(clifford-element

XI -> XX
IZ -> ZZ))

These are the Hadamard, phase, and controlled-not gates,
which we introduce in the next section. The macro enabling
this can be found in Figure 6.1.

4 SUBROUTINES FOR RANDOMIZED
BENCHMARKING

The reason we have studied the Clifford groups is to provide
a flexible yet efficient way to characterize the quality of op-
erations on a quantum computer. A specific technique called
randomized benchmarking amounts to applying a Clifford
gate followed by its inverse, and computing fidelity statistics.

The fundamental procedure used in randomized bench-
marking is the generation of a sequence n uniformly random
Clifford operators д1, . . . ,дn and the generation of its inverse
д−1 := (дn · · ·д1)−1. As described in §1, the process of comput-
ing д−1д may not have the same effect as computing identity.

Fundamentally, the following subroutines must be imple-
mented:

Composition The composition of a sequence of elements
of Cn .

Random Selection The uniformly random selection of
an element of Cn .

Inversion The inversion of an element of Cn .
Generator Decomposition The computation of a sequence

of elements of S ⊂ Cn—called the generators—that re-
construct any element of Cn = ⟨S⟩.

We are interested in Generator Decomposition because quan-
tum computers usually have a limited selection of native gates;
it is usually not possible to apply a Clifford gate directly, but
rather indirectly through a sequence of native gates.
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In the next few subsections, we will describe how to do
these operations. First, however, we will discuss a brute-force
approach to studying Cn for small n.

4.1 Exhaustive Generation of the Clifford
Group

The number of elements of the Clifford groups for 1 ≤ n ≤ 3
permits us to store the entire group without much difficulty7.
Generating and storing the entire group allows us to perform
random selection, inversion, and generator decomposition
very efficiently.

Generating necessitates a set of generators. We will define
this well-known term formally.

Definition 31. Consider a finite group G along with a set
of elements S ⊆ G. The set S is said to generate G if every
element ofG can be represented as a combination of elements
of S . The elements of S are called generators ofG . One writes
⟨S⟩ to denote the group generated by S .

The usual set of generators for Cn are

H := 1√
2

(
1 1
1 −1

)
, P :=

(
1 0
0 i

)
, and CNOT :=

( 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
.

It is understood that the generators for Cn are actually tensor
products of these with identity. We will not prove that these
generate the Clifford groups.

We must transform the generators of Cn to those in Cn .
This is done directly from Definition 21. Once we have these,
we can generate the group exhaustively. We do this by way of
the construction of a table called a “God’s table.”

Definition 32. Consider a finite group G = ⟨S⟩ and S :=
{s1, . . . , sk }. A8 God’s table of G is a total function T : G →
S ∪ {I } such that the fixed point iteration of ∆T always con-
verges to I for all д ∈ G , where ∆T is defined to be the decom-
position map ∆T (д) := T (д)−1д.
Fact 33. The only д ∈ G such that T (д) = I is д = I .

Proof. Suppose there was a д , I such that T (д) = I . One
step of the fixed point iteration on д would give ∆T (д) =
T (д)−1д = д. But ∆T (д) = д is a non-identity fixed point,
violating the hypothesis that T is a God’s table. □

A God’s table is, simply put, a table mapping elements of
G to a generator which takes the element one step closer to
identity. The decomposition map is important because it solves
the “Generator Decomposition” and “Inversion” problems;
repeated application of ∆T , recording eachT (д) along the way,
gives us a sequence to reconstruct д, and hence, its inverse
д−1. The number of elements in the generator decomposition
implied by T is a useful metric.

7As a back-of-the-envelope calculation, an element of Pn consumes about 1 +
⌈2n/(4 · 8)⌉ quad-words of memory. Since each element of Cn is a collection of
2n maps to elements ofPn , an element ofCn will consume aroundn2/8+2n ∈
O (n2) quad-words of memory. For n = 2, storing Cn amounts to absolutely
no more than a megabyte.
8A God’s table isn’t necessarily unique.

Definition 34. Given a group G and a God’s table T , the
length of an element д ∈ G with respect toT is the minimum
non-negative integer k such that ∆kT (д) = I . We write ℓT (д) or
sometimes just ℓ(д) if the context is clear.
Definition 35. A God’s tableT is said to be optimal iff there
does not exist another God’s table T ′ such that for any д ∈ G,
ℓT ′(д) < ℓT (д).

In some literature, a God’s table is in fact assumed to be
optimal. We do not make that assumption here.

The construction of an optimal God’s table is simple. One
does a breadth-first traversal of the group based off of the
generators, recording the generators that produced the new
elements in the table. See algorithm 1.

Algorithm 1 Optimal God’s table generation.

INPUT: Generators S

OUTPUT: God 's table T

T[I] = I

for s in S:

T[s] = s

q = empty queue

for s in S:

queue s in q

while q has elements:

next = pop q

for s in S:

g = s * next

if g does not exist in T:

queue g in q

T[g] = s

Theorem 36. Algorithm 1 produces an optimal God’s table.

Proof. This is immediate from the fact that breadth-first
search on a graph will visit each node in the fewest number
of steps. □

A God’s table can be created by any generating set, even
redundant ones. (A redundant generating set {s1, . . . , sk } is
one such that there exist si expressible as combinations of s,i .)
This can be used to prioritize certain generators.

As a final note, if a God’s table uses a sufficient data struc-
ture, then random selection amounts to a randomly selected
non-negative integer below |Cn |.

4.2 Composition
Compositionwas described as a polynomial process in Lemma 28.

4.3 Random Selection
Random selection amounts to randomly selecting the image of
a basis map. This can be done easily, though a bit laboriously, if
commutation relations are kept according to Lemma 24. Refer

8
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d C2 Count C3 Count
0 1 1
1 6 12
2 26 99
3 96 668
4 292 3930
5 734 20,626
6 1494 97,273
7 2448 409,153
8 3035 1,506,547
9 2424 4,706,972
10 912 11,870,008
11 52 22,653,233
12 0 29,319,401
13 0 19,641,316
14 0 2,663,872
15 0 4169∑

11,520 92,897,280
Table 2: Number of elements at depth d .

to Theorem 30 for the considerations in counting the number
of elements of the Clifford group constructively, which may be
amended to create a procedure to generate random elements
of the Clifford group.

4.4 Inversion
One very simplemethod to invert elements ofCn is to compute
their order.

Definition 37. Given a finite group G, the order of an ele-
ment д ∈ G is the smallest positive integer k such that дk = I .

This definition implies that the order of I is 1.

Lemma 38. If the order of an element д ∈ G is k , then д−1 =
дk−1.

Proof. Since дk = I , then д−1дk = д−1 =⇒ дk−1 =
д−1. □

In the worst case, the order will need a number of multipli-
cations equal to the diameter of the group. (Upper bounds of
the diameter of permutation groups can be found in [2].)

4.5 Generator Decomposition
Generator decomposition is most difficult to do without a full
description of the group. In the general case, there are other
approaches we would suggest, though we have not tried them.

The first approach is to search for the decompositions by
viewing the group as a Cayley graph and traversing it. One can
explore the graph using techniques such as iterative deepening
depth-first search [8]. This would require, however, pruning
strategies to be made feasible.

The second approach would be to use the tools of computa-
tional group theory to explore the Clifford group. In particular,
we can study Sp(2n,F2) � Cn/Pn which admits a permutation
representation of bounded degree [4]. In a permutation repre-
sentation, using a computational group theory library such as

cl-permutation [10], there are many optimal and sub-optimal
techniques for computing generator factorizations.

5 CONCLUSION
We have presented a data structure for elements of the Clif-
ford groups, and both practical and efficient ways to manipu-
late them. Using this, we have presented a sufficient number
of subroutines to implement randomized benchmarking of
a quantum computer for a small number of qubits. We have
also shown how Common Lisp can assist the development of
efficient Clifford group computations.
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(defmacro clifford-element (&body body)
(let ((clifford (gensym "CLIFFORD-"))

(table (gensym "TABLE-"))
(maps nil)
(num-qubits 0))

(labels ((pauli-string-p (string)
;; Is STRING a valid Pauli string?
(let ((n (length string)))

(and (or (= 1 (count #\X string))
(= 1 (count #\Z string)))

(= (1- n) (count #\I string)))))
(dimension (string)

;; What is the dimension of the Pauli STRING?
(if (char= #\- (char string 0))

(1- (length string))
(length string)))

(embed-pauli-string (string)
;; Embed the Pauli string into a NUM-QUBITS space.
(let* ((p (pauli-from-string string))

(p-num-qubits (num-qubits p)))
(with-output-to-string (s)

(print-pauli
(embed p

num-qubits
(loop :for i :below p-num-qubits :collect i))

s)))))
;; Parse out all of the map data, including the number of qubits
;; of the entire Clifford element.
(loop :for (from arrow to) :on body :by #'cdddr

:for from-name := (string from)
:for to-name := (string to)
:do (progn

(assert (string= "->" arrow))
(assert (pauli-string-p from-name)

()
"The symbol ~S is not a Pauli basis element"
from)

;; Get the max dimension
(alexandria:maxf num-qubits

(dimension from-name)
(dimension to-name))

;; Record the map.
(push (cons from-name to-name)

maps)))

;; Embed into proper dimension.
(mapc (lambda (m)

(rplaca m (embed-pauli-string (car m)))
(rplacd m (embed-pauli-string (cdr m))))

maps)

;; Set the mappings.
`(let* ((,clifford (clifford-identity ,num-qubits))

(,table (basis-map ,clifford)))
,@(loop :for (from . to) :in maps

:collect
`(setf (aref ,table

(pauli-to-index
(pauli-from-string ,from)))

(pauli-from-string ,to)))
;; Return the table.
,clifford))))

Figure 6.1: The clifford-elementmacro.
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ABSTRACT
We describe how the Common Lisp Object System can be used
to define a protocol for a machine called the quantum abstract
machine, a mechanism used to simulate the operational semantics
of a quantum instruction language calledQuil[7]. Furthermore, we
describe implementations of ideal and noisy simulators for hybrid
classical/quantum program execution.
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1 INTRODUCTION
The semantics of programming languages, especially instruction
languages, are often specified in terms of state transitions of a math-
ematical device called an abstract machine. Often, these machines
admit a straightforward representation on a computer. In the con-
text of the language being described, it is often desirable to amend
or augment the semantics of the machine to study different behav-
ior for a variety of reasons. In this paper, we principally focus on
how we realize the quantum abstract machine (QAM) and amend
the semantics it encodes to support quantum error models. We
demonstrate how using the Common Lisp Object System (CLOS)
has eased the extensibility of the quantum simulation software at
Rigetti Quantum Computing, and in particular, we illustrate how
it has made the implementation of realistic simulations of noisy
quantum hardware very straightforward.

As Moore’s law is increasingly challenged by the physics of semi-
conductor technology, alternative paradigms for computation are
required. Advances in engineering and controlling devices governed
by the laws of quantum mechanics have ushered in a new era of
noisy intermediate-scale quantum (NISQ) technology [3] with the
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ELS’18, April 16–17 2018, Marbella, Spain
© 2017-2018 Association for Computing Machinery.
ACM ISBN 978-2-9557474-2-1. . . $15.00
https://doi.org/

goal of harnessing quantum physics for more powerful information
processing. A long-term goal of this field is the creation of a fault-
tolerant quantum computer [5]. As a computational framework,
quantum computing differs substantially from classical computing
and carries the ultimate promise of super-polynomial speed-ups
on hard problems such as factoring [4]. Recently Smith et al. have
defined the computational framework based on Quil [7], a low-
level quantum instruction language whose operational semantics
are defined by way of a mathematical device called a QAM. Using
this framework, Rigetti Quantum Computing has demonstrated the
basic feasibility of unsupervised machine learning on their current
19-qubit quantum processing unit (QPU) [2].

Prototyping and benchmarking of such near-term applications
are enabled by our classically simulated QAM, the quantum virtual
machine (QVM), which is publicly accessible through the open-
source pyQuil1 library and API. As discussed at length in [3], cur-
rent quantum devices—such as our 19-qubit QPU—are not yet error-
corrected and therefore their operation deviates from the ideal
quantum programming model in a way that can be characterized
and, luckily, simulated as well.

In the following we briefly introduce the necessary mathematical
abstractions underlying quantum computation as well as parts of
the basic protocol encapsulated by the QAM. We continue this with
a description of how we can model the effect of noisy quantum
gates and noisy readout in a way that is compatible with the QVM
and how the introduction of semantics-amending PRAGMA directives
can provide a simple configuration mechanism that transparently
modifies the interpretation of a givenQuil program, provided the
underlying QAM understands it. Finally, we present a few examples
of how the features of CLOSmake it remarkably easy to add support
for noise models to the QVM.

2 QUANTUM COMPUTING ILLUSTRATED
VIA THE QAM AND QVM

Our computational framework is explicitly hybrid in that it encap-
sulates both quantum registers (qubits) and classical registers as
well as operations on them. The two are connected in three ways:

(1) Via quantum measurement, which in general stochastically
and irreversibly projects the quantum state into a particular
measurement outcome.

(2) Through classical control flow in which quantum gates are
applied conditionally on the value of classical registers.

(3) Through parametrization of quantum gates with numerical
quantities encoded in classical memory.

1https://github.com/rigetticomputing/pyquil
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We refer the interested reader to [7] to learn more about the under-
lying model of hybrid classical/quantum computation.

2.1 Quantum State Transitions: Measurement
and Gates

A pure quantum state of n qubits can always be represented as
a complex vector ψ = (ψ0...00,ψ0...01, . . . ,ψ1...11)⊺ ∈ Cd of unit
length in the canonical bitstring basis (also called theZ -basis or com-
putational basis), with dimension d = 2n . Measurement generally
causes a non-deterministic change to a quantum state. The probabil-
ity of each measurement outcome depends on the pre-measurement
state. If all qubits in a register are measured, the outcome probabil-
ity of a given bitstring s = sn−1sn−2 · · · s0 is given by |ψs |2. If only
a particular qubit q is measured, the probability for the bit-value
outcome sq = 1 is given by

P(sq = 1;ψ ) =
∑

s with sq=1
|ψs |2,

and the post-measurement state coefficients are given by

ψ ′s =



1√
P(sq=1;ψ )

ψs if sq = 1

0 otherwise.

InQuil, a measurement of qubit 2 into the 0th classical register is
expressed as:
MEASURE 2 [0]

A quantum state may also be modified by a quantum gate which,
when represented in the same basis, is given by a unitary matrix
U ∈ Cd×d that maps an initial stateψ to a final stateψ ′ via

ψ ′ = Uψ ⇔ ψ ′j =
d−1∑
k=0

Ujkψk ,

where we have switched from bit string representation of the state
label to an enumeration s → j ∈ {0, 1, . . . ,d − 1} such that s gives
the binary representation of j . Our convention is to take the lowest
index qubit q = 0 to also be the least significant bit of j as motivated
in [6]. We will continue using both the bitstring (base-2) and the
full enumeration as convenient.

Oftentimes, quantum gates are decomposed into a device specific
gate set and in such a way that they act locally on a subset of all
qubits. A gate acting only on two qubits q, r would result in

ψ ′sn−1 ...s ′q ...s ′r ...s0 =
∑

sq ∈{0,1}
sr ∈{0,1}

Us ′qs ′r sqsrψsn−1 ...sq ...sr ...s0 .

InQuil, a gateU applied to qubits 3 and 2 is written as:
U 3 2

Note that in general this is different from
U 2 3

as the enumeration ofU ’s matrix elements depends on the order of
qubits.

2.2 The QAM and QVM
The formal definition of a QAM is operational; it implies a particular
way of working, and hence, it implies what aQuil interpreter looks
like.

Rigetti Quantum Computing’s classical implementation of the
QAM is called the “Rigetti Quantum Virtual Machine”. In this report,
we simply refer to it as the QVM.

The QVM as well as the compiler software are implemented in
Common Lisp[1]. While much of the source code is portable to any
ANSI-conforming implementation, we use Steel Bank Common
Lisp (SBCL). It includes a machine-code compiler whose numerical
performance is capable of being competitive with state-of-the-art
C compilers.

The simulator makes heavy use of object-oriented idioms of
Common Lisp, including the notion of a protocol. TheQAMprotocol
is defined by a single abstract class (the superclass of all QAMs) as
well as two generic functions for executing code on a QAM.
;;; Superclass of all QAM classes.
(defclass quantum-abstract-machine ()

()
(:metaclass abstract-class))

;;; Run the QAM until completion.
(defgeneric run (qam))

;;; Execute an instruction INSTR on a QAM.
(defgeneric transition (qam instr))

While protocol-based programming in Common Lisp usually does
not require the presence of an explicit superclass, its presence as
the root class of all QAMs makes for better documentation and
introspection.

As one might imagine, execution dispatches not only on the
QAM class, but also the instruction class. The simplest example is
Quil’s NOP instruction. Here, pure-state-qvm is a class of machine
that represents an ideal QAM that is always propagating a pure
quantum state with ideal operations.
(defmethod transition ((qvm pure-state-qvm) (instr no-operation))

(declare (ignore instr))
(values qvm (1+ (pc qvm))))

The execution of a quantum program—both in terms of the clas-
sical and quantum values stored, as well as the control flow—is
non-deterministic, because quantum measurements are probabilis-
tic. This usually implies that one must execute a quantum program
many times and infer the solution to the underlying computational
problem from the joint outcome statistics.

3 NOISY OPERATIONS OF A QUANTUM
COMPUTER

Above, we discussed the two types of state transitions most relevant
to this exposition: quantum gate applications and qubit measure-
ment. In this section we will briefly explain how those operations
can be corrupted on a real device and how to model such errors on
our QVM.

3.1 Noisy Quantum Gate Operations
In general, the details of gate imperfections depend on the qubits
they act on. This is a direct consequence of the fact that qubits
are separate physical entities—microwave circuits in the case of
superconducting qubits—which have different physical properties
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such as their transition frequency, and which inadvertently couple
to their environment. To accommodate this, the QVM supports
either augmenting or outright replacing ideal gate operations by
non-unitary maps, specified as Kraus maps. Kraus maps provide a
convenient way to write down physical quantum maps or “chan-
nels”. A full introduction to quantum channels is beyond the scope
of this work, but at the level of pure state simulations, a general
channel can be realized as a non-deterministic transition that re-
places the actually intended unitary gate. In particular, the noisy
realization of a quantum gate transition is defined via a set of Kraus
operators

𝒦 =

{
Km ∈ Cd×d ,m = 0, 1, . . . , r − 1 |

r−1∑
m=0

K†mKm = I

}
.

Here X † denotes the Hermitian conjugate matrix to X , obtained by
transposing it and taking the element-wise complex conjugate. In
each intended gate transition one of the Kraus operators is randomly
selected to act on the state such that

ψ 7→ ψ ′ = 1√
pm

Kmψ with probability pm = ∥Kmψ ∥22 (1)

where ∥v ∥22 =
∑d−1
j=0 |vj |2 is the squared 2-norm of a vector v ∈ Cd .

As in the case of unitary gate matrices, we usually also consider
Kraus operators that only affect a small subset of the available
qubits, in which case the Kraus matrices are elements of C2n′×2n′

where n′ ≤ n is the number of affected qubits. Quantum computa-
tion is already inherently probabilistic, but gate noise can greatly
reduce the success probability of a quantum algorithm. It is an
exciting and active area of research to develop applications that
exhibit some robustness to such errors.

3.2 Readout Noise
For superconducting qubits as developed by Rigetti Computing, the
dominant error mechanism associated with qubit readout is thermal
noise that perturbs the readout signal and causes it to be mislabeled.
Consequently, an appropriate model for this error is to assume
initially a correct quantum measurement yielding a result sq which
is then subsequently corrupted by a noisy channel sq 7→ s ′q with
conditional output probability

Ps ′q |sq =
(
p(0 | 0) p(0 | 1)
p(1 | 0) p(1 | 1)

)
.

This matrix is usually called assignment probability matrix. The
average of its diagonal elements is called assignment fidelity F =
1
2 [p(0 | 0) + p(1 | 1)] and it provides a simple figure of merit for the
quality of a qubit’s readout.

3.3 Pauli noise
There exists a special class of noise that is quite popular in the
Quantum Computing community due to its mathematical prop-
erties: The Pauli noise model corresponds to appending to each
unitary gate U a non-deterministic Pauli channel realized by the
Kraus operators

𝒦pauli = {
√
1 − px − py − pz I ,√pxX ,

√
pyY ,

√
pzZ }

where 0 ≤ px + py + pz ≤ 1 and the Pauli operators are given by

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Furthermore, each readout is preceded by a Pauli channel with
py = pz = 0, i.e., a pure bit-flip error. Note that this is a different
readout noise model than considered above as this actively changes
the quantum state, rather than just the classical measurement bit.

4 NOISE INJECTION THROUGH THE
COMMON LISP OBJECT SYSTEM

In this sectionwe outline how class inheritance and generic dispatch
allow selectively replacing ideal operations with faulty ones.

4.1 Pauli Noise simulation with the
depolarizing-qvm

The Rigetti QVM preprocesses any incoming Quil program and
extracts noise model definitions from PRAGMA directives. In the
next section, we will describe this functionality more precisely. If
a program contains noise models, then a special QVM instance is
constructed, of class noisy-qvm. The noisy-qvm is a subclass of the
briefly aforementioned pure-state-qvm. Themethods for applying
gate transitions or measurements are augmented or replaced to
implement the noisy versions by using CLOS generic function
dispatch.

For the purpose of simulating just Pauli noise, we subclass the
pure-state QVM and store the Pauli error probabilities 2 for gates
and measurements in additional slots. The convenient availability
of Common Lisp’s :before and :after method specializations
allows us to simply extend the behavior of the non-noisy pure-state
QVM and append or prepend the appropriate errors:

;;; Noise gets added to only the qubits being changed.
(defmethod transition :after ((qvm depolarizing-qvm)

(instr gate-application))
(dolist (q (application-arguments instr))

(add-depolarizing-noise qvm q
(probability-gate-x qvm)
(probability-gate-y qvm)
(probability-gate-z qvm))))

;;; Noise gets added to only the qubit being measured, before
;;; measurement occurs.
(defmethod transition :before ((qvm depolarizing-qvm)

(instr measurement))
(let ((q (measurement-qubit instr)))

(add-depolarizing-noise qvm q
(probability-measure-x qvm)
0.0d0 ; Y and Z noise are not
0.0d0))) ; observable.

4.2 General Kraus models and Noisy Readout
with the noisy-qvm

We can also realize the more general gate noise model of arbitrary
Kraus maps and the measured-bit-flip error model. The following
subclass adds slots to store the noisy gate and noisy readout defini-
tions. The first slot corresponds to the collection of Kraus maps for
each noisy operation for each qubit specified, and the second slot
corresponds to the measurement noise model.
2Here, the error probabilities are the same for all qubits.
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(defclass noisy-qvm (pure-state-qvm)
((noisy-gate-definitions

:initarg :noisy-gate-definitions
:accessor noisy-gate-definitions
:initform (make-hash-table :test 'equalp))

(readout-povms
:initarg :readout-povms
:accessor readout-povms
:initform (make-hash-table)))

(:documentation "A quantum virtual machine
with noisy gates and readout."))

4.3 Extending Quil with PRAGMA directives
The QAM’s semantics are relatively fixed, and do not contain any
notion of noise. However, Quil has provisions for extensions to its
semantics with a PRAGMA directive.

The syntax of PRAGMA is as follows:
PRAGMA <identifier> (<identifier> | <integer>)* <freeform string>?

While PRAGMA directives may introduce any arbitrary functionality,
a useful rule-of-thumb to constrain their effects is to not introduce
anything which fundamentally alters the ideal behavior of the
program; one should be able to strip out all PRAGMA directives and
retain a valid program.

Rigetti Quantum Computing’s software stack is able to recog-
nize a certain set of PRAGMA directives, which are used to modify
simulation behavior or to suggest optimizations3.

In general, PRAGMA directives are ignored, as shown with this
transition rule.
(defmethod transition ((qvm pure-state-qvm) (instr pragma))

(warn "Ignoring PRAGMA: ~A" instr)
(values qvm (1+ (pc qvm))))

When we parse program text, PRAGMA directives are parsed in the
most general way possible, into a pragma class instance represent-
ing the abstract syntax. So how shall these general entities, so far
ignored by the abstract machine, affect how the machine operates?

Consider a PRAGMA directive for tracing execution:
H 0
PRAGMA PRINT stdout "Superposition!"
CNOT 0 1

In this case, supposing that we have not done any form of pro-
gram reordering4, our interpreter could use this PRAGMA to print
some useful information, such as the fact that we have created
an equiprobable superposition. To make use of CLOS’s multiple
dispatch, we will want a dedicated class for this PRAGMA directive.
(defclass pragma-print (pragma)

((out-stream :initarg :out-stream
:reader pragma-print-stream))

(:default-initargs :words '("PRINT"))
(:documentation "PRAGMA to trace execution."))

How might we actually get this instance? In usual operation,
PRAGMA directives are parsed as instances of the pragma class. We
could change this behavior and add more specialized knowledge
of PRAGMA directives to the parser. However, this would make the
parser more complicated, and additionally complicate what is inso-
far a clean instruction code definition.

3Some of these can be found in the pyQuil documentation.
4Quantum programs are very much unlike their classical analogs because quantum
programs operate—at least on real hardware—on resources in parallel. It is generally
unwise to think of a quantum instruction code as a linear instruction code.

Instead, a compiler pass called pragma refinement is performed.
Using pragma refinement, we scan through the program, find this
recognized PRAGMA directive by way of its leading identifier, and
create an instance of a class defined. Creation is not done through
make-instance, but rather through change-class, which gives us
hooks for interpreting the PRAGMA directive further. Specifically, we
specialize update-instance-for-different-class for the directive.
(defmethod update-instance-for-different-class

:before ((from pragma)
(to special-pragma)
&key)

...)

The above described usage mode of PRAGMA directives has been
through direct interpretation. However, the far more important way
to use these directives is to command the operation of the compiler
or to prepare a machine for execution. In these use cases, it is still
viable to use PRAGMA directives without further parsing (i.e., one
may look at the contents of the root pragma class directly), but we
have found that practice difficult to debug and maintain.

4.4 Noise Annotation via Quil PRAGMA directives
4.4.1 Gate Noise Example: Amplitude Damping. In this section

we present a very simple noise model especially relevant to su-
perconducting qubits: Often the two energy levels used to encode
a qubit differ in energy. If such a qubit is in the higher energy
state and not perfectly isolated from the environment, then energy
can leak out leading to a relaxation to the low energy state. We
can parametrize such a single qubit noise process by annotating a
program with PRAGMA’s.
PRAGMA ADD-KRAUS I 0 "(1.0 0.0 0.0 0.979795897)"
PRAGMA ADD-KRAUS I 0 "(0.0 0.2 0.0 0.0)"
I 0
I 0
# ...
I 0
MEASURE 0 [0]

The PRAGMA directives in effect replace the ideal identity gate I on
qubit 0 with an amplitude damping channel with two Kraus opera-
tors that are given in flattened row-major form in the string PRAGMA
arguments. The first of these Kraus operators gives the outcome in
which the qubit state is mostly preserved except for a re-weighting
of occupation probabilities. The second of these Kraus operators is
proportional to a single qubit lowering operator that induces relax-
ation transitions from 1→ 0. If the qubit is excited, the damping
operator has a single step probability of pdamp = 4%. Consequently,
when starting in 1, the probability of not having decayed after M
steps is given by (1 − pdamp)M . It is straightforward to generalize
the above to even more accurate models for gates under amplitude
damping by exponentiating the summed generators of the unitary
gate evolution and the noise. Alternatively, one may empirically
estimate the actual physical channel that a gate corresponds to
through tomography and subsequently use this for realistic simula-
tions. In Figure 1 we present the result of simulating a sequence of
Quil programs with an amplitude damping noise model.

4.4.2 Readout Noise Example: RX(θ ). Here we show how single
qubit readout noise generally reduces the contrast in qubit mea-
surements. A good example for this is given by a sequence of so
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Figure 1: Single Qubit Amplitude Damping. The dashed
black line gives the expected 1-state population for an ideal
qubit, the color map gives the theoretical log-probability of
the 1-state population for our noise model and the dark teal
points give the stochastically simulated estimates from run-
ning N = 200 executions of a program with repeated noisy I
gates on the QVM.

Figure 2: A Rabi-program with readout corrupted with dif-
ferent noise levels (see legend). Each data point represents
the average of N = 200 samples generated by the QVM.

called Rabi-programs that prepare qubit states rotated at increasing
angles in the Y − Z plane using the rotation operator RX(θ ). An
example program of such a sequence is given by

RX(1.1*pi) 0
PRAGMA READOUT-POVM 0 "(0.8 0.2 0.2 0.8)"
MEASURE 0 [0]

Here the PRAGMA READOUT-POVM 0 "(...)" statement configures
the assignment probability matrix for qubit 0, here given in flattened
row-major form.

In Figure 2 we present the result of simulating a sequence of
Quil programs with a readout noise model.

4.5 Noise Simulation through Generic Dispatch
We use generic dispatch on both the QVM type and the Quil in-
struction type to overload the ideal implementation of a gate or
measurement transition with a noisy one. Listing 1 contains the
actual Lisp code for the case of noisy gates.

(defmethod transition ((qvm noisy-qvm) (instr gate-application))
(let ((kraus-ops (lookup-kraus-ops instr (noisy-gate-definitions qvm))))

(cond
(kraus-ops
;; Found noisy realization of gate.
(let ((wf (make-wavefunction (number-of-qubits qvm)))

(qubits (application-arguments instr))
(r (random 1.0d0))
(s 0.0d0))

(loop :for K :in kraus-ops
:do (replace wf (wavefunction qvm))

(apply-operator K wf qubits)
(incf s (sum #'probability wf))

:until (>= s r))
(replace (wavefunction qvm) (normalize-wavefunction amps))
(values
qvm
(1+ (pc qvm)))))

(t
;; no noise model, proceed simulation as usual
(call-next-method qvm instr)))))

Listing 1: Overloaded gate application transitionmethod for
the noisy QVM.

5 CONCLUSIONS
In this paper, we have shown how to make non-trivial modifica-
tions to the operational semantics of Quil—using the QAM as an
implementation formalism—by way of facilities provided by Com-
mon Lisp. We have shown how CLOS has allowed us to rapidly and
economically equip an ideal QVM with functionality to simulate
real-world noise present in near term devices. The flexibility of
the semantics afforded by the ease of implementation is but one
important aspect of using Common Lisp; maintaining the high
speed required for computing with exponentially large state vec-
tors is another. This is only a small sample of the ways in which our
simulator—a key component to quantum software engineering—
benefits from the utilization of Common Lisp.
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ABSTRACT
We describe implementation strategies and updates made in the
last two years to clasp,[1, 2] a new Common Lisp implementa-
tion that interoperates with C++, uses the cleavir compiler, and
uses the LLVM backend[4]. Improvements in clasp have been
made in many areas. �e most important changes are: (1) Tagged
pointers and immediate values have been incorporated. (2) A fast
generic function dispatch approach has been implemented that al-
lows clasp to carry out generic function dispatch as fast as SBCL, a
highly optimized free implementation of Common Lisp. �e generic
function dispatch memoization approach was developed by Robert
Strandh[8] and demonstrates a 20x improvement in performance
of generic function dispatch. (3) �e new LLVM feature “�in Link
Time Optimization” has been added, which speeds up generated
code by removing call overhead throughout the system. (4) Type
inference has been added to the cleavir compiler, which is part
of clasp. Type inference removes redundant run-time type checks
and dead code paths. Type inference currently provides about a 30%
speedup in microbenchmarks.[9] (5) Constants and literals have
been moved close to the code and “instruction pointer addressing”
has been incorporated to speed access to literals and constants.
(6) Pre-emptive multithreading has been added to clasp, based on
pthreads, supporting the Bordeaux threads library. (7) �e overall
build time for clasp has been reduced from �ve to eight hours over
two years ago to approximately one hour at present.

CCS CONCEPTS
•So�ware and its engineering→ Compilers; Dynamic compil-
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1 INTRODUCTION
We describe implementation strategies and updates made in the last
two years to clasp[2] - a new Common Lisp implementation that in-
teroperates with C++ and uses the LLVM backend[4] and cleavir1
to generate e�cient native code for an increasing variety of pro-
cessors. clasp currently targets macOS and Linux. clasp is being
developed as a scienti�c programming language and speci�cally to
support CANDO.[2] CANDO is being designed as a Common Lisp
implementation to support the development of new so�ware tools
for molecular modeling and molecular design and it extends clasp
by adding hundreds of thousands of lines of C++ and Common
Lisp code that implement solutions to computational chemistry
problems. CANDO is designed to enable interactive programming
to develop tools for designing molecules while at the same time
generating fast native code for demanding chemistry and molecular
modeling applications.

2 TAGGED POINTERS AND MEMORY
MANAGEMENT

claspmakes use of pointer tagging to indicate the type of a pointer,
and also encodes some values directly as immediate values. clasp
is currently only targeting 64-bit architectures, and so the following
currently applies to the 64-bit implementation. �e type of a pointer
is indicated using a three bit tag in the least signi�cant bits of a
64-bit word. �e meaning of the tags and their current values
in binary are �xnum (#B000 and #B100), general pointer (#B001),
character (#B010), cons (#B011), vaslist (#B101), and single-�oat
(#B110). #B111 is currently unused.

“Vaslist” is a special clasp type used to operate on variable-
length lists of arguments without allocating an actual Lisp list
structure. �ese can be constructed in Lisp using the &CORE:VA-
REST lambda list keyword, similar to e.g. &MORE in SBCL. �e
vaslist itself is a pointer to a structure incorporating a C/C++ va list
structure, together with a count of arguments remaining. One way
we can work with vaslists in clasp is using the BIND-VA-LIST
special operator, which is analogous to DESTRUCTURING-BIND.

�e immediate types are �xnum, character, and single-�oat; they
are stored in the high bits of the word. Fixnum values are 62 bits
wide and they are indicated by the value #B00 in the two least
signi�cant bits. �is allows �xnum addition and comparison to be
carried out without bit shi�ing. Character values are 32 bits wide,
enough to encode Unicode.[10] Single-�oat values are 32 bit wide,
IEEE754 format, corresponding to the C++ ’�oat’ type.

Cons pointers are indicated by the tag value #B011. �e cons
itself is two sequential 8-byte words. �e consp test is extremely
e�cient because the tag is su�cient to indicate a cons. Traversal
1h�ps://github.com/robert-strandh/SICL/tree/master/Code/Cleavir
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of lists thus involves only one tag test per element, excluding the
ultimate element.

All other general object pointers share the pointer tag #B001.
General objects consist of one header word followed by data. �e
header word is used by the garbage collector to identify the layout
of the data, and to determine C++ inheritance relationships to avoid
the use of the slow C++ template function “dynamic cast”.

�ere are four kinds of general objects:

(1) Instances of C++ classes. �ese must inherit from Clasp’s
General O, and have their layouts known to the garbage
collector.

(2) Instances of Common Lisp classes, i.e. conditions, structure-
objects, standard-objects, and funcallable-standard-objects.
�ese are implemented as the C++ class Instance O (Ta-
ble 1). �ese consist of a “Signature” (a description of the
object’s slots used for obsolete instance updating), a pointer
to their class, and a rack of slots. Funcallable instances in-
clude more data (implemented as FuncallableInstance O,
Table 2), but keep the class and rack at the same positions
as non-funcallable instances, to facilitate uniform access.

(3) Instances of the C++ Wrapper⟨T⟩ template class, which
wraps C++ pointers and keeps track of their types. �ese
can be used as pointers to C++ objects outside of managed
memory, so that such objects can be operated on from Lisp.

(4) Instances of the C++ Derivable⟨T⟩ template class, which is
used to create Common Lisp classes that inherit from C++
classes.

Lisp’s other built in classes, such as symbols, complex numbers,
and arrays, are implemented as C++ classes, i.e. the �rst kind.

Because the header does not include information about Lisp
classes, among other things, it is not totally su�cient for Lisp
type checking. It can however be used for rapid discrimination of
instances of built in classes.

General objects and conses are stored on the heap and man-
aged by the memory manager. clasp can be built to use one of
two automatic memory management systems: the Boehm garbage
collector[3], or the Memory Pool System (MPS)[7].

Boehm is a conservative collector originally designed for C pro-
grams, meaning that it treats objects as opaque blobs of memory,
identi�es memory words as pointers without using type informa-
tion, and does not move objects. �is allows it to allocate and collect
quickly, but as it does not compact memory it can leave the heap
fragmented, impacting long-running clasp programs and ones that
allocate large objects.

�e Boehm build of clasp is required to run a special C++ static
analyzer, wri�en in clasp, that determines memory layouts for all
C++ classes in the clasp C++ source.

�e Memory Pool System is a precise collector more suitable
for Lisp. It requires information per-type about where pointers are
located; this is derived from the static analyzer, indexed using the
general object headers. MPS can move and compact memory, using
the least signi�cant two bits of the header word to indicate for-
warding pointers and padding. �e MPS will run in a �xed memory
footprint, making it suitable as the default memory manager for
clasp for scienti�c programming.

Table 1: Memory layout of Instance O.

O�set C++ type Field
0 T sp Signature
8 Class sp Class
16 SimpleVector sp Rack

Table 2: Memory layout of FuncallableInstance O.

O�set C++ type Field
0 std::atomic⟨claspFunction⟩ entry
8 Class sp Class
16 SimpleVector sp Rack
24 std::atomic⟨T sp⟩ CallHistory
32 std::atomic⟨T sp⟩ SpecializerPro�le
40 std::atomic⟨T sp⟩ DispatchFunction

Table 3: Memory layout of simple vectors, the SimpleVec-
tor O class.

O�set C++ type Field
0 size t Length
8 TYPE Data[length]

3 ARRAYS
Common Lisp vectors and arrays are implemented using the struc-
tures shown (Table 3 and Table 4). �e type of a simple vector can
be specialized within the clasp C++ code to be any C++ type or
class. �e types that are currently supported are T sp (the gen-
eral Common Lisp T type), �xnum, double, �oat, and signed and
unsigned integer types of length 8, 16, 32 and 64 bits. Simple bit
vectors are implemented by manipulating bits in unsigned 32 bit
words. �e o�set of the Length �eld in simple vectors and the
FillPointerOrLengthOrDummy �eld of complex arrays is the same
so that the length or �ll-pointer can be accessed quickly for both
simple and complex vectors. For multi-dimensional arrays FillPoint-
erOrLengthOrDummy is ignored. �e Flags �eld stores whether
the array has ARRAY-FILL-POINTER-P and whether the array is
displaced.

Array operations can be complex, and they are inlined for both
simple vector and complex array operations. clasp does this by
undisplacing the array to the simple vector that ultimately stores the
array contents, and then indexing into that simple vector. Inlining
is performed for SVREF, ROW-MAJOR-AREF, SCHAR, CHAR, ELT
and AREF.

4 FAST GENERIC FUNCTION DISPATCH
clasp implements the fast generic function dispatch approach de-
veloped by Robert Strandh.[8] Fast generic function dispatch is
important in clasp because it uses the cleavir compiler (also writ-
ten by Robert Strandh), which makes heavy use of generic functions
in its operation.

To enable the dispatch technique, all objects have a 64-bit value
called the stamp, unique to the class it was de�ned with. For general
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Table 4: Memory layout of complex arrays, the MDArray O
class.

O�set C++ type Field
0 size t FillPointerOrLengthOrDummy
8 size t ArrayTotalSize
16 Array sp Data
24 size t DisplacedIndexO�set
32 Flags Flags
40 size t Rank
48 size t Dimensions[Rank]

objects, the stamp is within the header word for instances of C++
classes, but it is stored within the object otherwise.

�e fast generic function dispatch approach works by compiling
discriminating functions that dispatch to precompiled e�ective
methods based on the stamps of their arguments (Figure 1). �is
reduces discrimination to a series of integer comparisons, making
it very e�cient. �e “slow path” of dealing with actual classes and
calling the MOP-speci�ed generic functions only comes into play if
the integer comparisons fail to branch to a known e�ective method.
�e “slow path” compiles a new “fast path” through the normal
MOP-speci�ed protocols, and so the method works independently
of MOP customizations, novel method combinations, etc., except
for the EQL specializer optimization described below.

If a Lisp class is rede�ned, its stamp is changed and existing
discriminators have their dispatching for the old stamp removed.
Calls to discriminators involving obsolescent instances can there-
fore update instances only in the slow path. �is in particular, is a
major improvement over ECL, which checks object obsolescence
for all calls to accessors.

clasp incorporates a small extension to the dispatch technique.
Calls involving EQL specializers cannot in general be memoized,
because they imply the necessity of tests more speci�c than stamp
tests. However, clasp does memoize some calls involving EQL
specializers, for functions without customizable generic function
invocation behavior. �e core requirement to memoize such calls
to such functions is that any argument in an EQL-specialized po-
sition does match an EQL-specialized method, and not only class-
specialized methods. For example, if a generic function of one
parameter has one method specialized on the symbol class, and one
EQL-specialized on a particular symbol, calls involving the la�er
will be memoized while the former will not be. �is speeds the most
common uses of EQL specializers while preserving correctness.

In a micro-benchmark where a regular function of two argu-
ments, a generic function that accepts two arguments, and a CLOS
accessor were called 200,000,000 times - the timing values in Table 5
were obtained.

�e performance is remarkable given that clasp started out using
the ECL CLOS source code and reimplemented the ECL generic
function dispatch cache. With the Strandh fast generic function
dispatch, clasp is comparable to the performance of SBCL, a highly
optimized implementation of Common Lisp.

�ere is a “warm-up” time associated with this fast generic func-
tion dispatch method as it is currently implemented within clasp.

Table 5: A micro-benchmark of regular calls, generic func-
tion calls and CLOS accessor calls (200M calls).

Implementation call (s) gf call (s) accessor (s)
Clasp(553e35a) 0.40 1.44 1.23
SBCL(1.4.4) 0.45 1.25 0.72
ECL(16.1.3) 0.81 26.96 7.79
ccl(1.11-store-r16714) 0.38 3.82 3.73

Discriminating functions are compiled lazily when a generic func-
tion is called. Invoking components that usemany generic functions
for the �rst time forces a cascade of lazy compilation. �e compiler
itself, for example, must compile about 1,200 functions on its �rst
run a�er startup. �is takes tens of seconds of real time. �is only
happens once at startup, and therea�er discriminating functions
are invalidated and recompiled only when methods are added or
removed, or when classes are rede�ned.

5 COMMON FOREIGN FUNCTION
INTERFACE

clasp has incorporated an implementation of the Common Foreign
Function Interface (CFFI) wri�en by Frank Goenninger. �is gives
clasp access to C libraries that have been exposed to Common Lisp
using CFFI. �is is in addition to clasp’s built in C++ interoperation
facility clbind.[1]

6 LINK TIME OPTIMIZATION
A new LLVM feature called “Link Time Optimization” (LTO) has
been incorporated into clasp. With LTO, all code that is compiled
with COMPILE-FILE and all of the clasp C++ code is compiled to
the LLVM intermediate representation (LLVM-IR) and wri�en to
�les as LLVM “bitcode”. �e link stage of building then does a �nal
round of optimization, wherein LLVM-IR from Common Lisp code
and LLVM-IR from C++ code for internal functions with symbols
that are not exported, are inlined within each other. �ose that are
not inlined are converted to the “fastcc” calling convention, which
passes arguments as much as possible in registers. �e overall e�ect
is to reduce the overhead of calls within clasp.

7 C CALLING CONVENTION
Currently, clasp only supports the x86-64 (System V) Application
Binary Interface (ABI) because it makes non-portable references
to calling convention details to improve performance. �e calling
convention passes six integer word arguments in registers and
returns two integer word arguments in registers, and this is used by
clasp to utilize registers as much as possible when making function
calls. Calls that pass four or fewer arguments are very fast in clasp
when compared to other Lisps (Table 5). clasp passes arguments
with the following C calling signature: (void* closure, size t number-
of-arguments, void* arg0, void* arg1, void* arg2, void* arg3, …).
So, up to four general objects are passed in registers and when
the lambda list for a function uses &rest or &key arguments then
clasp uses the ABI details of the C calling convention “var-args”
facility to spill the register arguments into a register save area
on the stack. A C va list is then “rewound” to point to the arg0
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Figure 1: A generic function specialized on two arguments. �e le� box represents stamp values that are matched to the �rst
argument stamp and the right boxes represent stamp valuesmatched to the second argument depending on the �rst argument.

Start
259;SYMBOL

296;SIMPLE-BASE-STRING

HIT-#<EMF :ptr 0x111a4e5d8>

HIT-#<EMF :ptr 0x1119f1ba8>

341;SINGLE-FLOAT

347;FIXNUM

HIT-#<EMF :ptr 0x111af52a8>

HIT-#<EMF :ptr 0x111ab2f38>

341;SINGLE-FLOAT

347;FIXNUM

argument so that all arguments can be accessed one at a time using
the clasp “vaslist” facility. clasp returns the �rst return value in
the �rst return register and the number of return values in the
second register. �e remaining return values are wri�en into a
thread-local vector (one per thread).

8 INSTRUCTION POINTER ADDRESSING
clasp uses the LLVM library, which de�nes C++ classes forModules,
Functions, BasicBlocks, Instructions and GlobalVariables. Code
generated by LLVM cannot currently be managed by the memory
manager and must live outside of the managed memory space,
at �xed locations. Functions therefore accumulate in memory as
clasp runs. Memory depletion has not been a problem because
modern computer memories are large, but it does make referencing
Common Lisp objects from LLVM generated code problematic. To
deal with this, each LLVM module has a block of garbage collector
roots. �ese roots point to all non-immediate constants referenced
by the functions in the module. �ese constants can then exist in
memory managed space without being collected inappropriately.

9 STACK UNWINDING
Stack unwinding is achieved in clasp using C++ exception han-
dling to allow clasp to inter-operate with C++ code. C++ stack
unwinding on x86-64 uses Itanium ABI Zero-cost Exception Han-
dling.2 It is “zero-cost” in that there is no runtime cost when it is
not used; however if any actual unwinding of the stack does occur,
it does take quite some time. Timing of a simple CATCH/THROW
pair demonstrates that unwinding the stack in clasp is about 90x
slower than it is in SBCL, and thus stack unwinding must be done
judiciously.

10 INLINING OF ARITHMETIC FUNCTIONS
Arithmetic can now be done without function calls in common
cases. When the operands to a binary operation such as addition
are of the same kind - �xnum, single �oat, or double �oat - the
operation is carried out without a function call. �is also occurs
if one operand can be easily coerced to a value of the other type,
e.g., a �xnum plus single �oat operation becomes a single �oat
2h�p://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html

plus single �oat operation once a single �oat corresponding to the
�xnum value is produced.

Facilities are now in place to deal with unboxed values. �ese
are special register values, outside of the normal managed memory
regime, representing number values. For example, even though 64-
bit �oats cannot be immediates due to lacking space for a tag, they
can be dealt with as unboxed values. Inlined arithmetic essentially
consists of ”unboxing” values (e.g. extracting double �oats from
memory), performing machine arithmetic operations, and then
boxing the results. A future compiler stage will remove unboxing
operations followed immediately by boxing operations, as are done
for arithmetic operations using the results of other operations as
operands.

Arithmetic involving nontrivial allocations, such as on bignums
or complex numbers, still goes through function calls.

11 PROFILING
Since all clasp Common Lisp and C++ code compiles to LLVM-IR,
all functions look like standard C functions to standard pro�ling
tools. �is allows standard tracing tools like “dtrace”3 to be used
to pro�le clasp code (Figure 2). �is puts all Common Lisp, C++,
C, and Fortran code on a level playing �eld - making it possible to
compare timing of functions wri�en in di�erent languages, linked
together in the clasp mixed language environment.

12 SOURCE TRACKING
clasp has incorporated source tracking using facilities from the
SICL project. claspmakes extensive use of the nascent SICL project,
including the cleavir compiler, and the SICL reader. �e cleavir
compiler has recently been upgraded to generate “Abstract Syntax
Trees” (AST) from “Concrete Syntax Trees” (CST). CSTs are a rep-
resentation of Common Lisp source code that has source location
information a�ached to every atomic token and every list. One of
the purposes of this is to carry source code location information
into the AST and then all the way down to the instruction level
in the �nal generated machine code to facilitate debugging. Other
applications for CST’s include tools that carry out source-to-source
translation, and programming tools like syntax highlighters.

3h�p://dtrace.org/blogs/about/
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Figure 2: A �ame graph generated by pro�ling clasp repeatedly calling MAKE-INSTANCE. 19.7% of the time is spent in
SHARED-INITIALIZE and 27.2% of the time is consumed by the memory manager.

13 DEBUGGING USING DWARF
clasp generates DWARF debugging information using theDIBuilder
API of the LLVM C++ library. �is allows clasp compiled programs
to be inspected and debugged using the industry standard debug-
gers “gdb” and “lldb”. DWARF debugging information is used by
these debuggers to provide information about source line informa-
tion, and with future work will provide the locations of variables
in stack frames. �e DWARF source line information is generated
with the aid of source tracking information provided by Concrete
Syntax Trees. �e uniform use of DWARF debugging information
for Common Lisp and C++ code allows the debugging of clasp
programs that make use of C++, C and Fortran libraries. �e Lisp
debugger does not yet use the DWARF debugging information fully
due to the lack of a Common Lisp accessible DWARF interpreter.
�e Lisp debugger does provide backtraces with function names
and arguments, through the use of an interim “shadow stack” mech-
anism.

14 MULTITHREADING
Pre-emptive multithreading based on the “pthreads” library[5] has
been added to clasp, fully supporting the “Bordeaux threads” li-
brary.4 Special variables are bound thread locally and hash-tables
can be declared “thread-safe”. Several C++ classes like Function O
and FuncallableInstance O contain C++ std::atomic⟨…⟩ �elds that
are updated atomically. Multithreading allows clasp to run slime
in the multithreaded :spawn mode. Multithreading also allows
clasp to run a Jupyter[6] notebook server and slime server simul-
taneously - this allows interactive, web based, Jupyter notebook

4h�ps://trac.common-lisp.net/bordeaux-threads/wiki/ApiDocumentation

applications to be developed with the full slime interactive develop-
ment environment. Internal components such as CLOS, the Cleavir
compiler and LLVM are all implemented in a thread-safe way -
enabling us in the future to parallelize compilation.

15 CONCLUSIONS AND FUTUREWORK
clasp is a new implementation of Common Lisp that interoperates
with C++ and uses the LLVM library as a backend. It supports novel
interoperation features with C++ libraries and industry standard
pro�ling and debugging tools. clasp incorporates the cleavir com-
piler that is a platform for exploring new ideas in compiling dynamic
languages. For future work we plan to eliminate the “warm-up”
time of the fast generic function dispatch by preassigning stamps
for system classes and building discrminating functions into the
image at compile time. We plan to incorporate more inlining, type-
inference, dead-code elimination and optimizations. We also plan to
implement a DWARF interpreter to allow clasp to access DWARF
debugging information and provide it to the slime debugger.
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ABSTRACT
This abstract describes the design and implementation of pLisp, a
Lisp dialect and integrated development environment modeled on
Smalltalk that targets beginners.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments;

KEYWORDS
lisp, integrated development environment

1 INTRODUCTION
pLisp is an integrated development environment (IDE) and an un-
derlying Lisp dialect (based on Common Lisp) that is targeted to-
wards beginners. It is an attempt at developing a Lisp IDE that
matches (or at least approaches) the simplicity and elegance of
typical Smalltalk environments and thereby hopefully providing a
friendlier environment for beginners to learn Lisp.

Smalltalk environments are characterized by three interface com-
ponents: the workspace, the transcript, and the system browser. The
workspace and the transcript windows together serve the purpose
of the canonical Read-Eval-Print Loop (REPL) used to interact with
programming systems in the command-line mode, while the system
browser is used to view the universe of objects available to the user
and to define new objects. pLisp adopts the same idioms to model
this interaction. Figures 1 and 2 illustrate sample screenshots where
the user has entered an expression and has issued the command
for evaluating the expression.

pLisp supports the following features:
• Graphical IDE with context-sensitive help, syntax coloring,
autocomplete, and auto-indentation
• Native compiler
• Continuations
• Exception handling
• Foreign function interface
• Serialization at both system- and object level
• Package/Namespace system

The productivity-enhancing features like expression evaluation,
autocompletion and auto-indentation of code, and context-sensitive
help are available in all code-editing contexts (Workspace, code

Permission to make digital or hard copies of part or all of this work for personal or
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for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’18, April 16–17 2018, Marbella, Spain
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ACM ISBN 978-2-9557474-2-1.

Figure 1: The pLisp Workspace window

Figure 2: The pLisp Transcript window

panels in the System Browser and Callers window, and the File
Browser). Another useful Smalltalk-inspired feature implemented
in pLisp is the ability to store the entire programming session—
including the GUI state—in the serialized image; this enables the
user to carry over the programming experience seamlessly across
sessions, even in the middle of a debugging exercise.

pLisp has been released under the GPL 3.0 license and is freely
available for download [1]. At present, pLisp is available for Linux
(both 32-bit and 64-bit), Windows (32-bit), and Mac OS X platforms.
pLisp is written in C, and relies on open-source components (GTK+,
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GtkSourceView, Tiny C Compiler, the Boehm Garbage Collector,
and libffi).

2 IMPLEMENTATION
pLisp is a Lisp-1 dialect, i.e., functions share the same namespace as
the other objects in the system. The syntax of pLisp closely mirrors
that of Common Lisp (e.g., defun, defmacro, progn, and macro-
related constructs like backquote, comma, and comma-at), however,
notations from Scheme are also used (call/cc). The design philos-
ophy of pLisp is to be more-or-less source-code compatible with
Common Lisp so that users can easily transition to Common Lisp
and carry over their knowledge and code.

2.1 Syntax
The pLisp s-expression grammar is shown in Figure 3. Except for
the language constructs and primitive operators, the core of pLisp
is written in itself. The support for continuations and the call/cc
construct, coupled with the use of macros, enables this and the
implementation of sophisticated programming constructs like loops
and exception handling at the library level.

E ::= L | I
| (define Iname Edef n)

| (set Iname Edef n)

| (lambda (I∗f ormal) E
∗
body)

| (macro (I∗f ormal) E
∗
body)

| (error E)
| (if Etest Ethen Eelse)
| (Erator E∗rand)
| (let ((Iname Edef n)

∗) E∗body)
| (letrec ((Iname Edef n)

∗) E∗body)
| (call/cc E)

Figure 3: pLisp informal s-expression grammar

2.2 Object Model
pLisp supports the following object types:
• Integers
• Floating point numbers
• Characters
• Strings
• Symbols
• Arrays
• CONS cells
• Closures
• Macros

All objects are internally represented by OBJECT_PTR, a typedef
for uintptr_t, the C language data type used for storing pointer
values of the implementation platform. The four least significant
bits of the value are used to tag the object type (e.g., 0001 for sym-
bol objects, 0010 for string literals, and so on), while the remaining
(n-4) bits (where n is the total number of bits) of the value take on
different meanings depending on the object type, i.e., whether the
object is a boxed object or an immediate object. If the object is a

boxed object, the remaining bits store the referenced memory loca-
tion. The loss of the four least significant bits is obviated by making
use of the GC_posix_memalign() call for the memory allocation
and thus ensuring that the four least significant bits of the returned
address are zeros.

2.3 Compiler
The pLisp compiler transforms the code to continuation-passing
style (CPS) [2] and emits C code, which is then passed to the Tiny
C Compiler (TCC) to produce native code. The compiler does the
transformation in the following passes [3]:
• Desugaring/Macro expansion
• Assignment conversion
• Translation
• Renaming
• CPS conversion
• Closure conversion
• Lift transformation
• Conversion to C

These passes produce progressively simpler pLisp dialects, culmi-
nating in a version with semantics close enough to C. Since TCC is
utilized for the native code generation, the transformation pipeline
does not include passes like register allocation/spilling.

2.4 Debugger
Since pLisp uses the continuation-passing style, all the functions
invoked in the course of evaluating the expression are extant at any
point in time, and are displayed in the debug call stack. At present,
only the break/resume functionality (and inspection of function
arguments) is supported in pLisp.

The compilation process introduces a large number of internal
continuation functions as part of the CPS conversion pass; the
debugging infrastructure needs to filter out these continuations so
that the user is presented with only those functions they need to
be aware of (i.e., those that have external source representations).
This is accomplished by logic in the C conversion phase, which
generates code to store a closure in the debug stack only if that
closure maps to a top-level definition.

3 CONCLUSION
This abstract describes the design and implementation of pLisp,
a Lisp dialect and integrated development environment modeled
on Smalltalk that targets Lisp beginners. While pLisp is oriented
towards beginners, its feature-set is complete enough (and its perfor-
mance robust enough) to serve the needs of a typical medium-sized
Lisp development project. Introduction of multithreading capabil-
ities and enhancements to the debugger to enable continuing or
restarting a computation with user-supplied values are part of the
future work being considered.
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ABSTRACT
We describe our use of Lisp to generate teaching aids for an Algo-
rithms and Data Structures course taught as part of the undergrad-
uate Computer Science curriculum. Specifically, we have made use
of the ease of construction of domain-specific languages in Lisp
to build an restricted language with programs capable of being
pretty-printed as pseudocode, interpreted as abstract instructions,
and treated as data in order to produce modified distractor versions.
We examine student performance, report on student and educator
reflection, and discuss practical aspects of delivering using this
teaching tool.
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cial and professional topics → Computational thinking; • The-
ory of computation→ Program constructs; Program reasoning; •
Software and its engineering→ Multiparadigm languages;
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1 INTRODUCTION
In this paper, we discuss the development and use of a large ques-
tion bank of multiple-choice, short-answer and numerical-answer
questions in teaching a course in Algorithms & Data Structures,
as a component of degree programmes in Computer Science and
in Games Programming in the United Kingdom. We report specif-
ically on the use of automation, using Lisp among other tools, to
develop questions with specific distractors and specific feedback
corresponding to likely or common student mistakes.

Gamification of learning has been experimented with and stud-
ied in detail in recent years, with the increasing availability of
platforms and integrations allowing for more and varied gamifica-
tion techniques to be applied at all stages of a student’s education;
the benefits of gamification include higher student engagement,
with the curriculum material (as the tasks are intended to probe
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or reinforce the course content) and with the rest of the cohort
(through the social elements of game-playing). The approach we
describe here can be viewed as an application of gamification tech-
niques; in the categorization of a recent systematic mapping [3], we
describe an element of gamification in a blended-learning course
delivered in conjunction with a learning management system, with
rapid feedback and countdown clocks, specifically in the context of
Computer Science education but applicable more widely.

In the remainder of this introductory section, we provide some
relevant context for the Algorithms & Data Structures course in
which we have implemented this pedagogy: the conventions of
Higher Education in the UK, of Computing education in UK Higher
Education, and of the particular programmes of study at Goldsmiths.
Section 2 covers the development of multiple-choice question banks
suitable for our purposes, including the use of Lisp to help to gen-
erate the questions, specific feedback, and assure their correctness.
Section 3 describes the in-course delivery of quizzes including these
questions, presenting quantitative results and qualitative reflections
from students and educators, and we conclude in section 4.

1.1 UK Higher Education
In the UK, Tony Blair in 1999 famously gave as an aim that half of
all young people should go to University. Since giving that aim in a
party conference speech, the UK Higher Education landscape has
shifted substantially, with the introduction and raising of tuition
fees (from £1k per year, to £3k and then £9k per year), and the
removal of quotas and caps in student recruitment, and the situation
is indeed that half of people under 30 in the UK have started a
programme of Higher Education, compared with approximately
one quarter two decades ago.

This rapid growth in student numbers has inevitably led to pres-
sure on resources: campus space, lecture halls, and staff time. Addi-
tionally, placing more of the costs of Higher Education on the stu-
dent, even if through a notional student loan (which operates more
like a tax), has led to more consumerist and arguably transactional
approaches to education from the students: it is more common to
hear from students now that they are paying for content that they
will consume than it would have been twenty years ago. In addi-
tion, students nowadays are digital natives; they are accustomed to
online delivery of content, though perhaps not so much of material
requiring substantial engagement; they are used to the affordances
provided by online platforms, and indeed are somewhat intoler-
ant of the perceived backwardness of some Learning Management
Systems.

One might expect, given that the students are at least notionally
responsible for the cost of their own higher education, that students
would have made an informed choice about their programme of
study and have clarity about their reasons for entering Higher
Education. However, this is not always the case [5, 6], and even
when it is, those reasons may not align with the educator’s reason
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for teaching in Higher Education; a majority of students enter into
Higher Education seeing it as a means to an end, of getting a job
that would otherwise be inaccessible, or having a better chance at
a particular career – whereas few teachers in Higher Education
have the career development of their students as their primary
motivation.

Teachers in Higher Education do operate under constraints,
sometimes quite severe ones. One such constraint is that the system
works in a way that expects it to be unlikely for students to fail
courses. Even minimal engagement with the material is expected
to yield a passing grade; degrees are further classified, with classi-
fications of a “first-class” or an “upper second” being considered
of high enough quality to act as an entry qualification for typical
graduate trainee schemes or study for advanced degrees, while
“lower second” or “third-class” classifications, while indicating that
the degree was passed, are seen as being of lesser quality1. Conven-
tionally throughout the sector, a mark of 40% is a pass, and a mark
of 60% is the boundary between lower- and upper-second degree
classifications.

1.2 Computing education
When offering a degree programme in Computer Science or a re-
lated discipline, we must be conscious of the fact that we will have
at least three constituencies in our student cohort. We may have
some students who will go on to further academic study of the dis-
cipline itself; however, we would expect those students to be small
in number compared with the students who are studying Computer
Science as a means to an end (such as a career in Informatics) or
who do not have a particular reason for studying Computer Science
at all.

In designing our curricula and our teaching methods, we must
therefore accommodate multiple different styles of learning and a
wide range of current and prior engagement. We will have to teach
students who are already accomplished programmers and wish to
deepen their theoretical understanding, and students who believe
that a University course can teach them to programme so that they
can go out and get a job. We must therefore be careful to nurture
development of applicable and transferrable ways of thinking, help-
ing the students to develop computational thinking [11] or build
mental models or “notional machines” [9] of the systems that they
interact with.

Teaching students to programme, and to reason about programmes,
is difficult – and assessing whether students have mastered indi-
vidual elements of the skill [1, 8] potentially has a high cost. We
do not claim to have found a panacea, but one aspect which we be-
lieve is particularly demotivating is the somewhat binary nature of
assessment: it is common to see bimodal distributions of outcomes,
or at least high failure rates [7], typically corresponding to a failure
by the student to get anything working at all – an experience seen
in microcosm by anyone faced with inscrutable compiler or linker
error messages. As educators, we should aim to find ways to allow

1This is a highly simplified description, as there are also distinctions between the
perceived quality of degrees awarded by different institutions, being a combination of
reputational teaching quality and expected student attainment at intake.

students to receive partial credit for partial solutions, so as to recog-
nize forward progress even if it has not yet led to a fully-functional
implementation.

1.3 Algorithms & Data Structures at
Goldsmiths

We report in this paper on a course in Algorithms & Data Struc-
tures at Goldsmiths. There is a particular issue in the delivery of
this course: it is taken as a compulsory part of the programme
by students on the BSc in Computer Science (CS) programme and
those on the BSc in Games Programming (GP). The CS students
are taught programming in Java, while the GP students are taught
programming in C++. This creates a particular challenge, in that
examples need to be in both or neither programming language in
order not to give the perception of unfair or second-class treat-
ment to either cohort. In this course, students are given practical
programming work in the form of small automatically-marked lab
assignments as well as more open tasks, but theory is presented in
a language-neutral pseudocode format.

2 QUESTIONS
One of the components of our delivery of this material is a series of
multiple choice quizzes, delivered through the Moodle2 Learning
Management System (LMS). These quizzes are intended to be part
measurement instrument – the mark achieved contributes to the
final grade in the course – but chiefly a pedagogical tool, to help
the students recognize whether they have understood the material
sufficiently to identify or generate solutions to problems.

The function of our questions is similar to the root question
concept described in the Gradiance documentation [10]: we aim
to produce questions, or question templates, with the following
characteristics:
• a student who has understood the material should find an-
swering the question to be straightforward;
• a student who has not begun mastering the material should
have a low probability of being able to guess the correct
answer;
• individual or groups of students should find it easier to mas-
ter the material than to acquire and search through a set of
questions with corresponding answers;
• for multiple choice questions, distractor answers correspond-
ing to commonmisunderstandings or misconceptions should
be present.

The reason for the last characteristic, that distractor answers
should be present, is to be able to identify individual students, or
measure the fraction of students, with a particular misunderstand-
ing, and to give them targetted feedback aimed to improve their
understanding. There is no need for distractors in numerical- or
short-answer questions, but the questions we produce must still
be done with that understanding, in order to be able to give tar-
getted feedback for particular wrong answers. The subsections
below give examples of targetted feedback in both short-answer
and multiple-choice questions.

2https://moodle.org/
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What is the return value of this block of code? You may assume
that the value of all variables before the start of this block is 0.

x← 4
for -5 ≥ i > -15 do

x← x + 1
end for
return x

Figure 1: example simple loop question, question 6 of the
Pseudocode quiz

What is the return value of this block of code? You may assume
that the value of all variables before the start of this block is 0.

x← 8
for 4 ≤ i < 16 do

x← x + 1
break
x← x + 1

end for
return x

Figure 2: example loop question, question 8 of the Pseu-
docode quiz

2.1 Pseudocode
As described in section 1.3, the class taking this course consists of
two separate cohorts. To establish a common language, therefore,
an early lecture established the pseudocode conventions to be used
throughout the course (essentially a subset of the algpseudocode
notation provided by the LATEX algorithmicx package).

One of the questions (see figure 1) asked participants to compute
the final value of a variable after it was incremented within a loop:
the intent of the question was to make sure that the students could
identify the number of times the loop body was executed. As well
as the generic feedback given to a student after an attempt, specific
feedback was included to be shown to the student when they had
made an off-by-one error, reminding them to check the boundaries
of the iteration carefully.

A subsequent question in the same quiz used the same question
format, but introduced the keywords break and continue. Again,
students were given the generic indication for correct or incorrect
answers, but also specific feedback for particular wrong answers
given if the student had computed the return value for the wrong
keyword, or for no keyword present at all (see figure 2).

The Moodle LMS provides for automatic generation of variants
of questions through its Calculated question type, where a template
is filled in with randomly-chosen values, and a symbolic expression
(supporting standard mathematical operators) is interpreted with
each variable from the template bound to the corresponding value.
This facility is sufficient for questions based on simple calculations,
but has disadvantages for our purposes: the interface for writing
calculated questions requires a connection to the Moodle server,
and cannot be done off-line; it requires hand-editing each ques-
tion, which is error-prone; and generating non-numerical variants

automatically (e.g. choosing between break and continue) is not
possible.

We therefore took a different approach. We defined a sexp-based
mini-language to represent the constructs supported in our pseu-
docode, and implemented a pretty-printer and an interpreter in
Emacs Lisp. The definition and implementation were extended as
necessary from an initial set of six operators (the basic mathematical
operators, variable setting, and return) to encompass conditionals,
loops, function definition, and various elementary data structures
and operations on them (such as lists and vectors).

We could then generate valid forms in our mini-language, some-
what reminiscent of generation of random forms for compiler test-
ing [4]; see listing 1, which is the code to generate random examples
of the block presented in figure 2. These sexp-based forms are then
pretty-printed to Moodle’s GIFT input format3, and surrounded
with question markup to produce questions such as the ones pre-
sented in figures 1 and 2.

(defun make -break -continue -for -form ()

(let* (( ascend (flip))

(comps (if ascend '(< ≤) '(> ≥)))
(lc (elt comps (if (flip) 0 1)))

(uc (elt comps (if (flip) 0 1)))

(start (* (maybe -sign) (random 10)))

(diff (+ (random 10) (random 10) 1))

(end (if ascend (+ start diff) (- start diff ))))

`(progn

,(make -form 'setq 'x)

(for (,start ,lc i ,uc ,end)

(progn

(incf x 1)

,(if (flip) `(break) `(continue ))

(incf x 1)))

(return x))))

Listing 1: Emacs Lisp code to generate a loop in our mini-
language containing a break or continue within a for loop,
with reasonable start- and end-points.

Not only this, but if we could express a likely mistake that a
student might make in code (such as the off-by-one errors or the
confusion between break and continue), we could generate the
corresponding form, interpret it, and write specific feedback based
on that specific mistake, while checking that it did not accidentally
replicate the correct answer. Code to pretty-print, add the question,
answer and feedback is demonstrated in listing 2.

This approach also allowed for more fine-grained mistake de-
tection in questions such as in figure 1, where instead of generic
feedback related to off-by-one errors (or -two, one at each end of
the loop), the feedback was generated based on the specific confu-
sions in each randomly-generated question between < and ≤ and
between > and ≥.

2.2 Recursive functions
Another aspect that students often struggle with is grasping recur-
sion, though that is a component of computational thinking (and,
arguably, a shibboleth to be probed in job interviews). Students
3https://docs.moodle.org/en/GIFT_format
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(defun return -break -continue -for (n)

(dotimes (i n)

(let* ((form (make -break -continue -for -form))

(answer (interpret -form form))

(osub '((break . continue) (continue . break )))

(oform (sublis osub form)

(other (interpret -form oform))

(nsub '((break . progn) (continue . progn )))

(nform (sublis nsub form)

(neither (interpret -form nform )))

(insert (format "::R.%s::" (make -name form )))

(insert (format "What is the return value from the

following block of pseudocode ?\nYou may assume that the

value for all variables before the start of this block

is 0.<br/>\n"))

(dolist (x (format -form form))

(insert

(format

"&nbsp;&nbsp;%s<br/>\n"

(replace -regexp -in-string " " "&nbsp;" x))))

(insert (format "{#

=%s\n

=%%0%%%s#have you mixed up break and continue ?\n

=%%0%%%s#are both increments executed ?\n}\n\n"

answer other neither )))))

Listing 2: Emacs Lisp code using the form generator from
listing 1, modifying and interpreting the form in order to
generate answers which might be given by students with a
mistaken mental model. This function outputs n questions
of this form in Moodle’s GIFT format, ready to be imported.

What code fragment should replace Z for function A to return
the difference between a and b? You may assume that the initial
arguments to the function A are positive integers and that b ≤ a.

function A(a,b)
if a = b then

return 0
else

return Z + 1
end if

end function
⃝ A(a, b + 1)
⃝ A(a, b - 1)
⃝ A(a - 1, b - 1)
⃝ A(a - 1, b + 1)
⃝ A(a + 1, b - 1)
⃝ A(a + 1, b + 1)
⃝ A(a - b, b)
⃝ none of the other answers

Figure 3: example code building question, question 6 of the
Recursive Algorithms quiz

are encouraged to think about base cases, and to consider trans-
forming one or more solutions to a subproblem into the solution
to the whole problem, but the details are important and it is easy
for students to be lulled into a false sense of security by doing a
small number of exercises – or, alternatively, to not experience the
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Introduction Loops in Pseudocode Vectors Pairs

VLE activities (cont’d)

pseudocode quiz
Statistics so far:

• 278 attempts: average mark 5.38
• 93 students: average mark 6.12

• 17 under 4.00
• 14 at 10.00

Quiz closes at 16:00 on Friday 13th October
• no extensions
• grade is

• 0 (for no attempt)
• 30 + 70 × (score/10)²

Figure 4: A slide from the lecture given after the quiz on
pseudocode had been open for a week.

desired moment of enlightenment, and feel that forward progress
is not possible.

In order to help our students measure their understanding of
recursion, we generated in our mini-language multiple recursive
implementations of basic mathematical operations (addition, sub-
traction, multiplication, division, exponentiation), and used our
pretty-printer to generate questions where the conditional, base
case, or recursive call had been elided. We collected from the vari-
ants the corresponding possibilities for each of these code locations,
and generated multiple-choice questions with a subset of these pos-
sibilities as choices (see figure 3 for an example). We were able to
ensure that we did not mistakenly include an accidentally-correct
answer from the possibilities as a distractor, by substituting in each
possible response into the corresponding functional form, inter-
preting it for randomly-chosen arguments, and checking that it did
not return the mathematically correct answer.

3 DELIVERY AND RESULTS
Throughout the course, a new quiz on an individual topics (such
as those described in sections 2.1 and 2.2) was made available to
the students each week, with each quiz open for a 12-day period,
from Monday at 09:00 until 16:00 on the Friday of the following
week. The students were informed that each such quiz would be
worth 1% of their final grade, and at the mid-point of the open
period were shown a summary of the current cohort performance
in that quiz (see figure 4). The non-linear transformation in that
slide, from quiz score (out of 10) to awarded mark (out of 100) is to
encourage participation (a mark of 30% is a fail, but not a bad one)
and to avoid rewarding guesswork (a quiz score of 2 or 3 out of 10,
as might occur through chance, still leads to a failing mark).

The cohort of 120 students took the pseudocode quiz 588 times,
achieving scores plotted in figure 5. We tracked the improvement
in quiz scores relative to each student’s first attempt in that quiz,
to attempt to measure the effect of practice and feedback (figure 6),
which displayed a general improvement with diminishing returns
and levelling off at around eight attempts; and students’ best scores
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Figure 5: Individual scores (out of 10) in the pseudocode quiz
over the period of its availability. The vertical shaded areas
represent contact times (lectures and lab sessions).

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●● ●●

●

●

● ●

● ●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

−5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

attempt

de
lta

Figure 6: Improvement in student scores in the pseudocode
quiz compared with the score attained in their first attempt.
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Figure 7: Students’ best scores in the pseudocode quiz, plot-
ted against the timewhen they took their first attempt at the
quiz.

in the quiz plotted against the time of their first attempt (figure 7),
where we found that there was no difference in the final outcome

correct off-by-one incorrect unanswered
best 83 11 21 6

other 193 90 135 49
Table 1: classified results for question 6 of the Pseudocode
quiz: the “incorrect” column refers to answers given but nei-
ther correct nor off-by-one.

correct incorrect unanswered
best 76 35 10

other 123 218 124
Table 2: classified results for question 8 of the Pseudocode
quiz. Unfortunately the different categories of incorrect an-
swers (confusion between break and continue, failure to con-
sider how it interacts with the for loop) are not easy to dif-
ferentiate from the Moodle reports.

correct incorrect unanswered
best 68 46 1

other 69 165 14
Table 3: classified results for question 6 of the Recursive al-
gorithms quiz.

provided the student started the quiz activity before two or three
days before the deadline.

The cohort’s performance in question six (the simple loop ques-
tion) is given in table 1, while their performance in question eight
(the loop with break/continue) is shown in table 2.

As can be seen from table 1, student performance in this question
is considerably better in the aggregate of the best performance of
each student than in the other questions. This is expected; what
might be unexpected is the degree to which the specific issue of
off-by-one errors has been reduced. In the questions representing
the best attempts by each student, the error rate corresponding
to off-by-one errors is 11 in 121, or 9.1%, this is a reduction from
19.3% in the population of non-best attempts, or roughly a halving
of this error. By contrast, other incorrect answers decreased from
28.9% in general attempts to 17.4% in the best attempts; a decrease
of generic errors of roughly 40%. The decrease in the proportion of
unanswered question reflects the observed pattern that for many
students early attempts at the quiz under time pressure means that
they run out of time before answering the harder questions in the
quiz.
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Figure 8: Student responses to the question “Which activity
in this course so far have you most enjoyed?”

3.1 Student perspectives
Near the half-way point of the course, the students were asked
to provide feedback, first in a non-anonymous custom question-
naire delivered using the Learning Management System, and sec-
ond anonymously using the standard course evaluation question-
naire provided by the University. Neither method of soliciting feed-
back reached complete coverage of the students; indeed, only ap-
proximately half the cohort (n=61 students) completed the non-
anonymous questionnaire, and even fewer (n=40 students) the stan-
dard course evaluation.

As well as the self-paced multiple-choice quizzes described in
this paper, the students were given:
• automatically-graded lab exercises, typically to implement
particular algorithms or data structures, with their imple-
mentation assessed for correctness and targetted feedback
generated using JUnit4 and cppunit5, managed by the IN-
GInious platform [2];
• peer-assessed extended exercises, withmore open briefs than
the lab exercises, and an assessment rubric set up for them
to assess each others’ submissions;
• in-class multiple-choice quizzes, typically given at the half-
way point of a lecture, reinforcing or revising particular
points, delivered using kahoot!6;
• standard weekly lectures of two hours’ duration.

Figure 8 shows the student answers to the question of which
of the various activities they most enjoyed in the non-anonymous
questionnaire. The 61 respondents divide fairly evenly between
the five classes of activity, with a slight preference for self-paced
4https://junit.org/junit4/
5https://freedesktop.org/wiki/Software/cppunit/
6https://kahoot.com/
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Figure 9: Student responses to the question “Which activity
in this course so far have you learnt most [positive counts]
/ least [negative counts] from?”

quizzes, in-class quizzes and lab exercises compared with lectures
and peer-assessment. The responses to the question of which ac-
tivities the students considered most or least instructional, how-
ever, are starkly different; figure 9 illustrates the answers to those
two questions, with positive counts representing answers to the
“most” variant and negative counts representing “least”. From these
responses, we see that the students value highly the automatically-
graded lab exercises and particularly the multiple-choice quizzes;
very few students considered the quizzes the least instructional
activity, compared with over one-third who considered them the
most; students are clearly distinguishing between enjoyment and
pedagogy, in that the in-class quizzes, which were considered to
be most enjoyable by many students, were rated as being most
instructional by very few.

Students were also encouraged to leave free-text comments in
both questionnaires. Some expressed frustration about particular as-
pects of multiple-choice quiz delivery, requesting that the time limit
for quiz attempts be raised or the enforced gap between attempts
be lowered; however, several commented on the level of challenge
posed by the quizzes, and there have been in-person requests to
make the quizzes available after the deadline for that quiz to help
students guide their further learning and revision.

Student engagement in the quiz activities has remained high;
in the 16 completed quizzes in this academic year, the students
have submitted 6792 quiz attempts, each with 10 questions (so
each student has, on average, received automated feedback on 566
individual questions).

3.2 Educator perspectives
Using multiple-choice questions with the approach given in this
paper has several benefits from the perspective of an educator.
Firstly, and most importantly, it provides for instruments which the
students can take, multiple times, in order to judge their own state
of understanding of the foundational components of the material
and receive feedback regarding where and how that understanding
might be lacking. Importantly, it allows that feedback to be delivered
and received at a time of the student’s own convenienence; once
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the questions are generated and the automation set up, there is
no additional cost, freeing up educator time to devise more useful
activities or provide extra material.

In addition, this approach can scale to the required size; this
entire course was delivered to a cohort of 120 students using one
instructor and one teaching assistant; this course does have some
non-automated components of delivery, such as moderation of
peer-assessment, marking of an individual written assignment, and
marking a final exam with longer-form questions. Scaling to larger
student numbers, as in a fully-online or MOOC setting, might re-
quire some additional instructor time to monitor student questions
on online forums – though our experience in running this course
this year is that the students themselves are well equipped to assist
each other on public forums, and indeed it is acknowledged that
helping each other in this way helps to consolidate learning and
build mastery; the teaching staff participation on the forums is
largely limited to administrative announcements and to provision
of material beyond the formal syllabus.

Further, it is important for us to know whether our students
(as a whole) have a good understanding of the material, a mixed
understanding, or maybe that a substantial part of the cohort has
misunderstood some topic. One benefit of having the quizzes open
for 12 days was that, at the half-way point, we could examine the
results so far and identify whether any specific part of the quiz
showed substantially worse (or worse than expected) performance
– and if so, that specific item could be addressed in a plenary session
such as a lecture.

A concern sometimes raised about using self-paced, remotely-
administered tests as a component of a final grade is that students
might be incentivised to cheat, for example by asking other peo-
ple to take the test on their behalf. One mitigation is that, since
each of these tests is worth 1% of their final grade, and students
can get a mark of 30% simply by submitting a blank entry, there is
limited upside to cheating; meanwhile, we performed spot-checks
on individual elements of suspicious behaviour, by requiring some
students to take quizzes under controlled conditions after identi-
fying anomalies in the logs (such as two students taking the same
quiz from the same IP address in quick succession – the students
replicated their scores of 10, and revealed that they had been rac-
ing each other!). If the concern is strong, there is nothing in the
approach described here which would prevent quizzes being used
primarily formatively, and possibly assessed for part of a course
mark under controlled conditions.

We would not expect to be able to be able to build a community
of users of our specific mini-language and toolset; it grew to meet
immediate needs, and it fulfils those needs minimally. The general
approach – identifying potential pitfalls or barriers to understand-
ing, designing assessments that probe those barriers, and providing
specific feedback in the case of students demonstrating that they
are struggling with those barriers – is, we believe, sound, and we
have demonstrated that at least in some subject areas this can be
done in a scalable way. It is perhaps surprising not to see this ap-
proach taken up more widely; we speculate that this is because
the technical sophistication level required to operate the toolchain
is fairly high; the up-front cost of development is steep; and that
the pedagogical approach taken implies more empathy with the
student and more responsibility for the learning journey, which

are not necessarily aspects selected for in hiring teaching staff at
University.

4 CONCLUSIONS AND FUTUREWORK
We believe that providing automated tools where students can
probe in detail their own understanding of the fundamentals of
the curriculum that they are studying is valuable. This provision
will also become more necessary as Higher Education Institutions
become more resource-constrained, as students expect more for
their tuition fees, and as competitors such as OpenCourseWare and
MOOCs establish the principle in students’ minds that pedagogical
materials are available for anyone to access for free.

In the specific case of a Computer Science curriculum, and Algo-
rithms & Data Structures specifically, we identified tangible benefits
to the practical pedagogy from the use of a Lisp with strengths both
in treating code-as-data and data-as-code, and for text manipulation.
As well as the Lisp-basedmini-language for interpreting and format-
ting pseudocode described in this paper, we implemented an Emacs
major mode for editing GIFT-format files, to make hand-edits to
generated questions fast and practical; we implemented simplified
versions of many elementary and more complex data structures, in
order to be able to generate questions on the behaviour of hash-
tables or the properties of graphs; and all this under time pressure
and on a budget.

For this specific course, one potential improvement would be to
implement a parser for the surface syntax of pseudocode, converting
it back to our sexp-based language. This, in combination with a
plugin for the LMS, would allow us to set free-text rather than
multiple-choice questions for topics such as recursive algorithms,
where even with the large number of distractor questions there
is some chance that some students will select right answers by
pattern-matching, without a full understanding of the material.

There are improvements that can be made in delivering multiple-
choice quizzes compared with this year. While giving specific feed-
back to the students about particular mistakes is helpful, it is also
useful for instructors to know that this has happened. The Moodle
LMS does not make it easy to see the frequency that particular
wrong answers are given from the reports that it produces; how-
ever, we could allocate distinct fractional marks, rather than zero,
to specific wrong answers; this would not substantially affect the
quiz score (a wrong answer scoring 0.01 points instead of 0.00 will
not have a material effect on a student outcome) but would make
it much more straightforward to analyse data extracted from the
LMS.
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1 NAVIER-STOKES EQUATION
The Navier-Stokes equation (NSE) is a special partial differential
equation (PDE) which is used for modeling fluid flows occurring
in nature. There is a large variety of different flows, and corre-
spondingly, there are a lot of variations of the NSE: compressible or
incompressible flow, Newtonian or non-Newtonian flow, etc. For
incompressible, Newtonian flows these equations have the form

ρ
∂ ®v
∂t
+ ρ(®v · ∇)®v − µ∆®v + ∇p = ®f (1)

∇ · ®v = 0 . (2)

The parameter µ is the so-called dynamic viscosity of the fluid.
Although this equation is successfully used for modeling flows

in many situations, the mathematical theory is only complete for
two space dimensions and ensures that —given suitable initial
conditions— a unique solution exists for all times. In contrast, the
same result for three space dimensions (i.e. in relevant cases) is
known only for small Reynolds numbers

Re = U · D
µ

where U is a characteristic flow velocity and D a characteristic
length of the specific situation, and µ denotes the viscosity of the
fluid from above. From the formula, we can see that problems with
small Reynolds number, say Re ≲ 100, characterize situations with
slow flows, small geometries, and/or large viscosities (honey instead
of water or air).

Unfortunately, for most interesting flow problems we have Re =
105 . . . 108, and the theoretical result ensuring existence of a unique
solution does not apply. Indeed, flows with large Reynolds numbers
feature regions of vortices of many scales (so-called turbulence)
which cannot and/or should not be simulated in detail. The remedy
is to introduce additional models of turbulence, and the construction
of suitable models is still under current research.
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2 NUMERICAL APPROXIMATION
The first step of solving a partial differential equation like the NSE is
discretization, which results in a discrete problem whose solution is
an approximation to the PDE solution. The Finite Element Method
(FEM) is a particularly successful method for PDE discretization,
because of its flexibility and its relatively sound mathematical foun-
dation. It is based on

(1) choosing amesh consisting of so-called cells (triangles and/or
quadrangles in 2D, tetrahedra, cubes etc in 3D),

(2) constructing finite-dimensional function spaces on these
meshes, and

(3) formulating a discrete, finite-dimensional problem for re-
placing the infinite-dimensional original one.

Applied to a stationary (i.e. time-independent) flow problem, the
result is a nonlinear equation of the form

Find u ∈ RN such that F (u) = 0 . (3)

Usually, this equation is then solved by some variant of Newton’s
method, and leads to some vector u ∈ RN which can be interpreted
as a FE function (hopefully) approximating the solution of the
continuous problem.

One should keep in mind, that the whole process is non-trivial
and that it inherits the difficulties of complicated flow situations.
Especially,

(1) The number N , which is necessary for having a good approx-
imation of u to the solution ®v of the continuous problem,
may be very large. (Note that N = O(h−d ) where h is the
mesh size and d the space dimension, which means that a
resolution of 100 mesh points in each dimension already
leads to N = O(106) in 3D.)

(2) Newton’s method for (3) may not converge.
(3) A basic step inside Newton’s method for systems ofN nonlin-

ear equations is solving a system of N linear equations. Sim-
ple linear solvers require something in between O(N 2) and
O(N 3) operations for solving such systems, which rapidly
becomes unacceptable, and although more sophisticated
solvers can perform much better, they are also more sen-
sitive to complexities inherited from complicated flows.

3 FLOW AROUND AN AIRFOIL
Awell-known model CFD problem is the one of computing the flow
around an obstacle, for example around thewing of an aircraft. Here,
interesting results can be obtained already using a two-dimensional
calculation which essentially simulates the flow in the cross-section
of an infinitely long wing.

Since in this contribution we were not interested in finding the
optimal airfoil model, we have used the stationary NSE with a
rather large viscosity µ̃ for the flow region which ensures laminar
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flow, but with a small friction along the boundary corresponding
to the real size of viscosity µ. That is, we use

−µ̃∆®v + ρ(®v · ∇)®v + ∇p = ®f (4)
∇ · ®v = 0 . (5)

These equations are posed in a domain Ω of the form Ω = Q \ A
whereQ is a rectangular channel andA ⊂ Q is the airfoil region. On
the exterior boundary ∂Q , a constant velocity is prescribed and on
the interior boundary ∂A, we require that the normal component
of the flow as well as the normal component of the stress tensor T
vanishes, i.e.

®v · ®n = 0 , Tnn = 0 where T := µ(∇®v + (∇®v)T ) + p1 . (6)

The force which the flow exerts on the airfoil can be calculated as
the curve integral

F =

∫
∂A

T · ®n ds . (7)

4 INTERACTIVE SIMULATION
In 2017, our university organized an event for the general public
called the “Long Night of the Sciences”, where we took part with
a web application that allowed drawing an airfoil which was then
evaluated and ranked according to the largest ratio of lift/drag. This
application was written in Common Lisp (CL) and based on the CL
libraries Femlisp[2], cl-who and Hunchentoot. In the following
we describe the setup in more detail:

• Accessing index.html, the web server provides the client
with a modified and extended version of the Javascript ap-
plication Paper.js [1] which allows the drawing of an airfoil
as a curve.
• When this curve has been drawn, the Javascript applica-
tion sends a request calculate-drag-lift back to the web
server, which contains a name (who has drawn the airfoil) to-
gether with the curve and initiates the following calculation
on the server:
– The curve is scaled and fitted into a rectangular channel
as an additional boundary. The resulting region is trian-
gulated and discretized with finite elements. Finally, the
discretized problem is solved with the help of Newton’s
method.

– The force on the airfoil is calculated using (7). A score for
the airfoil is calculated as the quotient vertical component
(lift) divided by horizontal component (drag).

– These numbers as well as pictures of the mesh and the flow
(see Fig. 1 for an example) are written into a data directory.
An entry for the calculation is written in a hash-table
mapping the name to the score of the calculation.

• The server also provides a status page show-scores where
all requests together with their score are shown in latest-
first order, together with a top-10 list where the best ranked
calculations are shown. The details of each calculation (see
Fig. 1) can also be retrieved by clicking at some entry on this
page.

Figure 1: Mesh and velocity/pressure.

5 FUTUREWORK
Although simple, this application proved to be quite successful and
a lot of people played around with it. Therefore, we probably will
repeat this performance at another “Long Night of the Sciences”.
Nevertheless, several things could (and should) be improved in the
next future. First, the most important improvement is ensuring that
the underlying model equation really gives adequate results. Next,
each calculation of our simulation took about 40 seconds last time.
Although this was acceptable, because several of those calculations
could run in parallel, there are quite a few ways of accelerating
them, and even an instantaneous feedback might be achievable
which would lead to a really satisfactory experience for the user.
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ABSTRACT
We present a new approach to applying object oriented principles to
GPU programming via GLSL shaders. Using the CLOS Meta Object
Protocol, shader code can be attached to classes within standard
Lisp code and is automatically combined by the system according
to inheritance rules. This approach results in a native coupling of
both CPU and GPU logic, while preserving the advantages of object
oriented inheritance and behaviour. The system allows the use of
arbitrary shaders written directly in GLSL, without the need for
language extensions.
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1 INTRODUCTION
In modern real-time computer graphics applications, advanced ef-
fects and GPU computations require the use of a programmable
graphics pipeline. This is usually done using domain-speci�c lan-
guages. The programmer passes the programs as textual source
code to the graphics driver, which then compiles it down to GPU
instructions.

For OpenGL, this language is called GLSL[1] and follows amostly
C-like syntax. A program written in GLSL is called a shader and is
used to �ll one of several stages in the graphics pipeline. Whenever
a primitive is rendered, these shaders are executed on the GPU,
each providing a particular stage of processing until �nally an im-
age is produced.

However, only a single shader can live in a particular stage at
a time. This limitation presents an issue for modularity, as e�ects
represented by shaders cannot be easily combined. Instead, it is
usually the task of a programmer to craft a single shader for each
stage that produces the desired results.

In this paper we present a new solution to this problem that is
accomplished in two steps. The �rst step is the parsing and ma-
nipulation of native GLSL code. The second step is the integration
of shader code into the Common Lisp Object System to allow for
automatic combination through inheritance.

2 RELATEDWORK
Several di�erent approaches to shader combination exist today.

Trapp et al[2] use additional constructs introduced to GLSL and
a preprocessor to combine e�ects. Their approach di�ers from ours
in that we do not extend GLSL syntax in any way and do not present
a standard interface to use between shader fragments.

McCool et al.[3] present an extension of the C++ language to
allow writing GLSL-like code in C++ source. Shader fragments are
parsed into an abstract syntax that can be used to perform static
analysis and combination of fragments. Combination is however
not automatic and needs to be explicitly requested by the program-
mer.

Kuck[4] presents an evolution of McCool’s approach by allowing
the use of C++ method declarations for shader function de�nitions.
In this approach method dispatch is mirrored in the emitted GLSL
code using unique identi�ers for each class. This system is thus
intended as a complete carry-over into shader code, rather than a
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simple combination of behaviour.

In VTK[5] GLSL’s ifdef preprocessor macros are used to condi-
tionally exclude or include certain shader functionality. This use of
preprocessor macros means that a full shader program of all pos-
sible combinations is meticulously hand-crafted, and features are
then added or removed as needed by the program by prepending
appropriate preprocessor de�nitions to the shader source.

Khronos proposed a GLSL extension[6] for an include prepro-
cessor directive that would splice other shader source �les in at the
requested position, similar to C’s include facility. This extension
would merely allow controlling concatenation of source text within
GLSL itself, though.

3 GLSL PARSING AND MANIPULATION
Typically a GLSL program will have form similar to this example:

uniform mat4 transform_matrix;
layout (location = 0) in vec3 position;
out vec4 vertex;

void main(){
vertex = transform_matrix * vec4(position, 1.0);

}

Listing 1: A small example of a vertex shader computing the vertex
position based on a transform matrix.

More speci�cally, it consists of a set of variable declarations that
are either uniform (exchangeable with the CPU), in (coming from
the previous stage), or out (going out to the next stage), and a set
of function de�nitions. The main function presents the entry point
for the shader and is required.

One goal of our approach was to allow the user to keep on using
existing GLSL shaders, ideally without having to change anything
about them. In order to accomplish merging of shader fragments
with these constraints, the system needs to be able to automatically
rewrite shader code to resolve name con�icts and to combine e�ects.

In order to do this, we implemented a full parser for the GLSL
language in Lisp that turns the textual representation into an AST.
Based on this AST, code walking and semantic analysis can be per-
formed to detect de�nitions and to rewrite behaviour. By analysing
two code segments, matching variable declarations can be fused
together and their references in the code rewritten as appropriate.
The main functions can be rewritten and called sequentially in a
newly emitted main function.

For instance, combining the shaders of listing 1 and listing 2 re-
sults in listing 3.

layout (location = 0) in vec3 vertex_data;
out vec4 vertex;

void main(){
vertex.x += sin(vertex_data.y);

}

Listing 2: A fragment shader that warps the vertex position.

uniform mat4 transform_matrix;
layout (location = 0) in vec3 position;
out vec4 vertex;

void _GLSLTK_main_1(){
vertex = transform_matrix * vec4(position, 1.0);

}

void _GLSLTK_main_2(){
vertex.x += sin(position.y);

}

void main(){
_GLSLTK_main_1();
_GLSLTK_main_2();

}

Listing 3: A combination of the shaders from listing 1 and listing 2.

The system automatically recognises that the vertex variable
is the same in both shaders and omits the second instance. It also
recognises that the position and vertex_data variables denote
the same input, omits the second declaration, and renames the vari-
able references to match the �rst declaration. An example rendering
using listing 1 and listing 3 can be seen in �gure 1.

Figure 1: Left: rendering of a sphere using listing 1. Right: the same
with listing 2 added.

Using this technique, a wide variety of shaders can be combined,
with a minimal amount of awareness of other shaders being neces-
sary. Shortcomings of this technique are elaborated in section 6.

4 SHADER INTEGRATIONWITH CLOS
Usually the shaders do not act on their own. They need correspond-
ing CPU-side code in order to provide the inputs and parameters
for the pipeline to execute properly. Thus our system couples the
de�nition of relevant shader code and CPU code together in a sin-
gle class. Combination of features is then automatically provided
through the inheritance of classes.
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We implement a new metaclass that includes a slot for a set of
shader fragments, each grouped according to their pipeline stage.
Shader fragments can then be attached to an instance of this meta-
class to form the direct shader fragments. When the class hierarchy
is �nalised, shader fragments from all transitive superclasses are
gathered in order of class precedence to form the list of e�ective
shader fragments. This list is then combined into a full shader for
each stage using the technique from section 3.

Accompanied by this metaclass is a set of generic functions that
allow specifying the loading and drawing logic of a class. These
functions encompass the CPU-side code required to run the shaders
properly. Using the standard method combination, the behaviour
can be passed down and combined alongside the shader code. An
example of such a behaviour can be seen in listing 4.

(defclass colored-entity ()
((color :initform (vec 0 0 1 1) :reader color))
(:metaclass shader-class))

(defmethod paint :before ((obj colored-entity))
(let ((shader (shader-program obj)))
(setf (uniform shader "objectcolor") (color obj))))

(define-class-shader (colored-entity :fragment-shader)
"uniform vec4 objectcolor;

out vec4 color;

void main(){
color *= objectcolor;

}")

Listing 4:A colored-entity class that encompasses object colour-
ing functionality.

This colored-entity class can now be used as a superclass in
order to inherit the full behaviour. In e�ect this approach allows us
to encapsulate a variety of small behaviours in the form of mixins,
which can then be combined to form a full implementation of an
object to be drawn. For instance, we could imagine an entity to
emit geometry for a sphere, an entity to apply a wave deformation,
an entity to texture the geometry, an entity to apply shading, and
so forth.

5 APPLICATIONS
We currently use this technique for two primary applications: the
encapsulation of common display functionality into mixins, and the
implementation of e�ects passes. The former allows us to separate
various concerns such as the read-out of texture data, the transfor-
mation of vertex data, and the fragment rendering behaviour into
small, self-contained classes, that can then be combined by the user
to produce the result they desire.

The latter allows us to write arbitrary rendering e�ects as self-
contained render pass objects. To elaborate on this application,
imagine a visual e�ect that requires you to manipulate some, but

not all of the aspects of how an object is rendered. A simple ex-
ample for such an e�ect is the “god rays” that you can see in �gure 2.

In order to achieve this e�ect, all opaque objects in the scene are
rendered once normally, and once in black. Then the black pass is
blurred and added to the normal render. Neither the normal render
pass nor the combination step require any insight from the pass
into how the objects are drawn. However, for the black rendering
pass, the way the objects are drawn has to be modi�ed in such a
way that all fragments are output as black, but everything else, such
as vertex transformations, must remain the same.

With shader combination we can achieve this quite easily: we
write a fragment shader that simply outputs the colour black, and
then combine this shader with whatever the objects’ shaders are.
In this way we are virtually inserting a superclass for each object
in the scene depending on which render pass is currently active.
Render passes themselves are implemented with the same class
shader combination as regular objects, so they too can pro�t from
encapsulating and sharing shader functionality.

Figure 2: Left: phong rendered teapot. Right: black rendered teapot.
Bottom: combined god-rays e�ect.

6 CONCLUSION
Source code analysis allows us to easily re-use shader code writ-
ten independently of our Lisp program while retaining the ability
to merge the e�ects of multiple shaders together. Integrating this
analysis into the object system combines the GPU and CPU logic
in a single class, allowing the inheritance and re-use of both.

While the merging works automatically for a large class of
shaders, certain ambiguities cannot be automatically recti�ed and
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require user input. For instance, unless the names of in or out dec-
larations match, or their location is explicitly speci�ed, the static
analysis cannot determine whether they denote the same thing.
The shader e�ects that write to the same out variable must also
be adapted to re-use the existing value in order for the e�ects to
combine. For instance, a colour should be combined by multiply-
ing with the previous value, rather than directly setting the new
one. Typically multiplying the colour will yield the desired combi-
nation e�ect, whereas setting it would simply discard the colour
computed by other mixins. Finally, if the declarations di�er in qual-
i�ers such as type or allocation, the merger cannot automatically
determine how to resolve this con�ict, even if the authors of the
shaders meant it to denote the same conceptual variable.

7 FURTHERWORK
The current merging strategy employed is rather simplistic. For
instance, no attempt at recognising identical function de�nitions is
made. The system could also be extended with a variety of static
analysis algorithms to optimise the code ahead of time, or to pro-
vide errors and warnings about potential user mistakes.

While allowing the use of native GLSL code is handy, providing
the user with a system to write shaders in Lisp syntax would im-
prove the system quite a bit. To facilitate this change, the Varjo[7]
compiler could be integrated. A further development from there
could be integration with an IDE to provide the user with automated
help information about not just Lisp, but also shader functions.

8 ACKNOWLEDGEMENTS
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9 IMPLEMENTATION
An implementation of the proposed system can be found at
https://github.com/Shirakumo/trial/blob/
e37e0dc73085c401e43da58d5098a9cf02167f8f/shader-entity.lisp
for the CLOS part, and at https://github.com/Shirakumo/glsl-toolkit
for the merger part.

A more in-depth discussion of the system can be found at
https://reader.tymoon.eu/article/362.
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ABSTRACT
Currently, algorithmic approaches are being introduced in several
areas of expertise, namely Architecture. Algorithmic Design (AD)
is an approach for architecture that allows architects to take advan-
tage of algorithms to produce complex forms for their projects, to
simplify the exploration of variations, or to mechanize tasks, includ-
ing those related to analysis and optimization of designs. However,
architects might need different models of the same project for dif-
ferent kinds of analysis, which tempts them to extend the same
code base for different purposes, typically making the code brittle
and hard to understand. In this paper, we propose to extend AD
with Context-Oriented Programming (COP), a programming para-
digm based on context that dynamically changes the behavior of
the code. To this end, we propose a COP library and we explore its
combination with an AD tool. Finally, we implement a case study
with our approach, and discuss the advantages and disadvantages.

CCS CONCEPTS
• Software and its engineering→ Object oriented languages;

KEYWORDS
Context-Oriented Programming, Algorithmic Design, Racket, Gen-
erative Design

1 INTRODUCTION
Nowadays, Computer Science is being introduced in several areas of
expertise, leading to new approaches in areas such as Architecture.
Algorithmic Design (AD) is one of such approaches, and can be
defined as the production of Computer-Aided Design (CAD) and
Building Information Modeling (BIM) models through algorithms
[9, 25]. This approach can be used to produce complex models of
buildings that could not be created with traditional means, and its
parametric nature allows an easier exploration of variations.

Due to these advantages, AD started to be introduced in CAD
and BIM applications, which led to the development of tools that
support AD programs, such as Grasshopper [26]. However, with
the complexity of the models came the necessity of analyzing the
produced solutionswith analysis tools. For this task, the geometrical
models are no longer sufficient, as analysis software usually requires
special analytical models, that are different from geometrical models
and can hardly be obtained with import/export mechanisms due
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to errors. These requirements lead to the production of several
models, which have to be kept and developed in parallel, involving
different development lines that are hard to manage and to keep
synchronized. This complex workflow proves that current solutions
are not sufficient [36].

Some tools like Rosetta [24] are already trying to address these
issues by offering portable AD programs between different CAD
applications and, more recently, BIM applications [7, 8] and analysis
tools [22]. Nevertheless, this tool does not offer a unifying descrip-
tion capable of producing both the geometrical and the analytical
models with the same AD program, which can lead to the cluttering
of the current program in an effort to reduce the number of files to
maintain.

To solve these problems, we propose the use of COP to develop
a computational model capable of adapting itself to the required
context, which in this case is defined by the requirements of mod-
eling applications and analysis tools, allowing the production of
different models with a change of context.

1.1 Context-Oriented Programming
COP was first introduced as a new programming approach that
takes the context into account [10]. According to a more recent
depiction of this approach, COP aims to give users ways to deal with
context in their programs, making it accessible tomanipulationwith
features that are usually unavailable in mainstream programming
languages [16].

With this approach, users can express different behaviors in
terms of the context of the system. The context is composed of the
actors of the system, which can determine how the system is used,
the environment of the system, which can restrict or influence its
functionality, and the system itself, whose changes might lead to
different responses.

Although there are different implementations of COP, which
will be presented later in this paper, according to [16] necessary
properties must be addressed by all of them. These are:
• behavioral variation: implementations of behavior for each
context;
• layers: a way to group related context-dependent variations;
• activation and deactivation of layers: a way to dynamically
enable or disable layers, based on the current context;
• context: information that is accessible to the program and
can be used to determine behavioral variations;
• scoping: the scope in which layers are active or inactive and
that can be controlled.

With these features, layers can be activated or deactivated dy-
namically in arbitrary places of the code, resulting in behaviors
that fit the different contexts the program goes through during
its execution. If analyzed in terms of multi-dimensional dispatch
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[34], it is possible to say that COP has four-dimensional dispatch,
since it considers the message, the receiver, the sender, and the
context to determine which methods or partial method definitions
are included or excluded from message dispatch.

These method definitions are used to implement behavioral vari-
ations in layers, which can be expressed differently in the several
implementations of COP. In some, the adopted approach is known
as class-in-layer, in which layers are defined outside the lexical
scope of modules [2], in a manner similar to aspects from Aspect-
Oriented Programming (AOP) [20]. In others, a layer-in-class ap-
proach is used, having the layer declarations within the lexical
scope of the modules.

Although these concepts are used to define COP, each imple-
mentation of the paradigm might include additional features and
concepts, depending on the programming language. Some of these
differences will be discussed later in the paper.

1.2 Objectives
The main objectives of this paper are: (1) present and compare the
different implementations for COP that have been proposed by
the research community, and (2) present a simple case study that
shows how COP can be applied to AD. The case study consists of a
previously developed AD program that we re-implemented with
our proposed solution and then used to produce different models
according to different contexts. Finally, the results of our solution
are compared to the ones obtained in the previous version of the
code.

2 RELATEDWORK
In this section, we introduce several paradigms that served as ba-
sis for COP, namely AOP, Feature-Oriented Programming (FOP),
and Subject-Oriented Programming (SOP), as well as an overview
of the several implementations of COP that have been proposed
throughout the years.

2.1 Aspect-Oriented Programming
Most programming paradigms, such as Object-Oriented Program-
ming (OOP), offer some way to modularize the concerns necessary
to implement a complex system. However, it is common to en-
counter some concerns that do not fit the overall decomposition of
the system, being scattered across several modules. These concerns
are known as crosscutting concerns.

AOP was created to deal with these crosscutting concerns, in-
troducing ways to specify them in a modularized manner, called
aspects. Aspects can be implemented with proper isolation and com-
position, making the code easier to maintain and reuse [20]. Using
AOP, it is possible to coordinate the crosscutting concerns with nor-
mal concerns, in well-defined points of the program, known as join
points.

In addition to these concepts, AOP implementations, such as
AspectJ, introduce more concepts, such as pointcuts, which are
collections of join points and values at those join points, and ad-
vice, which are method-like implementations of behavior attached
to pointcuts [21]. An aspect is then a module that implements a
crosscutting concern, comprised of pointcuts and advice.

AspectJ also offers cflow constructs, that allow the expression
of control-flow-dependent behavior variations, making it possible
to conditionally compose behavior with if pointcuts [21]. If we
compare this with the basic description of COP, we can see several
similarities, making it possible to define behavior that depends on
a given condition, which can, in itself, be considered a context.
However, while AOP aims to modularize crosscutting concerns, this
is not mandatory in COP, since the use of layer-in-class approaches
scatters the code across several modules.

In addition, COP allows the activation and deactivation of layers
in arbitrary pieces of code, while AOP triggers pointcuts at very
specific join points that occur in the rest of the program [16]. This
makes COP more flexible in dealing with behavioral variation.

2.2 Feature-Oriented Programming
Feature-Oriented Programming (FOP) is an approach that was origi-
nally proposed to generalize the inheritance mechanisms offered by
OOP. With FOP, users create their objects by composing features,
instead of defining traditional classes. This process is called class
refinement [27].

The features introduced in FOP work in a very similar way to
mixins, a mechanism that allows the specification of methods to
be used by other classes [33]. Mixin layers can also be defined,
consisting of a mixin that encapsulates another mixin, and whose
parameters encapsulate all the parameters of the inner mixin.

With mixins, users can increment existing classes, which is sim-
ilar to what features allow. However, with features, overriding is
not used to define the functionality of a subclass, but it is used as a
mechanism to resolve dependencies between features [27]. Lifters
are also used for this purpose. They are functions that lift one
feature to the context of another. Although this feature is similar
to method overriding used in inheritance, lifters depend on two
features and are implemented as a separate entity.

By combining features, it is possible to create objects with a very
specific functionality based in already existing features, something
that would have to be donewith inheritance in traditional OOP. This
combination provides higher modularity, flexibility, and reusability,
since each feature is an entity in itself.

FOP also shares the idea of supporting behavioral variations of
the original program with the composition mechanism, which is
similar to how layers in COP work. However, while COP offers
the possibility of using these variations dynamically, through the
activation and deactivation of layers, FOP focuses on selecting and
combining behavior at compile-time [29].

2.3 Subject-Oriented Programming
SOP is a programming paradigm that introduces the concept of
subject to facilitate the development of cooperative applications.
In this paradigm, applications are defined by the combination of
subjects, which describe the state and behaviors of objects that are
relevant to that subject [13].

The Subjects’ goal is to introduce a perception of an object, such
as it is seen by a given application. Subjects do so by adding classes,
state, and behavior, according to the needs of that application. By
doing this, each application can use a shared object through the
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operations defined for its subject, not needing to know the details
of the object described by other subjects [13].

Subjects can also be combined in groups called compositions,
which define a composition rule, explaining how classes and meth-
ods from different subjects can be combined. These subjects and
compositions can then be used through subject-activation, which
provides an executable instance of the subject, including all the data
that can be manipulated by it.

Due to the introduction of all these concepts, SOP offers what
is known as Subjective Dispatch [34]. Subjective Dispatch extends
the dispatch introduced by OOP, by adding the sender dimension,
in addition to the message and the receiver. This type of dispatch
was later expanded by COP, which introduces a dimension for the
context, as mentioned previously.

It is possible to see that, similarly to the other analyzed paradigms,
SOP also supports behavior variations in the form of subjects. How-
ever, if we consider that each subject might have different contexts
of execution, we need an extra dimension for dispatch, which is
what COP offers.

2.4 Context-Oriented Programming
Implementations

COP was proposed as an approach that allows the user to explore
behavioral variations based on context. Concepts such as layers
and contexts are present in all implementations of this approach.
Nevertheless, each one can address the concepts differently, some-
times due to the support of the host language in which the COP
constructs are implemented. In this section we present the different
implementations available.

2.4.1 ContextL. ContextL was one of the first programming lan-
guage extensions to introduce support for COP. It implements the
features discussed previously by taking advantage of the Common-
Lisp Object System (CLOS) [5].

The first feature to be considered is the implementation of layers,
which are essential to implement the remaining features available in
ContextL [6]. These layers can be activated dynamically throughout
the code, since ContextL uses an approach called Dynamically
Scoped Activation (DSA), where layers are explicitly activated and
a part of the program is executed under that activation. The layer
is active while the contained code is executing, becoming inactive
when the control flow returns from the layer activation.

Regarding the activation of multiple layers, it is important to
note that the approach introduced in ContextL, as well as in other
implementations that support DSA, follows a stack-like discipline.
Also, in ContextL this activation only affects the current thread.

By taking advantage of layers, it is then possible to define classes
in specific layers, so that the classes can have several degrees of
detail in different layers, introducing behavior that will only be
executed when specific layers are activated. The class behavior can
also be defined with layered generic functions. These functions take
advantage of the generic functions from CLOS, and are instances
of a generic function class named layered-function [6].

In addition, ContextL supports contextual variations in the defi-
nition of class slots as well. Slots can be declared as :layered, which
makes the slot accessible through layered-functions. This feature
introduces slots that are only relevant in specific contexts.

By looking at the constructs implemented in ContextL, it is pos-
sible to conclude that behavioral variations can be implemented in
specific classes or outside of them. This means that ContextL sup-
ports both layer-in-class and class-in-layer approaches. The former
allows the definition of partial methods to access private elements
of enclosing classes, something that the latter does not support,
since class-in-layer specifications cannot break encapsulation [2].

Finally, it should be noted that ContextL follows a library im-
plementation strategy: it does not implement a source-to-source
compiler, and all the constructs that support the COP features are
integrated in CLOS by using the Metaobject Protocol [19].

2.4.2 PyContext and ContextPy. PyContext was the first imple-
mentation of COP for the Python programming language. Although
it includes most of the COP constructs in a similar manner to the
other implementations, PyContext introduces new mechanisms for
layer activation, as well as to deal with variables.

Explicit layer activation is an appropriate mechanism for several
problems but, sometimes, this activation might violate modularity.
Since the behavioral variation may occur due to a state change
that can happen at any time during the program execution, the
user needs to insert verifications in several parts of the program,
increasing the amount of scattered code. To deal with this problem,
PyContext introduces implicit layer activation. Each layer has a
method active, which determines if a layer is active or not. This
method, in combination with a function layers.register_implicit,
allows the framework to determine which layers are active during
a method call, in order to produce the correct method combination
[37].

Regarding variables, PyContext offers contextual variables, which
can be used with a with statement in order to maintain their value
in the dynamic scope of the construct. These variables are called
dynamic variables. These variables are globally accessible, and their
value is dynamically determined when entering the scope of a with
construct [37]. In conjunction with specific getters and setters, it
is possible to get the value of the variable, change it in a specific
context, and then have it restored when exiting the scope of that
context. It is important to note that this feature is thread-local.

As for the other features, PyContext does not modify the Python
Virtual Machine, being implemented as a library. Layers are imple-
mented using meta-programming, and layer activation mechanisms
take advantage of Python’s context handlers. As for the partial def-
inition of methods and classes, PyContext follows a class-in-layer
approach.

More recently, ContextPy was developed as another implementa-
tion of COP for the Python language. This implementation follows
a more traditional approach to the COP features, offering DSA,
using the with statement, which follows a stack-like approach for
method composition. For partial definitions, ContextPy follows a
layer-in-class approach, taking advantage of decorators to annotate
base methods, as well as the definitions that replace those methods
when a specific layer is active [17]. Finally, similarly to PyContext,
ContextPy is offered as a library that can be easily included in a
Python project.

2.4.3 ContextJ. ContextJ is an implementation of COP for the
Java programming language, and one of the first implementations of
this approach for statically typed programming languages. Before
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this implementation, there were two proof of concepts implemented
in Java, namely ContextJ* [16] and ContextLogicAJ [1]. The first is
a library-based implementation that does not offer all COP func-
tionalities, while the second is an aspect-oriented pre-compiler that
improves the features given by ContextJ* and offers new mech-
anisms, such as indefinite layer activation. Indefinite activation
requires the user to explicitly activate and deactivate layers, in
order to obtain the desired layer composition.

ContextJ is a sorce-to-source compiler solution that introduces
all the concepts of COP in Java by extending the language with
the layer, with, without, proceed, before and after terminal symbols
[4]. Layers are included in the language as a non-instantiable type,
and their definitions follows a layer-in-class approach. Each layer
is composed of an identifier and a list of partial method definitions,
whose signature must correspond to one of the methods of the class
that defines the layer. Also, to use the defined layers, users must
include a layer import declaration on their program, in order to
make the layer type visible.

As for partial method definitions, they override the default method
definition and can be combined, depending on the active layers. The
before and after modifiers can also be used in partial method defi-
nitions, in order to include behavior that must be executed before
and after the method execution. In addition, the proceed method
can be used to execute the next partial definition that corresponds
to the next active layer, allowing the combination of behavioral
variations [4].

Regarding layer activation, ContextJ supports DSA by using a
with block. Layers are only active during the scope of the block,
and the activation is thread-local.With blocks can be nested, and
the active layer list is traversed according to a stack approach. This
approach, in combination with the proceed function, allows the
user to compose complex behavior variations. In addition, it is
possible to use the without block to deactivate a layer during its
scope, in order to obtain a composition without the partial method
definitions of that specific layer.

Finally, ContextJ also offers a reflection Application Program-
ming Interface (API) for COP constructs. It includes classes for
Layer, Composition, and PartialMethod, along with methods that
support runtime inspection and manipulation of these concepts.

2.4.4 Other COP Implementations. The implementations de-
scribed in the previous sections present some of the major strategies
and features that are currently used with COP. Nevertheless, there
are more implementations for other languages, which we briefly
describe in this section.

Besides ContextJ, ContextJ*, and ContextLogicAJ, there are other
implementations of COP for Java, namely: JCop [3] and EventCJ
[18], which use join-point events to switch layers; cj [31], a subset of
ContextJ that runs on an ad hoc Java virtual machine; and JavaCtx
[28], a library that introduces COP semantics by weaving aspects.

There are also COP implementations for languages such as Ruby,
Lua, and Smalltalk, namely ContextR [32], ContextLua [38], and
ContextS [15] respectively. ContextR introduces reflection mecha-
nisms to query layers, while ContextLua was conceived to introduce
COP in games. ContextS follows the more traditional COP imple-
mentations, such as ContextL. ContextScheme1, for the Scheme
1http://p-cos.net/context-scheme.html

programming language, also follows an implementation similar to
ContextL.

In addition, some implementations, such as ContextErlang, intro-
duce COP in different paradigms, like the actor model [14]. Contex-
tErlang also introduces different ways to combine layers, namely
per-agent variation activation and composition [30].

Regarding layer combination and activation, there are also im-
plementations that offer new strategies that differ from dynamic ac-
tivation. One example is ContextJS [23] that offers a solution based
on open implementation, in which layer composition strategies are
encapsulated in objects. These strategies can add new scooping
mechanisms, disable layers, or introduce a new layer composition
behavior that works better with a domain-specific problem [23].

More recently, Ambience [12], Subjective-C [11], and Lambic
[35] were developed. Ambience uses the amOS language and con-
text objects to implement behavioral variations, with the context
dispatch made through multi-methods. Subjective-C introduces a
Domain Specific Language (DSL) that supports the definition of
constraints and the activation of behaviors for each context. Fi-
nally, Lambic is a COP implementation for Common Lisp that uses
predicate dispatching to produce different behavioral variations.

In the next section we present a comparison between all these
implementations, as well as the advantages and disadvantages of
using each one.

2.5 Comparison
Table 1 shows a comparison between the analyzed COP implemen-
tations.

As it is possible to see, most of the analyzed implementations
are libraries, with source-to-source compilers being mostly used in
statically typed programming languages. The library implementa-
tion has advantages when trying to add COP in an already existing
project, since it does not change the language and uses the available
constructs. On the other hand, source-to-source compilers, such as
ContextJ, introduce new syntax that simplifies the COP mechanics,
as well as possible advantages regarding performance.

As for layer activation, the most common strategy is DSA. How-
ever, to increase flexibility, some solutions introduce indefinite
activation, global activation, per agent activation or, in the case of
ContextJS, an open implementation, allowing users to implement
an activation mechanism that best fits the problem they are solving.
Although DSA is appropriate for most problems, other strategies
might be best suited for multi-threaded applications or problems
whose contexts depend on conditions that cannot be captured with
the default layer activation approach.

Finally, regarding modularization, it is possible to see that most
implementations use the class-in-layer or the layer-in-class ap-
proach. The first one allows users to create modules with all the
concerns regarding a specific context, while the latter places all the
behaviors on the class affected by the contexts. Hence, class-in-layer
reduces code scattering, while layer-in-class can simplify program
comprehension. There are implementations that support both ap-
proaches, such as ContextL, but usually the supported approach
is restricted by the features of the language. Nevertheless, there
are cases, such as ContextPy and PyContext, that take advantage
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Table 1: Comparison between the COP implementations. DSA stands for Dynamically ScopedActivation, LIC for layer-in-class,
and CIL for class-in-layer. Lambic uses predicate dispatching instead of layers, so the last two columns do not apply. Adapted
from [29]

Base Language Implementation Layer Activation Modularization
ContextL Common Lisp Library DSA LIC, CIL
ContextScheme Scheme Library DSA CIL
ContextErlang Erlang Library Per-agent Erlang Modules
ContextJS JavaScript Library Open Implementation LIC, CIL

PyContext Python Library DSA, Implicit Layer
Activation CIL

ContextPy Python Library DSA LIC
ContextJ Java Source-to-Source Compiler DSA LIC

JCop Java Source-to-Source and Aspect Compiler DSA, declarative layer composition,
conditional composition LIC

EventCJ Java Source-to-Source and Aspect Compiler DSA LIC
JavaCtx Java Library and Aspect Compiler DSA LIC
ContextR Ruby Library DSA LIC
ContextLua Lua Library DSA CIL
ContextS Smalltalk Library DSA, indefinite activation CIL
Ambience AmOS Library DSA, global activation CIL
Lambic Common Lisp Library - -
Subjective-C Objective-C Preprocessor Global Activation LIC

of the same programming language but follow different principles
regarding the COP concepts.

All these implementation support the COP paradigm, although
they offer different variations of the relevant concepts. Choosing
the most appropriate implementation requires a careful examina-
tion of their distinct features, and how they help in fulfilling the
requirements of the problem at hand.

3 CONTEXT-ORIENTED ALGORITHMIC
DESIGN

In this section, we propose to combine COP with AD, introduc-
ing what we call Context-Oriented Algorithmic Design. Since it
is common for architects to produce several different models for
the same project, depending on the intended use (e.g., for analysis
or rendering), we define these different purposes as contexts. By
doing this, it is possible to explicitly say which type of model is
going to be produced.

In addition, we introduce definitions for the design primitives
using COP as well. For each primitive, we can define different
behavioral variations, depending on the model we want to produce.
For example, since some analysis models require surfaces instead
of solids, a primitive definition of a Wall would produce a box in a
3D context and a simple surface in an analysis context.

Finally, since COP allows the combination of layers, we can
take advantage of that to combine additional concepts, such as
Level of Detail (LOD) with the remaining ones. This combination
allows more flexibility while exploring variations, since it not only
supports the exploration in several contexts, but also the variation
of LOD inside the same context. This might be useful, e.g., for
architects that want to have less detail in certain phases to obtain
quicker results.

3.1 Implementation
To test our solution we created a working prototype, taking ad-
vantage of Khepri, an existing implementation of AD, and Con-
textScheme to introduce the COP concepts. Khepri is a portable AD
tool, similar to Rosetta [24], that allows the generation of models in
different modeling back-ends, such as AutoCAD or Revit, and offers
a wide range of modeling primitives for the supported applications.
This tool offers a native implementation in Racket, a pedagogical
programming language with support for COP, making it easier to
extend.

As for the choice of the COP implementation to use, we de-
cided for an implementation of ContextScheme that we adapted
for Racket. This implementation is a library, making it easier to in-
clude in existing projects and tools, such as Khepri. Also, since AD
programs are usually single-threaded, and we can easily indicate
the scope to be affected by the context, DSA is a good approach to
solve the problem. Both features are supported by ContextScheme.

Having these two components, we implemented a new library,
that extends Khepri, and introduces design elements with contex-
tual awareness. Since the behavioral variations have to produce
results on the selected modeling tool, this new layer uses Khepri’s
primitive functions to do so. The functions to use depend on the
context. For instance, the program uses those that produce surfaces
in analysis contexts, and those that produce solids on 3D contexts.
For each new modeling element of our library, we define functions
with basic behavior and a variation for each possible context. The
available contexts are implemented as layers in the library as well.

Listing 1 shows a simplified definition of the wall function.
This definition has a default behavior, and variations for a 3D, 2D,
and analysis contexts, which are identified by the layers used as
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parameters. In each of these functions, Khepri modeling functions
are used, in order to produce the results in the modeling tools.

Listing 1: Definition of 3D and 2D walls.
1 (define-layered wall)
2
3 (deflayered (wall 3D)
4 (lambda (...)
5 (box ...)))
6
7 (deflayered (wall 2D)
8 (lambda (...)
9 (rectangle ...)))
10
11 (deflayered (wall analysis)
12 (lambda (...)
13 (surface ...)))

In the next section, we introduce a case study, that was produced
with this new library, in order to evaluate our approach.

4 CASE STUDY
For the evaluation of our COP library we used a model of a shop-
ping mall, originally used for evacuation simulations. The model
was produced with an algorithmic solution, which we modified
to include our library. This is a simple case study that uses few
geometrical elements, namely doors, walls, and a floor, which the
new library already supports.

We chose this case study because the original implementation
required a plan view of the model, which had to be produced in
addition to the usual 3D view. To take advantage of the same algo-
rithm, the original developers included two implementations of the
shop function, which produce each of the shops that compose the
mall, and are used by the rest of the algorithm. One implementation
is a 2D version that created lines, and the other is a 3D version that
created solids.

In order to switch between them, the authors commented a
couple lines of code and changed some variables as well. This
approach has several disadvantages, namely the need to modify
lines of code when it is necessary to change the type of model, and
having to comment and uncomment several lines of code when we
want to change from 2D to 3D. Both of these tasks are error prone,
since developers might forget to do some of them.

Listing 2 shows a simplified definition of both 2D and 3D versions
of the shop function, as well as the commented line of code corre-
spondent to the 2D version, having the 3D version activated in the
next line. The 2D version uses functions that generate 2D shapes,
such as rectangles and lines, and the 3D version uses functions that
generate solids.

Listing 2: Original version.
1 (define (shop-2d ...)
2 (...
3 (rectangle ...)
4 ...)
5 )
6
7 (define (shop-3d ...)
8 (...

9 (right-cuboid ...)
10 ...)
11 )
12
13 #;(define shop shop-2d)
14 (define shop shop-3d)

Our COP-based solution eliminates the aforementioned prob-
lems. By adding our library, we re-implemented parts of the algo-
rithm, namely the shop function. Since we have different imple-
mentations for the elements, such as walls, available in different
contexts, we do not require two versions of the same function, and
can implement just one. Listing 3 shows a simplified definition of
the COP version of the shop function, using the wall and door
functions of our library.

Listing 3: COP implementation of the shop function.
1 (define (shop ...)
2 (...
3 ((wall) ...)
4 ...
5 ((door) ((wall) ...)
6 ...)
7 ...)
8 )

To switch between contexts, we eliminated the commented lines
of code and introduced a with-layers construct, which receives
the layer corresponding to the model we want to produce, and the
expression that generates the entire shopping mall. For example,
the with-layers can receive a layer corresponding to the 3D view
and have a call to the mall function in its scope.

Since we wanted to produce a plan view and a 3D model, and
those correspond to layers that we support in the library, we could
generate both of them by introducing 3D or 2D as arguments of the
with-layers construct. The results can be seen in figures 1 and 2.

Figure 1: 3Dmodel of the shoppingmall, producedwithCOP
in AutoCAD.

In addition, since we support a layer that produces only surfaces
for analysis purposes, namely radiation analysis, we were able
to produce another model simply by changing the context. By
using analysis as argument for the with-layers construct, we
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Figure 2: 2Dmodel of the shoppingmall, producedwithCOP
in AutoCAD.

Figure 3: Model of the mall produced for analysis, in Auto-
CAD. All the walls were replaced with surfaces.

produced a model for analysis (visible in Figure 3) without any
changes to the algorithm.

With our solution, we were able to reduce the code that produces
the models and introduce a more flexible way to both change the
context and produce different views of the model. This did not
required any additional functions, except the with-layers con-
struct. In addition, by simply expanding the library and introducing
new contexts, our algorithms are capable of producing new models
without any changes, which would require additional code in the
traditional approach.

Finally, there is another advantage in using our proposed solu-
tion, in comparison to the approach used by the original developers.
In the original solution, one of the functions was chosen before
the execution of the program, using the same function for all the
generated elements, hence the same context. Changing the context
would require the developer to stop the execution and change the
code. On the other hand, with the COP version, layers are activated
and deactivated dynamically, meaning that different parts of the
program can be executed in different contexts. This feature offers
more flexibility to developers, allowing the production of more
complex models, where some elements can be represented in a
simplified form, and others can be represented with more detail.

This is useful in phases that only require further development of a
group of elements, not needing detail in the remaining elements.

4.1 Evaluation
As it was possible to see in the previous section, ContextScheme and
Racket allowed us to write context-dependent code that simplified
the application, allowing the production of several models for dif-
ferent contexts. However, the resulting code can still be improved,
making it easier to write, understand, and maintain.

For example, by examining listing 3, we can see an invocation of
the wall and door functions before passing the actual arguments.
This happens because ContextScheme uses higher-order functions
that return the appropriate function for each context. However, if
we chose ContextL instead, this would not be necessary, as the con-
textual functions can be used directly as normal functions, which
simplifies the code.

Another relevant dimension is the way we interact with the
contexts. In Ambience, context objects are implicit parameters and
global activation is an option. This type of activation would allow
us to activate the context and then write all the code we want to
execute, instead of including it inside the scope of a with-layers
construct. Nevertheless, this would require the user to deactivate
and activate contexts explicitly in the code, so it is not clear if this
option would simplify the experience of the user.

Finally, regarding performance, we have not yet done a compari-
son between the available COP implementations. However, due to
the overheads involved in the creation of the geometric models, the
impact of the COP implementation is negligible. For this reason,
when used just for the implementation of the modeling operations,
the COP implementation performance can be ignored.

5 CONCLUSIONS
Currently, algorithmic approaches are used in Architecture to create
complex models of buildings that would otherwise be impossible to
produce. Moreover, AD also simplifies and automates several tasks
that were error-prone and time-consuming, and allows an easier
exploration of variations. Nevertheless, when architects want to
use analysis tools, or simply produce different views of the same
model, they need additional algorithms, increasing the versions of
code to maintain.

In this paper, we explore the combination of AD with COP, a
paradigm that dynamically changes the behavior of the code de-
pending on the active context, which is implemented with layers.
There are several lines of research related to COP, which led to
multiple implementations for different programming languages,
namely ContextL, ContextJ, and ContextPy, among others, all of
which have different features and advantages.

In our solution, we took advantage of a COP library that uses
DSA, and a class-in-layer approach. All these features fit the needs
of AD problems, and the use of Racket simplifies the introduction
of COP in existing tools, such as Khepri.

To test our solution, we used our COP library in an existing AD
program that produced the model of a shopping mall for simula-
tion purposes. The program included multiple definitions of the
same function to produce different views of the model, which were
activated by commenting and uncommenting code. The program
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was re-implemented with COP, which eliminated the multiple defi-
nitions and the commented code. The use of our approach allowed
the production of the model for several different contexts without
additional changes in the program.

With this case study, we can conclude that COP can be combined
with AD and it can be useful when exploring different views of the
models, which require different behaviors from the same program.

6 FUTUREWORK
As future work, we will continue to expand our library with more
building elements. We will also introduce more contexts, giving
users more layers for the production of different kinds of models.

In addition, we will explore the combination of layers in order
to obtain more sophisticated results. One idea is to explore a LOD
layer in combination with the other layers, in order to produce
simpler models in an exploration phase, and more complex ones in
later stages of development.
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ABSTRACT
In Expressions of Changemodifications to programs replace text files
as the primary building blocks of software development. This novel
approach yields structured historic information at arbitrary levels
of program granularity across the programming toolchain. In this
paper the associated questions of Programming Language Design
are explored. We do so in the context of s-expressions, creating a
modification-based infrastructure for languages in the Lisp family.
We provide a framework for evaluation of the relative utility of
different formalizations of program construction, which consists
of the following: first, a requirement for completeness, meaning
that a formalization of program construction should allow for the
transformation of any valid program into any other. Second, a
preference for succinctness over verbosity; succinctness of both of
the formalization itself and typical expressions in the formalization.
Third, a measure of the ability to clearly express intent. Fourth, a
description of three ways in which the means of combination of the
program itself and those of its means of construction may interact.
Finally, we give a particular example of a formalization and use the
provided framework to establish its utility.
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1 INTRODUCTION
A large part of software development is concerned with modifying
existing software, often over long time spans[6]. The associated
need for historic record keeping is reflected in the popularity of
Version Control Systems. In the mainstream approach, however,
such systems are retrofitted rather than integrated: text remains
the primary building block of program construction and the main
interface shared across the tools in the development toolchain, such
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as editors and interpreters; the history is managed separately by
the VCS.

An alternative approach is to take the modifications themselves
as the primary building blocks. The set of allowed modifications to
program structure is formalized, and such modifications are taken
as the inputs and outputs by all tools in the programming toolchain.
In short: program modification is reified. Experiments with this
approach are bundled in a project called Expressions of Change.

We expect that the availability of well-structured historic infor-
mation across the toolchain will prove invaluable when facing the
typical challenges of program modification. As part of the project
we have developed a prototype of an editor and a programming lan-
guage, and early experiments with these indicate that the expected
advantages will indeed materialize.

Setting out to reify program modification, one is immediately
faced with the rather obvious question: what does reified program
modification look like? What is the language with which a program-
mer can express, to the computer and other programmers alike, how
a program can be constructed or modified?What are the expressions
of change?

In more general terms, the question is: given some formalization
of program structure, what should the accompanying formalization
for program construction be? This is a non-trivial question, as the
number of possible such formalizations is infinite, even for a single
formalization of program structure, and any practical experiment
with reified program modification must choose only a single one.
This choice is thus a matter of programming language design.

This paper explores that design space for the single formalization
of program structure of s-expressions. S-expressions make for a
good initial testbed for this exploration for a number of reasons:
the simplicity of their definition, the typical explicitness of their
structure when pretty-printed, and the fact that the choice for s-
expressions ensures some immediate relevance of any findings for
languages in the Lisp family.

The relevance of this exploration for the project Expressions
of Change, as well as projects which take a similar approach, is
self-evident. As far as we know, questions of design of program
modification have not been previously described, which is not
surprising as they are directly tied to the original approach of
reification of program modification itself. The contributions of this
paper are the following:

• We develop a framework of criteria for comparison of differ-
ent formalizations of program modification (section 3) and
provide an overview of practical considerations in the design
of such formalizations (section 4).
• We present a minimal formalization of programmodification
(section 5) and show that the chosen formalization ranks
reasonably well given the criteria (sections 6 and 7).
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2 THE DESIGN SPACE: S-EXPRESSIONS
In this paper we explore the question of design of formalizations
of program construction in the context of a single formalization of
program structure, namely that of s-expressions. An s-expression
is recursively defined here as either:
• an atom, which is a symbol or number1
• a list of 0 or more s-expressions2

S-expressions are typically represented textually by printing the
atoms as-is, and the lists between regular parentheses ( and ) with
white space separating the elements of the list. Thus, the following
is the textual representation of an s-expression:
(+ (* 6 9) 12)

2.1 Why s-expressions?
The choice for s-expressions as an object of study is motivated by a
number of reasons.

First, their absolute minimalism: s-expressions can be both fully
defined and illustrated with an example in some ten lines of text.
Such a minimalistic definition of program structure allows for max-
imum focus on the subject at hand: that of program construction.
Further, a minimal formalization of program structure is a prerequi-
site for a minimal formalization of program construction, because
each special case of the program structure needs to be somehow
accounted for. Smaller formalizations of program construction are
preferable over larger ones in general (see section 3.2). For a first
exploration of the design space, which this paper represents, this is
even more strongly the case.

Second, the mapping between the structure of s-expressions
and their visual representation is very direct. The more explicitly
the structure is laid out on screen, the easier it is to understand
modifications in terms of that structure. When modifications are
put central, that is an important property.

Finally, the choice for s-expressions is practical, because s-expres-
sions (or some extension thereof) form the basic syntax of many
languages in the Lisp family, making it possible to use artifacts
produced by Expressions of Change in the practical environment of
an actual programming language. It also ensures relevance of the
findings of the project for any existing languages in that family.

2.2 Intuitions for formalizations
Having formalized s-expressions, and thus program structure, we
are ready to discuss formalizations of program construction. We
start by developing an intuition, using a practical example of an
expression of program construction in plain English:

Given the example expression given in section 2.1, do the following
3 things sequentially:
• remove the atom + from the root expression.
• insert a new atom, hello-world, as the first child of the
root.

1There is no generally accepted single definition of what constitutes an s-expression.
Instead, definitions vary, with support for a variety of possible atoms such as text, sym-
bols, integers and floating point numbers. We restrict ourselves to printable symbols
and numbers here without loss of generality.
2Lists are typically implemented using (nested) pairs; however, in this paper we shall
make no assumptions about their implementation.

• remove the atom 6 from the sub-expression (* 6 9).

The above list of bullets, although it is useful to provide an intuition
for languages of program construction, is not sufficiently formal
for our purposes. In particular, one of the explicit goals for such a
language is that it can serve as an input for automated processes,
i.e. as a shared interface across the development toolchain.

What are the elements that we might expect in any such formal-
ization? Again, let’s develop the intuition first. In general, we can
at least expect:
• Support for a number of different kinds of modification, e.g.
adding, updating, removing, copying and moving structures.
• Each kind of modification will be associated with further
information that is specific to it, i.e. for deletions it is suffi-
cient to specify a location only; for insertions we must also
specify what must be inserted.
• Specific kinds of structure may be tied to specific mecha-
nisms of construction. In the case of s-expressions: the ways
we can modify atoms are not the same as the ways we can
modify lists.
• A formalization of the order (if any) in which the operations
must take place

Please note that the first two bullet points together form a good fit
with Algebraic Data Types[7]: the different kinds can be represented
using Sum Types, the different attributes using Product Types. We
will occasionally use this fact as a notational shorthand below,
independent of actual concerns of implementation.

Having established what we can expect in a formalization of
program construction, let us develop an intuition for the associated
design space, in which we need to make decisions such as:
• What kinds of modification should be supported? For exam-
ple, is “updating” a special kind of operation, or is it enough
to have access to a combination of adding and removing
items?
• What are the relevant attributes for each kind of modifica-
tion? For example, when deleting an item, what is the best
way to formalize what is to be deleted? Should multiple such
formalizations be catered for simultaneously?

Finally, let us establish the fact that this design space is infinite,
by noticing that neither the space of kinds of modification, nor
the set of relevant attributes has an upper bound. For example, to
any formalization of program construction we can always add a
kind of modification that inserts a particular s-expression. Since the
number of s-expressions is infinite, we can thus create an infinite
number of special kinds of modification.

2.3 Terminology and notation
Having established these intuitions, we shall introduce a minimal
amount of terminology and notational convention. This is neces-
sary because, in contrast to formalizations of program structure,
in which terms such as grammar, term and parser have been well
established, formalizations of program construction have not been
well studied, and hence such terminology is not yet available. In
choosing this terminology, we have taken inspiration from musical
notation, being a real-world example of instructions for ‘construc-
tion’ rather than ‘structure’. We introduce the following terms:
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• A clef denotes a particular formalization of program con-
struction. The analog in program structure is a grammar:
just like a grammar describes what valid program syntax is, a
clef describes what the valid means of construction are. The
analog in natural language is a vocabulary: the clef defines
the valid words. The musical metaphor is be understood as
follows: just like a musical clef provides semantics for the
notes in a score, a clef in program construction provides the
semantics for its notes.
• A note denotes a specific kind of operation of construction,
such as “adding”, “removing” or “copying”. Borrowing from
the terminology of implementation: if a clef is implemented
as anAlgebraic Data Type, a note corresponds to a single data
constructor. The respective analogs are: a term in a grammar,
a word in a vocabulary. The term note is overloaded to also
mean an instance of a note, with given values for all attributes,
e.g. “delete the 2nd child”.
• To play a note is to apply it to an existing structure, yielding
a new structure.
• A score denotes a list of notes. To play a score is to play each
note in turn, leading to the step-wise construction of some
structure.

In this paper, we shall use s-expressions as ameans of notation for
notes. In particular, each notewill be denoted using a list-expression,
where the first element denotes its kind (corresponding to a data
constructor in an ADT) and further elements denote the values of
the attributes. The notation for a score is a list-expression of notes.
Thus, the following denotes a score of 2 notes:
(

(delete 3)
(delete 5)

)

Please note that such a choice of notation poses no restrictions on
implementation whatsoever, and is not mandated in any way by the
fact that the structure under modification is itself an s-expression. It
does, however, come with the benefit of directly suggesting a means
of implementation in Lisps. An advantage of such an implementa-
tion is further that it enables self-applicability, i.e. the modification
of notes in our clef in terms of that same clef.

The semantics of a clef are given in terms of a case-analysis
on its notes. We use the imperative style, that is, a formulation in
terms of how a given s-expression must be modified to reflect the
playing of a particular note. If needed, an equivalent definition in
the functional programming paradigm can be trivially derived.

3 A FRAMEWORK OF CRITERIA
In the previous section we have provided an overview of the infin-
itely many possible forms a clef may take. We shall now turn our
attention to a comparison between these forms. The goal is to be
able to pick a single clef which is shared as a common interface by
tools in the programming toolchain3.

3In fact, there being only a single clef is not a hard requirement, and future versions
of the project may very well support a small set of somewhat related clefs, each one
being used in a different part of the toolchain. For the utility of having a framework of
evaluation of clefs this makes no difference: such a framework may then be used to
select which clefs this small set consists of.

Because different clefs are not equally useful in meaningfully
expressing program modification, choosing a particular one is a
matter of design. It stands to reason that we need some mechanism
of evaluation of the utility of clefs, such that we may compare the
utility of different approaches and choose the best one. In the below
we present one such mechanism, i.e. a number of criteria that may
be used for evaluation of clefs, as well as arguments pertaining to
why these particular criteria are useful.

In the construction of this framework, we have in some cases
taken inspiration from the evaluation of the relative utility of pro-
gramming language features more generally, that is, outside the
scope of programmodification.Where this is the case, wemake sure
to highlight the aspects that are specific to program construction
rather than structure.

3.1 Completeness
The first criterion for a successful clef is that it is complete. Given
an arbitrary present structure it should be possible to reach an
arbitrary desired structure in a finite number of steps. We relax
this requirement somewhat in the context of structures that are
defined in terms of sum types, stating that it is sufficient to be able
to reach any structure defined using the same data constructor.
That is, for s-expressions, it is enough to be able to construct any
list-expression out of any list-expression, and any atom out of any
atom. We assume the utility of this property to be self-evident.

3.2 Clef size
Second, with regards to the size of the clef’s definition we make
the observation that, all other things being equal, smaller is better.

First, the size of the clef is reflected in the cost of implementation
of the automated processes programs that use it as its interface
(editors, tools for program analysis, compilers). The larger this
language, the larger the implementation-cost across the toolchain.

Second, larger clefs impose larger costs on their human users.
In the approach of this project the notes from the clef form the
primary building block of program construction. It follows that
explicit exposure of the clef to the end-user, the programmer, is a
design goal. If we want the programmer to be able to meaningfully
interact with elements of the clef, they must understand these
elements. The larger the clef’s definition, the larger the mental
burden of understanding it poses on the programmer.

Finally, a larger clef increases the risk of a distinction without a
difference: that multiple equivalent mechanisms exist to construct
the same result, even in cases when there is no meaningful under-
lying reason for this. Such distinctions serve only to confuse, and
must be avoided.

The preference for small definition size is entirely analogous
with the same preference in programming language design proper.
However, it’s worth noting that, with respect to text based pro-
gramming languages, the clef introduces an additional layer of
complexity on tools and programmers alike. Thus, the pressure to
keep it small is increased.

3.3 Typical expressions’ size
A clef that allows for concise expression of typical modifications to
programs is to be preferred over one that does not. Please note that
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this is a separate concern from the one in the previous subsection,
analogously to the cases of both programming language design and
natural language, in which the size of the vocabulary is distinct
from the size of sentences formed with that vocabulary, and in
which the two are often inversely related.

In terms of automated tooling, larger expressions will typically
incur some cost on storage and performance. However, this cost is
expected to generally negligible and the size of typical expressions
has no implication on implementation cost, which is tied strictly
to definition size. The greatest cost of large expressions is thus in-
curred on the programmer, who will spend more time constructing,
reading and understanding such expressions.

One important thing to note in the above criterion is that it as-
sumes some knowledge of what “typical modifications to programs”
are. That is, to a large degree, an empirical question.

3.4 Preservation of intent
A fourth desirable quality in a clef is for it to allow for clear expres-
sion of programmer intent. Here, again we take inspiration from
the design of computer programs and programming languages, in
which clear communication of intent is a desirable quality[2, 4, 9].
In that context, the concept of programmer intent is more or less un-
derstood: it denotes what the programmer wants a particular part
of the program to achieve, and the mechanisms for them to commu-
nicate this intent with others. But what do we mean when talking
about programmer intent in the context of program construction?

We mean approximately the following: when a programmer
modifies the program, they typically do not do so at random, but
with the intent to achieve a particular desired result. More often
than not, this is achieved in a number of steps — whereby each step
has some meaning to the programmer. Such a step-wise approach
might even be reflected in a todo file or a piece of paper on which the
steps are crossed off one by one. Similarly, in a pair programming
session, one programmer may explain to another what they need to
do next in a number of steps. The more closely the expressions built
using a particular clef resemble lines in a todo file or utterances in
a pair programming session, the better they express original intent.

Why do we think this is important? A central hypothesis of
Expressions of Change is that, by having access to ubiquitous well-
structured historical information, programs can be more easily
understood. Such understanding is much easier to achieve if those
histories are expressed in ways that are close to the thought-process
of the original programmer.

As an example, consider the programmer goal of moving the
method get_widget() from class Foo to class Bar. A clef that al-
lows for expression of this goal using a single-note called “move”
reveals more about the original intent than one that expresses the
same modification using two separate and unrelated actions called
“insert” and “delete”.

A final piece of evidence for the importance of expression of
intent in the context of program modification is presented by the
currently accepted best practices in Version Control Systems, which
are in favor of expressing intent through both mechanisms. In
the language of Version Control: “One commit, one change” and
“Writing good commit messages”.

We make a distinction here between two different mechanisms
through which intent may be expressed. First, there is the greater
or lesser ability to express intent directly in terms of the notes of
the clef, as in the example above. Second, some clefs may allow
for expression of intent through informal comments in natural
language.

3.5 Means of combination
A final desirable quality in a clef is that it allows for meaningful
means of combination. Here, again, we take inspiration from the
evaluation of expressiveness of programming languages per se,
which may be approached using the question “What are the means
of combination?”[1, 10, p. 4]

The importance of this question is a direct consequence of human
nature. Human beings, including programmers, can typically hold
approximately 7 items in their mind in an active, readily available
state at any given time[11]. Thus large problems are approached by
dividing them into parts, and combining those parts, and programs
are no exception. Examples of such means of division and combi-
nation are modules, procedures, expressions, classes and methods. It
is in terms of such parts, and the way that they are combined, that
programs are understood.

The central hypothesis of Expressions of Change is that programs
may also be understood in their historical context. How do these
two mechanisms of creating understanding interact? How does the
concept of meaningful composition interact with clef-design? We
distinguish 3 questions, for 3 different kinds of interaction.

First, what are the means of combination within the clef itself?
Can its notes be meaningfully combined at all? Moreover, can the
results be used as the elements in further combinations? That is,
does this mechanism of combination form a closure, and thus the
ability to form arbitrarily structured hierarchical histories?

The second question we can ask of a clef is the following: does its
usage enable a meaningful relationship between the program com-
position and its history? As noted, programs are typically composed
of modules, classes, procedures etc. Is the historical information
available for each such part? If so, this enables the programmer
to get a historic view at any level of the program hierarchy, such
that they may get an answer to each of the questions “what’s the
history of my program?”, “what’s the history of this module?” and
“what’s the history of this expression?” equally.

Third, is there a meaningful relationship between the program’s
composition and the composition of the program’s history? Do
the histories of parts of the program relate to the histories of their
sub-parts? If they do, a programmer may arbitrarily switch between
2 modes while navigating: that of program structure (space) and
program history (time).

4 PRACTICALITIES OF DESIGN
Before introducing the clef proper, we present some further consid-
erations of clef design. These cannot not included in the framework
from the previous section, because the trade-offs associated with
any particular approach do not obviously point towards a particular
design. Nevertheless, they do represent design decisions and are
therefore relevant to discuss.
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4.1 Sum type structure
An s-expression, as defined in section 2, is precisely one of two
things: an atom or a list, i.e. it is defined as a sum-type. The fact that
the way we can modify each of these two things is different has
immediate consequences for an approach to structuredmodification.
For lists, for example, we can reasonably speak about the insertion
of an element, but for an atom such a modification is meaningless
because an atom has no elements4.

For a clef of s-expressions, the practical result is that some of its
notes will be playable exclusively on list-expressions, and others ex-
clusively on atoms5. To play such notes on a structure of the wrong
kind, e.g. to add a child to an atom, is not allowed by definition6.

4.2 Initial notes
As noted in section 2.3, notes are typically defined in terms of
modification of an existing s-expression. When a note is played as
the first note in the score, this raises the questionwhat the existing s-
expression to modify would be. We present three possible answers:
• We choose a particular single structure, such as the empty
list-expression (), as the initial structure as a matter of defi-
nition.
• We specify the initial structure explicitly as needed, i.e. when
playing a score; we keep track of what the initial structure
is in some location external to the score, i.e. as “metadata”
• We alter the definition of the semantics of notes slightly,
such that special semantics may be assigned in case they are
played as the initial note in a score. Further, we assign such
special semantics to one or more notes in the clef. That is,
the initial structure is defined to be some special sentinel
value denoting nothingness, and one or more notes are de-
fined to be construct a particular s-expression out of such
nothingness.

All of these approaches have some drawbacks: the first elevates
one particular kind of structure over the others by making it the
initial one, even if no natural order exists. This lack of natural or-
der applies to s-expressions: it isn’t quite clear whether we should
consider list-expressions or atoms to be the most natural initial
s-expression. In the second approach, the task of identifying the
initial structure is pushed out of the score, but we must still keep
track of it somehow. In practice, this means we need to associate
this information with all children-creating notes, i.e. push the in-
formation “one level up”. In some sense this moves the problem
elsewhere rather than solving it. The third approach introduces a
degree of asymmetry in the clef: some notes, but not all, may be
used as the initial note.

For clefs of s-expressions in particular, the drawbacks of the
third approach seem to be most limited, hence we have chosen it.
4We take the indivisibility of atoms to be their defining property by definition (from
Greek – the prefix “a” meaning not and the word “tomos” to cut). The fact that an atom
may be represented as a string of textual characters is, in this view, an implementation
detail that is encapsulated.
5This conclusion does not generalize to clefs for any structure which happens to be
defined as a sum-type: if various kinds of structure are similar in the way they can be
modified a single note may be applicable to more than a single kind of structure.
6This is not to say that any note for list-expressions is playable on any list-expression,
as the set of playable notes may be constrained by properties of the list-expression its
played on. For example: removal of the 3rd element of a list is only possible if the list
has such an element.

In the chosen approach we introduce one or more special notes for
structure-creation, which leads to a final question of clef-design:
should playing such notes as anything but the initial note be an
error, or should it have the effect of transforming whatever previous
structure there was into the initial structure of the designated kind?
We have chosen to disallow such midway reinitializations, judging
that there cannot be a meaningful historical connection between
an atom and a list-expression. Again, this decision may or may not
generalize to other types of structures than s-expressions.

5 A MINIMAL CLEF
In this section, we present a minimal clef for s-expressions. As
noted in section 2.3, we use the imperative style for a description
of the semantics. For each item, any expectations about the previ-
ous s-expression are noted first. Any non-defined behavior such
as playing a note on the wrong kind of s-expression, playing an
initial note non-initially and vice versa is considered disallowed by
definition.
• (become-atom ⟨atom⟩) — initial note only — constructs the
given atom out of nothing.
• (set-atom ⟨atom⟩) — playable on atoms — modifies the
atom into the given atom.
• (become-list) — initial note only — constructs an empty
list expression out of nothing.
• (insert ⟨index⟩ ⟨score⟩) — playable on list-expressions —
constructs a new s-expression by playing all notes in the
given score in order, and inserts this newly constructed s-
expression as a new child element at the provided index7.
• (delete ⟨index⟩) — playable on list-expressions — deletes
the element at the index.
• (extend ⟨index⟩ ⟨score⟩) — playable on list-expressions —
constructs a new s-expression by playing the score, using
the child currently at the provided index as an initial s-
expression, and replacing the child with the result.
• (chord ⟨score⟩) — playability depending on the first note of
the provided score — plays the provided score sequentially.

5.1 Example usage
Consider the following score:
(

(become-list)
(insert 0 (

(become-list)
(insert 0 ((become-atom *)))
(insert 1 ((become-atom 6)))

))
(insert 0 ((become-atom +)))
(insert 2 ((become-atom 12)))
(extend 1 (

(insert 2 ((become-atom 9)))
))

)

The stepwise construction of an s-expression according to this score
is summarized in the table below.
7Indices are, of course, 0-based[3].
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lines note result
2 (become-list) ()
3 - 7 (insert 0 (... * ... 6 ...)) ((* 6))
8 (insert 0 ((become-atom +))) (+ (* 6))
9 (insert 2 ((become-atom 12))) (+ (* 6) 12)
10 - 12 (extend 1 (... 9 ...)) (+ (* 6 9) 12)

5.2 Chords
Chords may be used to hierarchically structure a score, as in the
example below. Please note that grouping notes by means of chords
does not alter the semantics of construction; as such, the below
example may be flattened into a single score without altering what
s-expression would be constructed as a result.
(

(become-list)
(chord (

(insert 0 ((become-atom +)))
(insert 1 ((become-atom 3)))
(chord (

(insert 2 ((become-atom 8)))
(insert 3 ((become-atom 4)))

))
))

)

6 EVALUATION OF UTILITY
In this section we examine the provided clef in terms of the first
four means of evaluation of the framework; that is in terms of
completeness (3.1), clef size (3.2), succinctness of expression (3.3)
and means of expression of intent (3.4).

We first note that the clef is complete, i.e. it may be used to
construct arbitrary list-expressions from arbitrary list-expressions
(although, because reinitializations have been disallowed as per
section 4.2, it is not the case that arbitrary atoms can be created from
arbitrary list-expressions and vice versa). A trivial, albeit inefficient,
mechanism to do so is: first, construct the empty list-expression
from the given list-expression by deleting the first element until no
more child-elements exist. Then, from the empty list-expression,
construct the desired list-expression by, for each child, creating
the score that constructs it recursively, and inserting it. Arbitrary
atoms can be created trivially by the clef’s definition.

Regarding the size of the presented clef, we note that at present
no alternative exists, which is to say that a quantitative comparison
is hard to make. We thus content ourselves with the observations of
some basic facts: the clef has a total of seven notes. Two of these are
specific to atoms, four to list-expressions and one is a generic means
of combination. With respect to the number of types of expressions
(atoms and lists), this represents a factor 3.5. In any case, seven is
by no means the minimal amount, which is one8. We must point
out though, that such a reduction of clef-size comes at considerable
cost in terms of the other criteria of evaluation.

The following two criteria, namely whether the clef can be
used for succinct expression of typical program modification, and
8The clef with the single note become, which takes an s-expression and changes the
entire s-expression under consideration into the given s-expression is an example of
such a 1-note clef.

whether it allows for clear expression of programmer intent are
discussed together below. As noted, those criteria imply further
questions which can only be answered empirically: what is the
nature of typical program modification, and what is the kind of in-
tent that a programmer typically wants to reveal? To answer these
questions, we have implemented, as part of the project “Expressions
of Change”, a prototype of an editor that implements the given clef.
Informal experiments indicate that the presented clef scores quite
well.

In addition to this empirical observationwith an actual prototype,
we make some observations about the general nature of editing.
The most basic ways to interact with any kind of data, are to add,
update and delete9. The presented clef provides direct support for
all of these; that is: an edit-session comprising of such actions alone
can be expressed succinctly, and without loss of intent. However,
these are by no means the only operations available in typical (text)
editors. We mention a few:

• moving pieces of text around
• copy-pasting
• search and replace
• advanced code refactoring

For such operations, no direct counterparts are available in the
clef. However, annotated chords may be used to preserve, to some
degree, expression of intent. For example, a move might be ex-
pressed as a single chord that deletes a sub-expression in one place,
and inserts the score representing the moved sub-expression’s
method of construction elsewhere.

7 MEANS OF COMBINATION
Finally, we turn our attention to the means of combination. In
section 3.5, we distinguished 3 questions about the interaction
between means of combination of structure and construction. Here
we shall evaluate the presented clef in terms of those 3 questions.

7.1 Combining notes with chords
First, what are the means of combination within the clef itself? The
most straightforward combination is to take a linear sequence of
changes. Such a sequence is part of our definition; we’ve called this
a score.

A more profound means of combination is provided by the note
chord: it combines multiple notes, in the form of a score, into a
single note. Thus, it can be used to form arbitrarily structured
hierarchical histories.

The practical use of this ability is to structure a stream of changes
into time-wise “chapters” and “sub chapters” for the human reader,
i.e. to express intent. For example, the introduction of a new fea-
ture may require the refactoring of a certain part of the program,
which is in turn an operation that consists of a number of further
restructurings. Chords allow for a programmer to express precisely
such a hierarchical structuring of history.

9 Reflected, for example, in the acronym CRUD[8]. (Please note that the R in that
acronym, for Read, is not a data-altering operation and has therefore no relevance to a
clef).
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7.2 Combining structure and construction
Postponing the discussion of the second question for a moment, we
turn our attention to the third: is there a meaningful relationship
between the program’s composition and the composition of the
program’s history?

Please note that the means of combination for the program struc-
ture under consideration, s-expressions, are list-expressions: list-
expressions combine s-expressions into new s-expressions. As an
instance of this, consider the s-expression constructed in section
5.1. It is a list-expression consisting of the further s-expressions +,
(* 6 9) and 12.

As we have seen in the previous section, the most basic mecha-
nism for composition of program construction is the score. In the
presented clef scores show up as an attribute to the 3 notes insert,
extend and chord.

What, then, is the relationship between the scores of list-expressions,
and the scores of the s-expressions that they are composed of? In
terms of the provided example: what is the relationship between the
score for the construction of (+ (* 6 9) 12) and the respective
scores for the construction of its parts? In particular: can the listing
in section 5.1, which corresponds to the score of the expression
as a whole, be used to reconstruct the scores for that expression’s
sub-expressions, such as (* 6 9)?

Indeed it can be. The key observation is that all mechanisms that
affect sub-expressions, namely insert and extend, are expressed in
terms of a score that describes modifications to the sub-expression.
In general, the process for extracting a lower-level score is to ex-
tract the relevant scores from the higher level expressions and
concatenate them.

For the atoms + and 12, the result is somewhat trivial: their his-
tories consist solely of those atoms coming into being. The history
of the list-expression (* 6 9) is more interesting; it can be con-
structed by concatenating the scores as found on lines 4 – 6 and 11,
resulting in the following score10:
(

(become-list)
(insert 0 ((become-atom *)))
(insert 1 ((become-atom 6)))
(insert 2 ((become-atom 9)))

)

This is precisely what we were looking for: a meaningful rela-
tionship between the program’s composition and the composition
of the program’s history.

Incidentally, this relationship also implies a positive answer to
the second question: it enables the programmer to get a historic
view at any level of the program hierarchy. Thus, our ratherminimal
clef has meaningful composition on all 3 levels.

8 FUTUREWORK
The central hypothesis of Expressions of Change is that structured
historic information at arbitrary levels of program granularity is
10 The fact that the notes (insert 0 ...) and (extend 1 ...) are indeed modifying the same
sub-expression might not be immediately apparent because the indices differ. This
shift in indices is caused by an intermediate insertion at index 0 on line line 8. In the
UI of practical applications, the connection between such apparently unrelated notes
may be clarified by using some unique and unchanging identifier, such as the order of
creation of a child.

extremely useful in the software development practice. As part
of the project we have built a prototype of an editor and a small
interpreter of a subset of Scheme. Experiments with this editor
in an informal setting confirm the practical applicability of the
findings in this paper. However, to substantiate the central claim,
much work remains to be done. In this work, we may distinguish
between production and consumption of the clef. That is, first
further experimentation with the editor to ensure a fluent editing
experience, and second, experimentation with the utilization of this
structured information in the rest of the toolchain. An example of
the latter is to approach various forms of static analysis from the
perspective of program construction, that is: incrementally.

In this paper we have explored formalization of program con-
struction for a single particular formalization of program struc-
ture, namely that of s-expressions. Whether it is possible to define
clefs of practical utility for arbitrarily complex formalizations of
program structure is an open question, although there are some
reasons to believe that it isn’t. In particular, the arguments in favor
of s-expressions as an object of study, presented in section 2.1, do
not generally extend to arbitrary definitions of program structure.
Our conclusion is that future languages should be designed with
structured modification in mind.

In the prototype of the editor, user actions correspond directly to
notes in the clef, and its output is a score representing the actual edit-
session. However, programming is to some degree an exploratory
activity and an actual edit-session may contain many dead ends. A
log including all those dead ends is not the clearest possible way to
communicate intent. Thus, there is likely a need for an extra step,
that is analogous with a commit in a VCS, in which some of reality’s
details are hidden in the interest of clarity. We imagine that various
automated tools will be usefull in this step, e.g. to automatically
detect such dead ends and prune them as required.

The properties of formalizations of program construction in the
context of a collaborative programming effort have not yet been
researched. Briefly, we can say the following: one key question
when collaborating is how the diverging work of multiple program-
mers can be joined together with some degree of automation (that
is: “merging”). With respect to the mainstream approach, Version
Control of text files, our approach creates both advantages and
challenges. On the one hand, the availability of fine-grained well-
structured information makes automated merges easier, and error
messages more precise. On the other hand, the introduction of a his-
torical dimension raises new questions, because merging needs to
take place on the level of program construction as well as program
structure.

9 RELATEDWORK
The approach to program construction presented in this paper
presupposes a structured approach to program editing. Examples of
recent projects that take this approach are Lamdu and Unison, both
with a program syntax inspired by Haskell and a strong focus on
static typing, andCirru, which is a structured editor of s-expressions.
Program construction, however, has not been given a central role
in those projects. To our knowledge, the only other project which
has an explicitly defined semantics of program construction is
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Hazelnut[13], a project that focusses on the interaction between
program construction and static typing.

Mechanisms of recording program history are wide-spread in
mainstream software development, most notably in the form of
Version Control Systems. However, such systems typically operate
on unstructured text. A more structured approach to diffing is taken
by Miraldo et. al.[12]. Our approach differs because it puts program
modification central in the design, rather than trying to extract
information about program modification after the fact.

Finally, and most generally, some ideas analog to those presented
in this paper are captured in the design pattern of Event Sourcing,
described by Martin Fowler[5]. In that pattern, the idea is to capture
all changes to an application state as a sequence of events. That
is, the pattern captures the idea of construction-over-structure
in the domain of Enterprise Application Architecture rather than
programming.

10 CONCLUSIONS
Following from the observation that computer programs will be
changed, and that managing those changes themselves forms a
large part of a computer programmer’s work, Expressions of Change
presents a novel approach: to put the modifications themselves
central in the programming experience.

The results of the first step in that approach have been presented
in this paper: how to approach the design of the formalization of
programming construction? We have shown that important goals
in such design are: to enable intent-revealing primitives and suc-
cinct expression, while keeping a minimal footprint. Further, we
have shown various possible levels of combination, both within the
formalization of program construction and in its interaction with
program structure.

Finally, we have shown a particular formalization of program
construction for s-expressions, and how this minimal mechanism
allows for expression of programmer intent, and all 3 levels of
possible means of combination.
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ABSTRACT
Inlining is an important optimization technique in any modern
compiler, though the description of this technique in the literature is
informal and vague. We describe a technique for inlining, designed
to work on a flow graph of instructions of intermediate code.

Our technique uses local graph rewriting, making the semantic
correctness of this technique obvious. In addition, we prove that
the algorithm terminates.

As a direct result of the preservation of the semantics of the
program after each local rewriting step, the algorithm can stop after
any iteration, resulting in a partial inlining of the called function.
Such partial inlining can be advantageous in order to avoid the
inlining of code that is not performance critical, in particular for
creating arguments and calls to error-signaling functions.
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1 INTRODUCTION
Inlining represents an important optimization technique in any
modern compiler. It avoids the overhead of a full function call, and
it allows further optimization in the calling function in the form of
type inference, loop optimizations, and more.

While the advantages of inlining are well known and well docu-
mented, inlining also entails some disadvantages. It increases the
size of the code, with a possible negative impact on processor cache
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performance. It also increases pressure on register allocation, pos-
sibly making it necessary to spill registers to the stack more often.
Most importantly, though, as Ayers et al. point out [1, 2], since
many optimization algorithms do not have linear-time complexity
in the size of the code, inlining can have a serious impact on the
execution time of the compiler.

Some authors distinguish between procedure integration and
inline expansion [7]. Both techniques are often referred to with
the abbreviated form inlining. Our use of inlining corresponds to
procedure integration.

Most literature sources define inlining as “replacing a call to a
function with a copy of the body of the called function” (see e.g.,
[3, 4, 8]). This definition suggests that inlining is an all-or-nothing
transformation. In this paper, we present a technique that allows
for partial inlining. More precisely, it allows for a prefix of the
callee to be copied into the caller. We obtain this property by using
local graph rewriting at the level of instructions in intermediate
code. A single instruction is inlined in each step, preserving the
overall semantics of the program, and thereby allowing us to stop
the process at any time.

The traditional definition of inlining is too vague for our purpose.
It suggests that the sole purpose of inlining is to avoid overhead
in the function-call protocol. However, on modern processors, this
overhead is insignificant. For the purpose of this paper, we would
also like to avoid the creation of a local environment that would
normally be necessary for each invocation of the callee. This addi-
tional requirement poses additional restrictions as to when inlining
is appropriate.

In this paper, we discuss only the inlining technique itself. We
do not consider the policy to determine when it is advantageous
to perform the technique, and, although our technique allows for
partial inlining, we also do not consider the policy of when inlining
should stop.

2 PREVIOUS WORK
Before inlining was applied to so-called “structured programming
languages”, the technique was applied to languages such as For-
tran, that do not allow recursion, and therefore do not need for
subroutines to allocate their own environments upon entry. And
it was then referred to as “open-coding of subroutines”. Scheifler
[8] is probably one of the first to apply inlining to more modern
programming languages. The language used by Scheifler is CLU
[6].

Ayers et al [1] consider the benefit of inlining consisting of the
elimination of the overhead of a procedure call to be a “side benefit”,
and we agree. They cite the main benefit as the opportunity for
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more optimizing code transformations when the code of the called
function is exposed in the context of the calling function.

In their paper, they also mention cloning as an alternative to
inlining, i.e., the duplication and specialization of the called func-
tion according to the context of the calling function. However, they
consider inlining to be strictly superior to cloning in terms of the
possible additional optimizations made possible, so they recom-
mend cloning only as a means to avoid too large an increase in
the code size, which could slow down subsequent non-linear opti-
mizations. Cloning, and especially the specialization of the cloned
code in the context of the caller, is one technique used in partial
evaluation [5]. Inlining, however, whether total or partial, is not
a technique of partial evaluation. Inlining may of course enable
such techniques by exposing the code of the called function in the
context of the caller.

Most existing work is concerned with determining when inlin-
ing is to be performed, based on some analysis of the benefits as
compared to the penalties in terms of increased compilation time
in subsequent optimization passes. The inlining technique itself
is considered trivial, or in the words of Chang and Hwu ([3, 4])
“The work required to duplicate the callee is trivial”. Inlining might
be trivial in the context of purely function programming, in that
it suffices to replace occurrences of local variables in the called
function by the argument expressions in the function call. However,
for a language such as Common Lisp that allows for assignments to
lexical variables, inlining can be non-trivial. Consider the following
example:

(defun f (x y) (setq x y))

(defun g (a) (f a 3) a)

If simple renaming is applied, we obtain the following codewhich
does not preserve the semantics of the original code:

(defun g (a) (setq a 3) a)

The use of continuation-passing style for compiling Common Lisp
programs often requires a priori elimination of side effects by con-
fiding these side effects to updates on cells. Such a conversion
transforms the program so that it respects a purely functional style,
making inlining trivial as indicated above. However, such a conver-
sion has a significant impact on program performance, especially in
the context of modern processors, where memory access are orders
of magnitude more expensive than register operations.

Because of issues such as this one, this paper discusses only a
technique for inlining in the context of arbitrary Common Lisp
code that might contain such side effects. It does not discuss the
more complex issue of determining a strategy for when inlining
should or should not be applied.

Although the paper by Ayers et al explains that their technique
is applied to intermediate code, just like the technique that we
present in this paper, their paper contains little information about
the details of their technique.

3 OUR TECHNIQUE
The work described in this paper is part of the Cleavir compiler
framework. Cleavir is currently part of the SICL project1, but we
may turn it into an independent project in the future.

In our compiler, source code is first converted to an abstract syn-
tax tree. In such a tree, lexical variables and lexical function names
have been converted to unique objects. When a globally defined
function F is inlined into another function G, we incorporate the
abstract syntax tree of F as if it were a local function in G. No
alpha renaming is required. Notice that this step in itself does not
count as inlining. The function F is still invoked using the normal
function-call protocol at this stage.

In the second phase, the abstract syntax tree is translated to
intermediate code in the form of a flow graph of instructions. Our
inlining technique is designed to work on this intermediate repre-
sentation.

There are several advantages of using this intermediate repre-
sentation over higher-level ones such as source code or abstract
syntax trees, as we will show in greater detail below, namely:
• Each iteration of the algorithm defined by our technique is
very simple, and we can be shown to preserve the semantics
of the program.
• Because each iteration preserves the semantics, the process
can be interrupted at any point in time, resulting in a partial
inlining of the called function.

Furthermore, this intermediate code representation is similar to
the one used in many traditional compiler optimization techniques,
making it possible to reuse code for similar transformations.

One potential drawback of this representation is that operations
on programs represented this way are inherently imperative, i.e.
they modify the structure of the flow graph. The use of techniques
from functional programming is therefore difficult or impractical
with this representation. Moreover, the flow graph resulting from
some arbitrary number of iterations of our technique does not
necessarily have any correspondence as Common Lisp source code.

3.1 Intermediate code
The intermediate code on which our technique is designed to work
is called High-level Intermediate Representation, or HIR for short.
This representation takes the form of a flow graph of instructions
as used by many traditional compiler optimization techniques. The
main difference between HIR and the intermediate representation
used in compilers for lower-level languages is that in HIR, the only
data objects that the instructions manipulate are Common Lisp
objects. Arbitrary computations on addresses are exposed in a later
stage called Medium-level Intermediate Representation, or MIR.

Most HIR instructions correspond directly to Common Lisp oper-
ators such as the ones in the categories described below. Notice that,
although the names of the instructions often resemble the names
of Common Lisp operators, the instruction typically requires more
precise objects than the corresponding Common Lisp operator does.
Thus, the car instruction requires the argument to be a cons ob-
ject, and the funcall instruction requires its first argument to be a
function. The following such categories exist:

1https://github.com/robert-strandh/SICL
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• Low-level accessors such as car, cdr, rplaca, rplacd, aref,
aset, slot-read, and slot-write.
• Instructions for low-level arithmetic on, and comparison of,
floating-point numbers and fixnums.
• Instructions for testing the type of an object.
• Instructions such as funcall, return, and unwind for han-
dling function calls and returns.

Two of the HIR instructions are special in that they do not have
direct corresponding Common Lisp operators, and in that they are
essential to the inlining machinery described in this paper:
• The enter instruction. This instruction is the first one to
be executed in a function, and it is responsible for creating
the initial local lexical environment of the function from
the arguments given by the calling function. This initial
environment is typically augmented by temporary lexical
variables during the execution of the function. Variables may
also be eliminated from the local environment when they
are no longer accessible by any execution path.
• The enclose instruction. This instruction takes the code of
a nested function (represented by its enter instruction) and
creates a callable function that may be a closure.

3.2 Algorithm
The algorithm that implements our technique maintains a worklist.
An item2 of the worklist contains:
• A funcall instruction, representing the call site in the call-
ing function.
• An enter instruction, representing the called function.
• The successor instruction of the enter instruction, called the
target instruction, or target for short. The target instruction
is the one that is a candidate for inlining, and it is used for
generic dispatch.
• A mapping from lexical variables in the called function that
have already been duplicated in the calling function.

In addition to the contents of the worklist items, our algorithm
maintains the following global information, independent of any
worklist item:
• Amapping from instructions in the called function that have
already been inlined, to the corresponding instructions in the
calling function. This information prevents an instruction
from being inlined more than once. Without this informa-
tion, and in the presence of loops in the called function, our
inlining algorithm would go into an infinite computation.
• Information about the ownership of lexical variables referred
to by the called function. This ownership information in-
dicates whether a lexical variable is created by the called
function itself, or by some enclosing function. When an in-
struction to be inlined refers to a variable that is created by
some enclosing function, the reference is maintained with-
out modification. When the reference is to a variable created
by the function itself, the inlined instruction must refer to
the corresponding variable in the calling function instead.

2In the code, an item also contains an enclose instruction, but we omit this instruction
from our description, in order to simplify it.

Prior to algorithm execution, assignment instructions are in-
serted before the funcall instruction, copying each argument to a
temporary lexical variable. These lexical variables represent a copy
of the initial environment of the called function, but allocated in
the calling function. The pair consisting of the funcall and the
enter instruction can be seen as transferring this environment
from the calling function to the called function. The variable corre-
spondences form the initial lexical variable mapping to be used in
the algorithm.

Initially, the worklist contains a single worklist item with the
following contents:

• The funcall instruction representing the call that should
be inlined.
• A private copy of the initial enter instruction of the function
to inline.
• The successor instruction of the initial enter instruction,
which is the initial target.
• The initial lexical variable mapping described previously.

In each iteration of the algorithm, a worklist item is removed
from the worklist, and a generic function is called with four argu-
ments, representing the contents of the worklist item. Each iteration
may result in zero, one, or two new worklist items, according to
the mappings and ownership information, and according to the
number of successors of the target instruction in this contents.

When the generic function is called in each iteration, one of the
following four rules applies. As we show in Section 3.4, each of the
following rules preserves the overall operational semantics of the
code:

(1) If the target instruction has already been inlined, i.e. it is
in the mapping containing this information as described
previously, then replace the funcall instruction by the in-
lined version of the target. There are two ways of doing
this replacement. Either the predecessors of the funcall
instruction are redirected to the inlined version of the tar-
get instruction, effectively making the funcall instruction
unreachable, or else, the funcall instruction is replaced by
a no-operation instruction with the inlined version of the
target instruction as its successor. When this rule applies, no
new item is added to the worklist.

(2) If the target instruction is a return instruction, then replace
the funcall instruction by one or more assignment instruc-
tions mapping inputs of the funcall instruction to outputs
of that same instruction. Again, in this case, no new item is
added to the worklist.

(3) If the target instruction has a single successor, insert a copy
of the next instruction before the funcall instruction, and
make the enter instruction refer to that successor. Update
the mappings, the inputs of the funcall instruction, and
the outputs of the enter instruction as described below. In
this case, the funcall instruction, the enter instruction,
the new successor of the enter instruction, and the updated
lexical variable mapping are inserted as a new item on the
worklist for later processing.

(4) If the target instruction has two successors, insert a copy of
the target instruction before the funcall instruction, and
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replicate the funcall instruction in each branch. Also repli-
cate the enter instruction so that each replica refers to a
different successor of the original instruction. Update the
mappings, the inputs of the funcall instruction, and the
outputs of the enter instruction as described below. In this
case, two new items are inserted on the worklist for later pro-
cessing. Each item contains a funcall instruction, an enter
instruction, the successor of the enter instruction, and a
lexical variable mapping, corresponding to each successor
branch of the inlined instruction.

For rules 3 and 4, when a new instruction is inlined, themappings,
the inputs to the funcall instruction, and the outputs of the enter
instruction are updated as follows:
• An entry is created in the mapping from instructions in
the called function to instructions in the calling function,
containing the inlined instruction and its copy in the calling
function.
• If some input i to the inlined instruction is present in the
lexical variable mapping (mapping to (say) ii in the calling
function) and in the outputs of the enter instruction, but i
is no longer live after the inlined instruction, then the entry
ii - i is eliminated from the mapping, i is eliminated
from the outputs of the enter instruction, and ii is elimi-
nated from the inputs to the funcall instruction. It would
be semantically harmless to leave it intact, but it might harm
performance if the inlining procedure is stopped when it
is still partial. Notice that, when an instruction with two
successors is inlined, variable liveness may be different in
the two successor branches.
• If some output o of the inlined instruction is a new variable
that is created by that instruction, thenwe proceed as follows.
Let I be the instruction in the called function that has been
inlined, and let II be the copy of I in the calling function.
We create a new variable oo in the calling function that takes
the place of o in II. We add oo as an input to the funcall
instruction, o as an output of the enter instruction, and we
add oo - o to the lexical variable mapping. Again, if the
inlined instruction has two successors, the lexical variable
mapping may have to be updated for one or the other or
both of the successors.

3.3 Example
As an example of our technique, consider the initial instruction
graph in Figure 1. On the left is the calling function. It has three
lexical variables, namely x, a, and y. The variable a is referenced
by the called function, but it is owned by the calling function. The
called function has a single variable named z in its initial lexical
environment. A temporary variable w is created as a result of the
execution of one of the instructions in the called function.

Before the inlining procedure is started, we create temporary
variables in the calling function for the variables in the initial en-
vironment of the called function. We also create a private copy of
the enter instruction so that we can mutate it during the inlining
procedure. The result is shown in Figure 2.

As we can see in Figure 2, an assignment instruction has been
created that copies the value of the lexical variable x into a variable

enter

return

z

w

1

2

x a

funcall

y

Figure 1: Initial instruction graph.

enter

worklist

funcallA enterA 1 zz − z
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y
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funcallA

return

z

w

1

2

enterA

Figure 2: Instruction graph after initialization.

zz that mirrors the initial lexical variable z in the called function.
We also see that there are now two identical enter instructions.
The one labeled enterA is the private copy.

Step one of the inlining procedure consists of inlining the succes-
sor of our private enter instruction, i.e. the instruction labeled 1 in
Figure 2. That instruction has a single successor, and it has not yet
been inlined. Therefore, rule 3 applies, so we insert a copy of that
instruction before the funcall instruction. Furthermore, since the
input to the original instruction is the lexical variable z, and that
variable is mapped to zz in the calling function, the inlined instruc-
tion receives zz as its input. The output of the original instruction is
the temporary variable w that is not in our lexical variable mapping.
Therefore, a temporary variable ww is created in the calling function,
and an entry is created in the mapping that translates w to ww. The
private enter instruction (labeled enterA) is modified so that it
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Figure 3: Instruction graph after one inlining step.
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Figure 4: Instruction graph after two inlining steps.

now refers to the next instruction to be considered as a target. The
result of this step is shown in Figure 3.

In step two of the inlining procedure, we are considering inlining
an instruction with two successors, i.e. the one labeled 2 in Figure 3.
It has not yet been inlined, so rule number 4 applies. As rule number
4 stipulates, we must replicate both the enter instruction and the
funcall instruction. The result is shown in Figure 4.

In Figure 4, the funcall instruction labeled funcallA is paired
with the enter instruction labeled enterA and the funcall instruc-
tion labeled funcallB is paired with the enter instruction labeled
enterB.

In step three of the inlining procedure, we consider the funcall
instruction labeled funcallB. The corresponding enter instruc-
tion has a return instruction as its successor, so rule number 2
applies. We must therefore replace the funcall instruction by an
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Figure 5: Instruction graph after three inlining steps.
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Figure 6: Instruction graph after four inlining steps.

assignment instruction, assigning the value of the variable ww to
the variable y. The result of this operation is shown in Figure 5.

In step four of the inlining procedure, we consider the funcall
instruction labeled funcallA in Figure 5 and the corresponding
enter instruction. The successor of the enter instruction is the
instruction labeled 1, and that instruction has already been inlined,
so rule number 1 applies. We therefore remove the funcall and
redirect its predecessors to the inlined version of the instruction
labeled 1. The result is shown in Figure 6, and that completes the
inlining procedure.

After some minor reorganization of the instructions in Figure 6,
we obtain the final result shown in Figure 7. Clearly we have an
inlined version of the called function now replicated in the calling
function.
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Figure 7: Final instruction graph.

3.4 Correctness of our technique
In order to prove total correctness of our technique, we must show
that two conditions hold:

(1) Partial correctness, i.e. the technique must preserve the se-
mantics of the program.

(2) Termination.

3.4.1 Partial correctness. Our technique preserves a very strong
version of the semantics of the program, namely the operational
semantics. This fact makes it unnecessary to create a precise defi-
nition of the program semantics, as might have been the case for
some weaker type of semantics. Instead, we only need to show
that the exact same operations are performed before and after each
inlining step.

After a copy of the initial environment of the called function has
been made in the environment of the calling function, we can see
a pair of funcall/enter instructions as defining a morphism σ ,
mapping the copy of this environment in the calling function to its
original version in the called function. The inputs of the funcall
instruction are mapped to the outputs of the enter instruction. The
lexical variable mapping used in our technique is simply the in-
verse, i.eσ−1 of this morphism. Similarly, a pair of return/funcall
instructions can be seen as defining a morphism τ , mapping the
environment in the called function to the environment in the call-
ing function. The inputs of the return instruction are mapped
to the outputs of the funcall instruction. These morphisms are
illustrated in an example of an initial situation in Figure 8.

Applying rule 3 or rule 4 copies one instruction from the called
function to the calling function, applying the morphism σ−1 to
its inputs and outputs. Two applications of rule 3 from the initial
situation are illustrated in Figure 9 and Figure 10. Applying rule 4
is a bit more involved, but the same mechanism is used. As we can
see from these figures, thanks to the morphism, the instructions
operate the same way whether inlined or not. The semantics are
thus the same in both cases.

When rule 2 is applied, the return instruction is not copied.
Instead, a number of assignment instructions are created in the

calling function. Together, these assignment instructions define the
composition of the two morphisms τ and σ , i.e. τ ◦σ . Applying this
rule therefore does not alter the semantics of the program. It merely
maps the returned values to their copies in the calling function.
Applying this rule is illustrated in Figure 11.

Finally, applying rule 1 merely avoids the control transfer from
the calling function to the called function, by replacing the funcall
instruction by an existing copy of the instruction that would have
been inlined by rule 3 or rule 4. The existing copy obviously already
operates in the environment of the calling function.

3.4.2 Termination. In order to prove termination, we invent a
metric with the following properties:
• It has a lower bound on its value.
• Its value decreases with each iteration of our inlining proce-
dure.

The metric we have chosen for this purpose is called remaining
work, and it is represented as a pair r = (I , F ) where I is the number
of instructions that have yet to be inlined, and F is the number of
funcall instructions that have yet to be processed as part of the
worklist items. Clearly, it has a lower bound on its value, namely
rmin = (0, 0).

Initially, the remaining work has the value r0 = (N , 1) where N
is the number of instructions in the called function. We consider
the metric to be lexicographically ordered by its components, i.e.
(I1, F1) < (I2, F2) if and only if either I1 < I2 or I1 = I2 and F1 < F2.
We show that each step yields a value that is strictly smaller than
before the step.

Consider some iteration k of our inlining procedure, so that
rk = (Ik , Fk ) is the remaining work before the iteration, and rk+1 =
(Ik+1, Fk+1) is the remaining work after the iteration.
• If rule number 1 applies, then one funcall instruction is
eliminated in the iteration, so that Ik+1 = Ik and Fk+1 =
Fk − 1. Clearly, rk+1 < rk in this case.
• If rule number 2 applies, then again one funcall instruction
is eliminated in the iteration, so that Ik+1 = Ik and Fk+1 =
Fk − 1. Again, rk+1 < rk .
• If rule number 3 applies, then another instruction is inlined,
but the number of funcall instructions remains the same,
so that Ik+1 = Ik − 1 and Fk+1 = Fk . Again, rk+1 < rk .
• Finally, if rule number 4 applies, then another instruction is
inlined, but the number of funcall instructions increases by
1, so that Ik+1 = Ik − 1 and Fk+1 = Fk + 1. Again, rk+1 < rk .

4 CONCLUSIONS AND FUTUREWORK
We have presented a technique for inlining local functions that uses
local graph rewriting techniques. We have proved our technique to
be correct in that it preserves the semantics of the original program,
and it is guaranteed to terminate.

Although our iterative technique can be stopped at any point,
thus giving us partial inlining, there are some practical aspects of
such partial inlining that still need to be investigated:
• When the inlining is not complete, the called function has
multiple entry points. Many optimization techniques de-
scribed in the literature assume that a function has a single
entry point. We plan to investigate the consequences of such
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Figure 9: Situation after one application of rule 3.
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Figure 10: Situation after two applications of rule 3.
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Figure 11: Situation after an applications of rule 2.

multiple entry points on the optimization techniques that we
have already implemented, as well as on any optimization
techniques that we plan to incorporate in the future.
• In our intermediate code, we treat multiple values with an
unknown number of values as a special type of datum. It is
special in that it must store an arbitrary number (unknown at
compile time) of values. During the execution of our inlining
procedure, such a datum may become part of the mapping
between variables of the called function and the calling func-
tion. When the inlining procedure continues until termina-
tion, such a datum will be handled in the calling function in
the same way that it is handled in the called function. How-
ever, if the inlining procedure is stopped with such a datum
in the mapping, we would somehow need to transmit it as an
argument to the called function. Doing so may require costly
allocation of temporarymemory and costly tests for the num-
ber of values that would not be required when the procedure
continues until termination. However, it is rare that code
needs to store intermediate multiple values. It only happens
in a few cases such as when multiple-value-prog1 is used.
Therefore, one solution to this problem is to avoid inlining
in this case. Another possible solution is to let the inlining
procedure continue until termination for these cases.

As presented in this paper, our technique handles only functions
with very simple lambda lists. It is probably not worth the effort to
attempt to inline functions with lambda lists containing keyword
arguments, but it might be useful to be able to handle optional
arguments. We intend to generalize our technique to such lambda
lists.

We have implemented the technique described in this paper,
but have yet to implement a decision procedure for determining
whether this technique could and should be applied. The details of
this decision procedure are currently being investigated.
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