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Preface

Message from the Programme Chair

Hello, Lispers!

Welcome to the 13thth European Lisp Symposium, online for the first time.

It is a difficult time for all of us, and for that we must show solidarity. It’s very sad we don’t
get to meet in person and indulge in our favourite topic, Lisps. For that we gather virtually, to
interact in the only way currently possible. And what an effort this has been from everyone,
thank you!

I am grateful to the speakers, for preparing video presentations and being present in the chat
to answer questions. To each author for their valuable contributions. To every programme
committee member for their time, work, and expertise on reviewing the papers and demos,
often giving valuable feedback. I sincerely hope to see all rejected papers of this year build on
this feedback, and get published in a future ELS. A big thank you to Nicolas Hafner for quickly
adapting his role as local chair and organising a virtual location for us to meet. And of course,
to the steering committee, and to Didier Verna, the driving force behind the symposium. I am
honoured.

On the programme.

When Didier asked me to chair the ELS 2020, my favourite conference and annual must, I was
on my way to A Coruña in Spain to meet my new Igalian coworkers. I had just joined the
Compilers Team of Igalia, so this was an easy answer. I told Didier, yes of course and there will
be a special focus on compilers.

I am thrilled that most papers we received were directly or indirectly about compilers. We
now have invited talks and papers touching almost all focus points on the list of the call for
papers. We have practical and theoretical compiler techniques, compiler passes, showcasing of
compilers, code generation, compiler optimization, JIT compilers, and even compiler compilers.

But that’s not all. The topics go beyond just compilers, beyond even Lisps, and all the way to
the topics of privilege and empathy.

I hope you enjoy the virtual meeting and this collection of papers and demos, and I’m looking
forward to sitting with you all again in person.

Bonn, April 27, 2020 Ioanna M. Dimitriou H.
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Message from the Local Chair

When I attended my first ELS at Goldsmith’s in London and met with many similarly minded
and enthusiastic people for the first time, a new world opened itself up to me. I had never been
surrounded by peers like that before, and I’ve never missed an ELS since. It was also then that
I met with Robert Strandh, who immediately planted the idea in my head to organise an ELS in
my home town Zürich sometime.

This idea stuck around in my mind since then, until I finally decided to take a step forward and
ask Didier about it. What followed over the past two years were many frantic days of meeting
with other people to seek help, looking all over for a suitable venue, organising the dinner,
helping out with the website and registration, and so forth. It was a lot of work, and I’m quite
sad that the in person conference had to be cancelled due to the pandemic.

Still, it would be even more of a shame to wallow in the burden of this situation. Instead, I’d
like to thank all the presenters for their hard work preparing their papers, and I’d like to thank
everyone involved in the organisation of the conference for helping with reviews and all the
work that goes into the conference as a whole. I hope that, even without a physical presence,
we can still create an enjoyable conference for people online and bring some much needed
positivity and excitement to the Lisp community.

Finally, I have not fully given up on an ELS in Zürich, and shall try again some other year!

Zürich, April 27, 2020 Nicolas Hafner
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Invited Contributions

The Nanopass Framework as a Nanopass Compiler

Andy Keep, Facebook, USA
The nanopass framework is a domain specific language for defining compilers that provides
two basic syntactic forms: define-language and define-pass. The define-language form defines
the grammar for an intermediate representation and can either define the full language or ex-
tend an existing language. Language forms are represented using Scheme records and a parser
and unparser can be constructed from the language definition to move between S-expression
and nanopass language form representations. The define-pass form defines procedures for op-
erating over these language forms, based on the specified input and output languages.

In addition to these two basic forms, a number of small tools for interacting with languages
exist, including tools for extracting the define-language syntactic form for a language, mak-
ing it easier to see the full language when it was defined as an extension, along with tools for
differencing two languages to produce the language extension form, pruning unreachable non-
terminals, and defining a procedure for counting nodes in a language form for a given language.

These tools are helpful, but we can imagine wanting more tools, for instance a tool to gener-
ate a equivalence procedure over language forms or a tool to generate a procedure for com-
puting a histogram of nonterminal node types in a language form. Unfortunately, each tool
must be written with knowledge of the internals of the nanopass framework. What if the
nanopass framework instead provided an API for writing these extensions? What if the define-
language and define-pass forms, were defined as nanopass languages that could be treated like
other nanopass languages? How much of the nanopass framework could be written using the
nanopass framework? This talk will explore this experiment.

Andy Keep is a Core System Software Engineer at Facebook AR/VR,
working in the area of programming language implementation. He is
also one of the maintainers of Chez Scheme, a commercial-grade Scheme
compiler that was open sourced by Cisco Systems, Inc., where he was
previously a Senior Software Engineer, in 2016. Andy’s work with
Chez Scheme started as part of his Ph.D. work at Indiana University,
where his dissertation, "A Nanopass Framework for Commercial Com-
piler Development", was focused on replacing the original Chez Scheme
compiler with a nanopass compiler. R. Kent Dybvig, the creator of Chez
Scheme, was Andy’s advisor and aided greatly in this work. Andy con-
tinues to work on compiler and related run time systems, and has an
active interest in educating the next generation of compiler writers.
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Workshop: Mixing Mutability into the Nanopass Framework

Andy Keep, Facebook, USA
Languages defined using the nanopass framework are represented using immutable Scheme
records1, however, it can be useful to have mutable cells with the terminals of a language form.
For instance, the Chez Scheme compiler represents each variable as a single Scheme record
instance. This means the binding site and all use sites for a given variable all use the same record
instance to represent that variable. The variable record contains mutable fields which allow
information from variable uses to be visible at the binding site and vice versa. For instance,
variable uses can report whether they are referenced, multiply referenced, or assigned to the
variable binding site, or the variable binding site can record information needed at the use sites
for a variable without constructing an environment within the pass.

This workshop will give a brief introduction to the nanopass framework using an example com-
piler for a small subset of Scheme, and then look at how this technique is used for converting
assigned variables and computing free variable sets in lambda expressions.

Privilege as a technical debt

Amr Abdelwahab, Tourlane.com, Germany
Do you believe political correctness and empathy are buzzwords that limit society rather than
contribute to its advancement? Do you think talking about topics like diversity quotas and
privilege doesn’t make much sense and you would rather spend this time talking about the
latest in technology?

In this talk I would like to take the chance to try and add the missing contexts to such terms
and arguments, moreover, I will try to go through various examples on how it can impact your
product from a very pragmatic perspective.

An African Egyptian native who crossed continents to work with his
passion in digital environments. Amr’s interests span technology, tech-
communities, politics and politics in tech, all enriched through various
software engineering roles in Egypt, Hungary, and Germany.

1In addition to immutable records, standard (and hence mutable) Scheme lists are used for for representing lists
within a language form, but the expectation is that these lists will not be mutated.
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On ECL, the Embeddable Common Lisp

Daniel Kochmański, TurtleWare, Poland
Embeddable Common Lisp is a Common Lisp implementation with historical roots dating back
to 1985 when Kyoto Common Lisp was released as an open source project by Taichi Yuasa
and Masami Hagiya. It is one of the first Common Lisp implementations predating the ANSI
standard (CLtL1) and it has influenced its final version. First developed by academia, then by
volunteers from the free software community, it still thrives as one of many actively developed
Common Lisp implementations.

Thanks to a portable and small core it is possible to embed ECL in other applications as a shared
library. This property enables Common Lisp programmers to develop their applications and
plugins as an extension to existing software and to use Common Lisp software on platforms like
Android and iOS. Executables and libraries built with ECL are small and suitable for writing
utilities and libraries used by applications outside of the Common Lisp world.

Maintaining and improving a Common Lisp implementation is a challenging and fun task with
many opportunities to learn about software and compilers. During this presentation I’ll talk
about the past, the present, and the future of ECL. I’ll discuss its heritage, then move to its
current architecture with its flaws and advantages, and I will finish with my plans for further
development.

Daniel Kochmański is a Common Lisp and C hacker and free software
proponent. Interested in cognitive science, software development and
user experience modelling. Founder of TurtleWare – a consultancy com-
pany located in Poland specialized in Common Lisp and embedded sys-
tems. In free time passionately reads books and occasionally plays on
guitar.
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Programme overview

Monday, 27.4.2020

09:15 Welcome
09:30–10:30 Andy Keep - The Nanopass Framework as a Nanopass Compiler (ELS keynote)
10:30–11:00 Coffee break
11:00–11:30 Robert Strandh - Omnipresent and low-overhead application debugging
11:30–12:00 Frédéric Hamel, and Marc Feeley - An R7RS Compatible Module System for

Termite Scheme
12:00–12:30 Marco Heisig - Sealable Metaobjects for Common Lisp
12:30–14:30 Lunch
14:30–15:00 Irène Anne Durand - Bidirectional leveled enumerators
15:00–15:30 Max Rottenkolber - Later Binding: Just-in-Time Compilation of a Younger

Dynamic Programming Language
15:30–16:00 Coffee break
16:00–16:30 Peter Housel - LLVM Code Generation for Open Dylan
16:30–17:00 Jonathan Godbout - Indexing Common Lisp with Kythe
17:00–17:30 Lightning talks

Tuesday, 28.4.2020

09:00–10:00 Andy Keep - Workshop: Mixing Mutability into the Nanopass Framework
(ELS invited workshop)

10:00–10:30 Rajesh Jayaprakash - Partial Evaluation Based CPS Transformation: An
Implementation Case Study

10:30–11:00 Coffee Break
11:00–11:30 Robert Strandh - Representing method combinations
11:30–12:00 Andrea Corallo, Luca Nassi, and Nicola Manca - Bringing GNU Emacs to native code
12:00–12:30 Andrew Lawson - RavenPack in the time of COVID-19 (ELS sponsor)
12:30–14:30 Lunch
14:30–15:30 Amr Abdelwahab - Privilege as a technical debt (ELS keynote)
15:30–16:00 Coffee Break
16:00–16:30 Alan Dipert - JACL: A Common Lisp for Developing Single-Page Web Applications
16:30–17:00 Marco Antoniotti - Why You Cannot (Yet) Write an "Interval Arithmetic" Library

in Common Lisp – or: Hammering Some Sense into :ieee-floating-point
17:00–18:00 Daniel Kochmański - On ECL, the Embeddable Common Lisp (ELS keynote)
18:00–18:30 Lightning talks
18:30 Conference end

Paper only

João Távora - A portable, annotation-based, visual stepper for Common Lisp
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Technical papers

Peer-reviewed technical papers, with novel content.
The papers appear in the order they appear in the programme.
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Omnipresent and low-overhead application debugging

Robert Strandh
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT

The state of the art in application debugging in free Common
Lisp implementations leaves much to be desired. In many
cases, only a backtrace inspector is provided, allowing the
application programmer to examine the control stack when
an unhandled error is signaled. Most such implementations do
not allow the programmer to set breakpoints (unconditional
or conditional), nor to step the program after it has stopped.

Furthermore, even debugging tools such as tracing or man-
ually calling break are typically very limited in that they do
not allow the programmer to trace or break in important sys-
tem functions such as make-instance or shared-initialize,
simply because these tools impact all callers, including those
of the system itself, such as the compiler.

In this paper, we suggest a technique that solves most of
these problems. The main idea is to have a debugger thread
debug one or more application threads, with all these threads
running in the same image. Tracing and setting breakpoints
have an effect only in the debugged thread so that system code
running in other threads is not impacted. We discuss several
advantages of this technique, and in particular how it can
make debugging omnipresent, i.e., not requiring recompilation
to get its benefits. We describe how to achieve this advantage
while keeping the overhead low for threads that are not being
debugged.

CCS CONCEPTS

� Software and its engineering � Software testing
and debugging; Runtime environments;

KEYWORDS

CLOS, Common Lisp, Compilation, Debugging

ACM Reference Format:

Robert Strandh. 2020. Omnipresent and low-overhead application

debugging. In Proceedings of the 13th European Lisp Symposium
(ELS’20). ACM, New York, NY, USA, 8 pages. https://doi.org/

10.5281/zenodo.3747548

1 INTRODUCTION

Good debugging tools are essential for the productivity of
software developers. In this paper, we are concerned with

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
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© 2020 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.3747548

application programmers as opposed to system programmers.
The difference, in the context of this paper, is that the tech-
niques that we suggest are not adapted to debugging the
system itself, such as the compiler. Instead, throughout this
paper, we assume that, as far as the application programmer
is concerned, the semantics of the code generated by the
compiler corresponds to that of the source code.

In this paper, we are mainly concerned with Common
Lisp [1] implementations distributed as so-called FLOSS, i.e.,
“Free, Libre, and Open Source Software”. While some such
implementations are excellent in terms of the quality of the
code that the compiler generates, most leave much to be
desired when it comes to debugging tools available to the
application programmer.

Perhaps the most advanced development environment avail-
able to application programmers using FLOSS Common Lisp
implementations is the one that consists of GNU Emacs1

(also [4] [6]) with SLIME2. Many application programmers
consider this development environment to be outstanding.
Some even believe that it is one of the best, no matter the
programming language under consideration.

However, although this environment does a fairly good job
with exploiting the features of the Common Lisp implemen-
tations that it supports, limitations of those implementations
severely restrict what the application programmer can do.
In particular, most of these implementations have only very
limited facilities for setting breakpoints (unconditional or
conditional) and for stepping.

Even in implementations that allow the programmer to
set a breakpoint in some code, the places where it is allowed
are necessarily restricted, given how breakpoints are typically
implemented. The reason for this restriction is that such a
breakpoint would be visible to all callers of the code in which
the breakpoint is set. When these callers include important
system code such as the compiler, or perhaps the debugger
itself, setting such a breakpoint would make the entire system
useless. This restriction typically applies also to tracing. Most
Common Lisp implementations would either not allow for
the programmer to trace important system functions such
as make-instance or shared-initialize, or these functions
would be rendered useless with any such attempt. The reason
is of course that these functions would be called by the system
itself, so that output would be drowned in traces of calls that
are unimportant to the application programmer.

In this paper, we suggest a technique that solves these
problems. The key features of this technique is that break-
points and traces take effect only in a thread that is executed

1https://www.gnu.org/software/emacs/manual/emacs.html
2https://common-lisp.net/project/slime/doc/html/
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from a special debugger thread. Thus, even though a function
might contain a breakpoint, when that function is called
as a normal part of an application, the breakpoint will not
have any effect. Only when that function is called (directly or
indirectly) from the special debugger thread is the breakpoint
visible.

The technique presented in this paper is yet to be im-
plemented. We have, however, conducted experiments that
suggest that it is entirely viable. We plan to make it the
default technique used in our system SICL (see Section 3),
currently under development.

Throughout this paper, we use the term user to mean the
person operating the debugger or some debugging-related
facility, so as to distinguish this person from the application
programmer, by which we mean the author of the code being
debugged. The two can obviously be one and the same person
in two different roles.

2 PREVIOUS WORK

2.1 Process-based debugging

With systems like UNIX, debugging is usually performed
as an interaction between two processes. The debugger runs
in one process and the application in another process. For
a breakpoint, the code of the application is modified by
the debugger so that the application sends a signal to the
debugger when the breakpoint has been reached. For this
purpose, the debugger maps the code pages of the application
as copy on write (or COW). With this technique, instances
of the same application that are not executed under the
control of the debugger are not affected by the modified code.
In particular, with this technique, any application can be
debugged, including the debuggger itself.

Some FLOSS Common Lisp implementations suggest the
use of this debugging technique, by means of some existing
debugger such as GDB3 (also [7]), in order to set breakpoints.
In particular, the CCL (See Section 2.3.) documentation
mentions that this technique is possible, and it is also the
technique recommended for ECL (See Section 2.4.).

2.2 SBCL

The SBCL Common Lisp implementation4 has a breakpoint
facility. Given a code location, a breakpoint can be set, which
results in the code being modified at that location, so that an
arbitrary function (given to the constructor of the breakpoint)
is called when execution reaches that location.

The only feature that uses the breakpoint facility is trace.
Furthermore, it is hard for the user to take advantage of
the breakpoint facility directly, given that a function such as
make-breakpoint requires an argument indicating the code
location. We are unaware of the existence of a debugger for
SBCL that can use the breakpoint facility.

SBCL also has a single stepper that the manual says is
“instrumentation based”. As it turns out, the kind of instru-
mentation used by the stepper is not that of the breakpoint

3https://sourceware.org/gdb/current/onlinedocs/gdb/
4http://www.sbcl.org/

facility. Instead, when the value of the debug optimization
quality is sufficiently high compared to the values of other
optimization qualities, the compiler inserts code that signals
conditions that are specific to the stepper.

2.3 CCL

The CCL Common Lisp implementation5 does not have the
concept of breakpoints.

The CCL trace command uses encapsulation, meaning
that the association between the name of a function and the
function object itself is altered so that it contains a wrapper
function that displays the information requested and that
calls the original function to accomplish its task.

Currently, CCL does not have a working single stepper.

2.4 ECL

The ECL Common Lisp implementation6 does not have the
concept of breakpoints, so an external debugger such as GDB
has to be used for breakpoints. ECL does have a special
instruction type in the bytecode virtual machine that is used
for stepping.

The trace facility uses encapsulation.

2.5 Clasp

The Clasp Common Lisp implementation7 does not have the
concept of breakpoints, nor does it have a stepper. The trace

facility uses encapsulation.

2.6 LispWorks

The LispWorks Common Lisp implementation8 provides
breakpoints. Breakpoints can be set either from the step-
per or from the editor. The first time a breakpoint is set in a
definition, the source code of the defining form is re-evaluated
with additional annotations that provide information for the
stepper.

When a breakpoint has been set, it is active no matter
how the code containing it was called. If that code was called
outside the stepper, the stepper is automatically started.
Thus, breakpoints provide the essential mechanism for the
stepper.

Since setting a breakpoint requires access to the source
code, and since the source code of the system itself is not
supplied, the user can not set breakpoints in system code.

The trace facility in LispWorks is accomplished through
encapsulation.

2.7 Allegro

The Allegro Common Lisp implementation9 has the most com-
plete and most sophisticated implementation of breakpoints
of all the Common Lisp implementations we investigated.

5https://ccl.clozure.com/
6https://common-lisp.net/project/ecl/
7https://github.com/clasp-developers/clasp
8http://www.lispworks.com/products/lispworks.html
9https://franz.com/products/allegro-common-lisp/
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High-level debugging features are based on a low-level
breakpoint mechanism described in a paper by Duane Ret-
tig [5]. In many respects, the low-level mechanism is similar
to the one used by UNIX-style debugging, in that it replaces
the ordinary machine instruction by one that will trap, and
thus cause the operating system to send a signal to the Lisp
process. However, their mechanism differs in a significant way
from the one used by UNIX-style debugging, in that it allows
the breakpoint to be handled by the same operating-system
process that contains it, with very few exceptions.

Same-process debugging is made possible by their mecha-
nism that allows existing breakpoints to be installed or not.
Only installed breakpoints correspond to replaced instruc-
tions, whereas uninstalled breakpoints are remembered by
the system and can be installed according to the kind of
debugging that the higher-level tool implements. The clever
aspect of their mechanism is to have the signal handler start
its action by uninstalling all breakpoints. Thus, even if a
breakpoint exists in some system code that is also used by
the debugger, once the debugger is entered, the breakpoint
is no longer active. Had the breakpoints remained installed,
issuing commands inside the debugger might have invoked
some code with a breakpoint, thereby halting the execution
of the debugger itself.

This mechanism allows for instruction-level stepping in a
way similar to what is possible in separate-process UNIX-
style debuggers. Just as with UNIX-style debugging, any
instruction can be replaced by a different one that will trap
to the debugger. As a result, it is possible to execute one
instruction at a time by simply trapping after each instruction.
Crucially, however, this mechanism is then used to build high-
level tools such as source-level debuggers, steppers, etc.

3 MAIN FEATURES OF THE SICL
SYSTEM

SICL10 is a system that is written entirely in Common Lisp.
Thanks to the particular bootstrapping technique [2] that
we developed for SICL, most parts of the system can use
the entire language for their implementation. We thus avoid
having to keep track of what particular subset of the language
is allowed for the implementation of each module.

We have multiple objectives for the SICL system, including
exemplary maintainability and good performance. However,
the most important objective in the context of this paper is
support for excellent debugging tools. We think it is going to
be difficult to adapt existing Common Lisp implementations
to support the kind of application debugging that we consider
essential for good programmer productivity.

Another main objective of the SICL system is safety. In this
context, by this term we mean that the system must always
be in a coherent internal state. When a system becomes
unsafe, it may crash, or (worse) silently produce the wrong
answer.

10https://github.com/robert-strandh/SICL

There are many situations described in the Common Lisp
standard that have undefined or unspecified behavior, such
as:

(1) Many times when a standard function is called with
some argument that is not of the type indicated by the
corresponding dictionary entry in the Common Lisp
standard document, the behavior is undefined, allowing
the implementation to avoid potentially costly tests for
exceptional situations.

(2) When a non-local transfer is attempted to an exit
point that has been “abandoned”, the standard does
not require this situation to be detected, making it
possible for the system to crash or (worse) give the
wrong result.

(3) When some entity is declared dynamic-extent, but
some necessary condition for this declaration is violated,
the implementation is again not required to detect the
problem, again potentially resulting in a crash or an
incorrect computation.

Fortunately, most potential situations of this type are not
taken advantage of by a typical Common Lisp implementation
in order to improve performance, but some are. We think
that the spirit of the Common Lisp standard is to have a safe
language, and that many of these situations of undefined or
unspecified behavior exist only to avoid significantly more
work for the system maintainers at the time the standard
was established.

For that reason, in the SICL system, we do not intend to
take advantage of these situations to make the system unsafe
for the purpose of better performance, even though we might
have to work somewhat harder in order to maintain good
performance in all situations.

Many debugging techniques can make the system unsafe.
For example, if the debugger allows the user to arbitrarily
change the value of a lexical variable, the new value might vi-
olate some assumption made by the compiler for the program
point in question. Such a violation is very likely to make the
system unsafe. The work described in this paper is designed
to keep the system safe.

4 OUR TECHNIQUE

4.1 Two versions of every function body

We provide two different versions of every function body11.
One version, called the ordinary version, and the other one
is called the debugging version. Each version is provided as a
separate entry point for the function12. The two versions are
similar (but not identical) copies of the entire function body.

By including both versions in the same function, we make
it unnecessary for the application programmer to recompile
the code with higher debug settings when it is desirable to
have more debugging information than what the compiler
would generate by default.

11This idea was suggested by Michael Raskin.
12This idea was suggested by Frode Fjeld.
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The ordinary function body is compiled using every typical
optimization technique used by a good compiler, including:

∙ constant folding,
∙ dead code elimination,
∙ common sub-expression elimination,
∙ loop-invariant code motion,
∙ induction-variable optimization,
∙ elimination of in-scope dead variables, and
∙ tail-call optimization.

Some of these optimization techniques are essential for high-
performance code, but many of them can make it significantly
harder for the user to understand what the program is doing:

∙ Common sub-expression elimination and similar tech-
niques for redundancy elimination may make it im-
possible to set a breakpoint in some part of the code,
simply because that code has been eliminated by the
compiler.

∙ When a variable is used for the last time, the com-
piler typically reuses the place that it occupies for
other purposes, even though the variable may still be
in scope. This optimization makes it impossible for
the user to examine the value of a variable that has
been eliminated. A user with a poor understanding of
compiler-optimization techniques will find the result
surprising.

∙ Loop-invariant code motion results in code being moved
from inside a loop to outside it. Any attempt by the
application programmer to set a breakpoint in such
code will fail.

∙ Induction-variable optimization will eliminate or re-
place variables in source code by others that are more
beneficial for the performance of the computation,
again making it harder for the user to debug the code.

∙ Tail-call optimization exploits the fact that the stack
needs to reflect only the future of the computation,
but the past can be omitted. For the purpose of debug-
ging, the past of the computation provides essential
information to the developer.

To avoid many of these inconveniences to the user, the debug-
ging version of the function body is compiled in a way that
makes the code somewhat slower, but much more friendly
for the purpose of debugging. Some of the optimization tech-
niques cited above will not be performed at all, or only in
a less “aggressive” form. Messages from the compiler (such
as when dead code is eliminated) are emitted based on the
compilation of the normal version of the function body so
that the maximum amount feedback is obtained.

Notice that the existence of the two versions of the function
body makes it usually unnecessary for the programmer to
explicitly indicate values of the debug optimize quality. In
fact, forcing the programmer to set this value is often a major
inconvenience, since it typically requires the programmer to
choose between debugging convenience and execution speed.
The speed and compilation-speed optimize qualities may
influence compilation of the the normal version of the body,
but not the debugging version. The debugging version will

in general be much faster to generate because of the absence
of most optimization passes.

Furthermore, the debugging version of the code is com-
piled so that a small routine is called immediately before
and immediately after the execution corresponding to the
evaluation of a form in the source code. In order to determine
whether a breakpoint is present at that particular location
in the source code, this routine performs a query of a table
managed by the debugger. While the details of how this table
is implemented might evolve, here we give one example of
such an implementation, thereby arguing that performing a
query is not overly expensive in terms of performance.

As an example of implementation of this table, it might
be split into two sub-tables called the summary table and
the breakpoint table. Both these tables are managed by the
debugger, in that actions on the part of the user may alter
their contents. The application consults these tables, directly
or indirectly, to determine whether a breakpoint is present.

The purpose of the summary table is to provide a quick test
that almost always indicates that no breakpoint is present.
Thus, the summary table is a fixed-size bit vector. The size
will typically be a small power of 2, for instance 1024 which
represents a modest 16 64-bit words on a modern processor.
The application routine computes the value of the program
counter modulo the size of the table in order to determine
an index. If the entry in the table contains 0, then there is
definitely not a breakpoint present at the source location in
question. Since there are typically only a modest number
of breakpoints in a program, most of the time, the entry
will contain a 0, making the routine return immediately, and
normal form evaluation to continue. The debugging version
of the function body accesses this table early on in order
to create a reference to it in a lexical variable. This lexical
variable is subject to register allocation as usual.

If the entry in the summary table contains 1, then there
is a breakpoint at some value of the program counter that,
when taken modulo the size of the table, has a breakpoint
present. If this is the case, then the routine consults the
breakpoint table. In other words, the summary table acts
as a Bloom filter [3], in that false positives are possible, but
false negatives are not. The size of the table determines the
probability of a false positive.

The breakpoint table is a hash table in which the keys are
values of the program counter13 and the values are objects
that the debugger uses in order to determine information
about the breakpoint in question. When the routine finds
that a breakpoint is present at the current source location, it
informs the debugger. Details of the communication between
the application thread and the debugger are discussed in
Section 4.2.

In the ordinary version of the function body, when a func-
tion call is made, the caller uses the entry point of the callee
corresponding to the ordinary version of the body of the
callee. In the debugging version of the function body, on the

13In implementations where code can be moved by the garbage col-
lector, this table must be re-hashed after a collection. The tentative
decision for SICL is to have all code at fixed locations.
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other hand, when a function call is made, the caller uses
the entry point of the callee corresponding to the debug-
ging version of the body of the callee. This mechanism thus
automatically propagates the information about debugging
throughout the call chain.

4.2 Communication between the debugger
and the application

Debuggers in UNIX systems have full access to the address
space of the application, including the stack and the lexi-
cal variables. A UNIX debugger can therefore modify any
lexical variable and then continue the execution of the ap-
plication. Such manipulations may very well violate some of
the assumptions made by the compiler for a particular code
fragment. For example, if the code contains a test for the
value of a numeric variable, the compiler may make different
assumptions about this value in the two different branches
executed as a result of the test.

Allowing a debugger to make arbitrary modifications to
lexical variables, let alone to any memory location, in a
Common Lisp application program will defeat any attempts
at making the system safe, and safety is one of the objectives
of the SICL system as expressed in Section 3. We must
therefore come up with a different communication protocol
that keeps the system safe.

Our design contains two essential elements for this purpose:

(1) The debugger consists of an interactive application
with a command loop. An iteration of this command
loop can of course be prompted by a user interaction.
However, when the application detects a breakpoint by
querying the tables described in Section 4.1, it injects
a command into the command loop of the debugger,
triggering the execution of code in the debugger to
handle the breakpoint.

(2) A shared queue is used to send messages from the de-
bugger to the application. This queue has a semaphore
associated with it.

(3) Once the application has informed the debugger about
a breakpoint, it attempts to dequeue the next message
on the queue. If the queue is empty, the application
automatically waits on the associated semaphore, until
the debugger issues an enqueue operation with instruc-
tions for the application.

The debugger is in charge of taking into account the com-
mands issued by the user. When the user indicates that a
certain action should be performed at a particular place in
the source code, the debugger populates the two tables men-
tioned in Section 4.1, and records the particular action the
user desires, for example:

∙ The user might indicate that the application should
stop and wait for further actions by the user, after
the user has examined the state of application data.
In this case, the debugger records this desire in the
breakpoint table. When the application then reaches
the breakpoint in question, the debugger waits for
further user action in its command loop.

breakpoints

commands

read

write

read
table

breakpoint

read

write

readsummary
table

readwrite shared
queue

debugger application

Figure 1: Communication between user, application,
and debugger.

∙ After the user has examined the state of application
data as a result of the application having stopped, the
user can issue a command that makes the application
continue normal execution. The debugger then immedi-
ately sends a message to this effect to the application.

∙ The user might indicate that a trace message should
be printed without stopping the application. Then,
when the breakpoint is reached, the debugger displays
the message to the user and sends a message to the
application to continue execution.

∙ The user can also indicate that the execution of the
application should be stepped in one of several different
ways:
– next : Execution stops at the next possible program

point.
– in: Execution stops at the beginning of a function

being called.
– out : The remaining sub-forms of the form containing

the current breakpoint are evaluated, and execution
stops immediately after the evaluation of that form.

– over : When a breakpoint is reached that is located
immediately before a form is evaluated, the form is
evaluated and execution stops immediately after this
evaluation.

– finish: Execution of the currently executing func-
tion terminates, and stops in the calling function
immediately after the call.

The debugger then sets one or more volatile breakpoints
(i.e., breakpoints that will be removed once reached) at
source locations corresponding to the type of stepping
required. It then instructs the application to continue
execution as usual.

To allow for the user to examine the state of the applica-
tion, when the application thread detects a breakpoint, the
command it injects into the debugger command loop contains
a complete list of live local variables and their values, as well
as of special variables bound in the application thread.

Since we intend to provide debugger commands for exam-
ining and modifying application data, we must make sure
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that any such manipulation on the part of the user preserves
the integrity of the application.

In particular, any assumptions made by the compiler about
the structure or type of some lexical variable must be im-
possible to violate through the modification of the value of
a lexical variable. We obtain this property by making sure
that the compiler does not propagate any information about
the structure or type of lexical variables between program
points that admit breakpoints. Thus, any run-time manipu-
lation that requires this structure or type to be known must
be preceded by an explicit test, and the compiler does not
generate code that admits a breakpoint between the test and
the manipulation.

4.3 Debugger commands available to the
user

We have an embryonic implementation of an interactive de-
bugger, called Clordane.14 We use the McCLIM library for
writing graphic user interfaces as a basis for this tool. Cur-
rently, Clordane can show the source code of an application
(one source file at a time) and an indication of the place of a
breakpoint. The application being debugged is then compiled
with the SICL compiler, generating high-level intermediate
representation (HIR). The HIR code is then interpreted by a
small program running in a host Common Lisp implementa-
tion.

The communication protocol described in Section 4.2 has
been implemented and works to our satisfaction, but only a
small subset of interactions have been implemented so far.

We think that the following commands must be imple-
mented in a fully featured debugger:

∙ The user should be able to point to a location in the
source code to indicate a particular action to be taken
at that point:
– Stop the execution of the application and wait for

further actions.
– Print a trace message, possibly containing the values

of live variables, and then continue the execution.
It should be possible to make the action conditional,
based on some arbitrary expression to be evaluated
in the debugger thread. This expression can contain
references to live variables in the application.

∙ When the application is stopped, the user should be
able to examine live variables, and (in some cases, with
restrictions) modify their values.

∙ Also, when the application is stopped, the application
programmer should be able to issue one of several types
of stepping commands, implicitly indicating the next
location for the application to stop.

14The name Clordane is a deliberate misspelling of “Chlordane” which
is a pesticide that was banned in most countries in the 1980s. The
misspelling was designed to suggest the Common Lisp language and
to make answers by search engines less cluttered.

5 BENEFITS OF OUR TECHNIQUE

Our technique differs both from the tradition of debugging
in UNIX-type systems and from the tradition used in FLOSS
Common Lisp systems.

5.1 Difference compared to UNIX-like
systems

Whereas UNIX-like systems typically run the debugger in a
different process from that (or those) of the application, with
our technique we run both the debugger and the application
in the same process.

The main advantage of this organization is that communi-
cation between the debugger and the application is greatly
simplified. There is no need for a wire protocol to encode
and decode data in the form of sequences of octets, simply
because with a single process, the address space is shared
between the debugger and the application. Instead, we can
send data in the form of arbitrarily complex data structures
between the two.

5.2 Difference compared to most FLOSS
Common Lisp systems

Most FLOSS Common Lisp implementations have a history
that started before multi-threading was common. As a result,
features such as breakpoints and tracing are often imple-
mented as modifications to the code.

For example, in SBCL, the user can choose to trace a
function in two different ways. One way is by means of
encapsulation, meaning that the function is not modified, and
instead wrapped in a small routine that then replaces the
function as associated with the function name. The function
being traced is not modified. The other way is by means of a
breakpoint; that is, the code of the function being traced is
modified.

However, in both cases, every caller of the function being
traced is affected, barring a caller that is in possession of the
function object itself, rather than its name. As a result, it is
very likely impractical to trace system functions that may
be used internally by the system. For example, tracing find

or position (if at all possible) is likely to generate so much
information from callers that are irrelevant to the user as
to make the information impossible to exploit. And tracing
functions such as print, format, or write would be entirely
impossible, since the trace output would very likely call these
functions in order to generate the output information meant
for the user.

With our suggested technique, tracing a function does
not create an encapsulation and does not modify the code
of the function. Instead, the existing code communicates
with the debugger, and the debugger, running in a different
thread, is in charge of displaying information to the user.
As a direct consequence, there are no restrictions such as
those indicated above. The only possible restriction has to
do with inlining, though it may very well turn out to be
possible to propagate debugging information with inlining,
thereby making it possible to trace, or to set breakpoints in
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any function such as car or +. However, it may turn out that
the inclusion of debugging code in such low-level functions
would be prohibitive in terms of performance of code run
under the control of the debugger.

Finally, a significant advantage to our technique is that
the application programmer does not have to choose between
compiling the code for debugging or for performance. In most
existing systems, in order for it to be possible to benefit from
all the debugging information possible, the programmer has to
compile the code with a combination of values of the existing
debug qualities that is not optimal for performance. This
limitation means that it is often necessary to recompile the
application for one of the two purposes. With the technique
presented in this paper, no such choice is required, since both
versions of the application are always available.

6 DISADVANTAGES OF OUR
TECHNIQUE

Perhaps the most obvious disadvantage of our technique
is that the size of the code will more than double. The
debugging version of the function body must implement
the same functionality as the non-debugging version, but in
addition to that functionality, it must also contain code for
communicating with the debugger. Furthermore, since fewer
optimizations are applied to the non-debugging version, even
without the code for communication, the debugging version
would be larger than the non-debugging version.

While the additional code will impact the memory foot-
print of the system, we do not think it will have any negative
influence on caching. The two versions of the body are kept
separate, and the same version is typically executed repeat-
edly.

Feedback on draft versions of this paper indicate that many
readers are worried about the possibility of the behavior of the
different versions of the function body described in Section 4.1.
This worry is based on experience, as this situation is common,
especially with implementations of programming languages
other than Common Lisp. As we see it, there are two possible
causes for such difference in behavior:

(1) A defect in the compiler can result in native code that
does not correspond to the semantics of the source
code, and the resulting code can be different in the
different versions.

(2) The compiler is exploiting undefined or unspecified
behavior, probably in order to improve performance
of the resulting code, and it exploits such behavior in
different ways in the two different versions.

We briefly addressed the first cause in Section 1, by specif-
ically targeting application programming, assuming that the
compiler is essentially free of defects.

The second cause was addressed in Section 3, where we
indicated that the SICL system does not intend to take
advantage of undefined situations that will introduce any
such differences in application behavior.

Finally, the fact that the technique proposed in this paper
is incompatible with the way most Common Lisp systems

work, makes it unlikely that existing systems will be able to
use it. We are convinced, however, that our technique will
represent a major advantage in terms of productivity for the
application programmer.

7 CONCLUSIONS AND FUTURE
WORK

We believe that a decent development environment for Com-
mon Lisp must include a very feature-full debugger for appli-
cation programs, and we firmly believe that the best way of
accomplishing such an environment is to have the debugger
execute in the same process as the application, but to have
the application react to debugging operations only when ex-
ecuted under the control of the debugger. Here “debugging
operations” include the tracing of function calls, since that
mechanism is based on the general breakpoint mechanism
described in this paper.

While it may seem like a valid objection that the appli-
cation programmer, as a result of detecting a defect, must
rerun the application from the debugger in order to benefit
from the features proposed by our technique, we disagree
with this objection. We simply think that there is usually
no valid reason to run the application outside the debugger
during the development phase. The only exceptions we can
think of would be applications with extreme performance re-
quirements, or applications where response time is part of the
specification. While our technique requires the programmer
to execute the application code from within the debugger,
developing the code can be done using any tool.

The validity of the technique described in this paper has
been somewhat verified, in that we have an embryonic imple-
mentation of an interactive debugger, and an implementation
of a small subset of the communication protocol between the
application and the debugger. However, our current environ-
ment does not allow us to verify the ultimate performance of
application code run under the control of the debugger. We
firmly believe that the performance loss for code without any
breakpoints in it will be acceptable, and that the additional
cost when breakpoints are involved is to be expected by the
application programmer.

We have not yet implemented the two-version body idea
(See Section 4.1.) in SICL, mainly because the only imple-
mentation of SICL that currently works is the interpreter
for intermediate code. This interpreter was written for boot-
strapping purposes only and performance is not an issue. For
that reason, we have included only the debugging version of
function bodies.

In addition to producing a native version of the SICL sys-
tem, we also need additional work on the Clordane debugger,
and on the additional components of the communication
protocol between the debugger and the application.

We think it would be desirable for existing Common Lisp
implementations to incorporate the technique described in
this paper, so as to allow for a much more complete devel-
opment environment for users. However, we are convinced
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that the modifications that would be required to those im-
plementations would be prohibitive in terms of time invested
by maintainers. For that reason, we unfortunately do not
hold out much hope for this possibility, and we intend to
concentrate our efforts on making our technique work for the
SICL system.
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ABSTRACT
The Termite Scheme language is an existing extension of
Gambit Scheme that has features well suited for programming
heterogeneous distributed systems using a message passing
style. The language supports sending messages containing
procedures and continuations, which simplifies migrating
tasks between nodes during their execution.

A longstanding issue with the original implementation of
Termite is that compiled procedures and continuations can
only be sent to other nodes if the compiled code is already
loaded in the program receiving the message. This is tedious
to arrange in the typical case, and hard or impossible for hot
code updates which are an important use case (updating a
service without interrupting its execution).

Our work has implemented a solution to this problem:
an R7RS compatible module system that automates the
distribution of compiled code. The module system uses a
version control system to manage module versions and provide
a way to distribute code from network accessible repositories.
Modules are identified uniquely using the repository location
and version number. This allows multiple versions of the
same module to coexist in a program, an essential feature to
support hot code updates.

We explain the implementation of our module system and
how it solves various issues related to Termite Scheme and
programming distributed systems. Through an experimental
evaluation we have observed speed improvements for RPC of
close to one order of magnitude.
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1 INTRODUCTION
Distributed systems consist of a set of interconnected com-
putational nodes. Nodes interact by sending and receiving
messages from other nodes over a communication network.
Each node may have a special purpose or there can be more
or less duplication of their function. The World Wide Web
is a notable example that is good to keep in mind to under-
stand some of the issues. It has server and client nodes, they
typically don’t run the same server and client programs, and
the nodes are not centrally managed.

The implementation of a distributed system consists of
developing the programs installed on the nodes that perform
the coordination of the nodes’ actions with those of other
nodes. In a sense, the set of the nodes’ programs constitutes
a global program that must be correct. The challenging
development issues we consider in this paper are the following:

∙ RPC: How is a remote procedure call (RPC) imple-
mented when the program in the sending and receiving
nodes haven’t been designed together?

∙ Code update: How is a node’s program updated when
a bug is fixed or a better version is available?

∙ Task migration: How is a service moved to a new node
when the underlying platform must be changed (oper-
ating system update, hardware upgrades, reboot, . . . )?

∙ Continuous operation: How are service interruptions
avoided in the above situations?

The Termite Scheme language [19] has been designed as
an extension of Gambit Scheme [14] to simplify programming
distributed systems and provide solutions to these issues. It
borrows concepts from the Erlang programming language [4],
but using Scheme syntax and semantics. A particularly in-
teresting feature in our context, not found in Erlang, is the
ability to send messages containing continuations.

The Gambit system on top of which Termite is imple-
mented offers many features useful to program distributed
systems. It generates portable C code that can be compiled
and run on any OS and architecture (32/64 bits, little/big
endian, . . . ). The serialization and deserialization of objects
are independent of their machine representation, allowing the
transmission of most objects between nodes of a distributed
system with different architectures. In particular, procedures
and continuations can be serialized. Moreover interpreted and
compiled code can be freely mixed in the same program. The
serializable procedures allow using a higher-order program-
ming style across nodes, which is useful for implementing
RPC. The serializable continuations allow capturing the state
of a process and sending it to another node to resume it there,
which is useful for code update and task migration.
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Unfortunately, the original implementation of Termite has
shortcomings when serializing closures and continuations.
When the receiving node has no knowledge of the code it
receives, it must run the code interpreted which is typically
much slower than if it was compiled. In this case, essentially
the source code file’s AST is serialized, making messages
larger. Moreover, this large structure will be sent again if
another instance of the closure is sent. When the code is
compiled, the messages are compact, but the code must
be available in compiled form on the receiving node. This
requires a tedious and error-prone setting up of the nodes’
programs that would be unsustainable in the context of large
independently evolving distributed systems, such as the Web,
and difficult to use for RPC, code update and task migration.

Our work aims to allow sending code between nodes that
both run native compiled executables. This is not a simple
task considering nodes may have different operating systems
and architectures, such as ARM, i386 or x86_64, so compiled
procedures cannot, in general, be sent as machine code.

To reach this goal our approach delegates to the receiving
node the compilation of the modules. Code can be transmitted
between machines of different architectures without the usage
of cross-compilers, which can be challenging to setup robustly.
The code will work on all platforms supported by Gambit
such as Linux, macOS, Windows, etc.

An essential property of the module system is that modules
must have a globally unique name that includes their version.
This allows the coexistence of multiple versions of modules in
a program, a situation occuring when a node is updated with
an improved version of its code without interruption. Our
approach benefits from the use of a version control system
to manage the versions of modules in a disciplined way.

The implementation of code migration has been done in dif-
ferent programming languages such as Java [18], JavaScript [22],
Tcl [20], Erlang [16, 21, 23], and Scheme [3, 9, 13, 17]. Our
work distinguishes itself from these efforts in allowing com-
piled code to be migrated transparently between nodes regard-
less of their architecture and operating system, and without
the destination node having prior knowledge of the code.

Section 2 is a brief tutorial of the Termite Scheme lan-
guage. Section 3 explains existing features of Gambit used
in the implementation of our module system, which is the
subject of Section 4. In Section 5 we evaluate the performance
experimentally. Finally, Section 6 discusses related work.

2 TERMITE SCHEME LANGUAGE
Termite [19] applications consist of multiple Termite nodes
exchanging data in a message-passing style similar to Erlang
[15]. A node is an abstraction of a computing device that is
distinct from the physical nodes (machines) of the distributed
system. In practice a node corresponds to an operating system
process and the physical nodes of the distributed system may
contain a single or multiple Termite nodes.

Within each node there are multiple running threads.
Threads are uniquely identified across the distributed system

with a upid that indicates its location (i.e. a node and a
sequence number within that node).

Each node is identified with an IP address and port. The
procedure make-node is the constructor of node identifiers.
The node-init procedure starts the node’s TCP server and
registers built-in services (spawner, linker, publisher, etc.) The
node’s TCP server allows clients to connect to it remotely.
Without this the node would not be visible on the network.

Services in Termite are nothing more than threads receiving
messages in a loop, performing pattern matching on them
and executing actions according to the result of the matching.
A service is created with the spawn procedure which takes
a thunk to be executed and an optional local name for the
service and returns a thread object. Each thread has a mailbox
that buffers the messages it receives. By default services
created with spawn are only visible to the threads in the
current node. A service can be published globally (to other
nodes) by the procedure publish-service that registers the
thread object under a specific name in a dictionary within
the publisher service. That service resolves services by name.

Communication between nodes is performed with the fol-
lowing procedures:

∙ (! dest msg)
∙ (? [timeout [default]])
∙ (?? pred? [timeout [default]])
∙ (!? dest msg [timeout [default]])

The procedure ! sends the message msg to the mailbox
of the dest thread. The procedure ? waits for a message
to appear in the mailbox and retrieves it, with the optional
parameter timeout specifying how long to wait before re-
turning the default value. If no default value is given and
the timeout expires, an error is raised. The procedure ??
is similar to ? but filters the received message using the
predicate pred? . For the common “send request then receive
response” communication pattern there is the !? procedure
that is a composition of ! and ?, which also automatically
adds a unique tag to the messages to match the response
with the request.

A message can also be received with the recv form which
pattern matches the message. This form is typically used to
dispatch the messages in the implementation of a service.

The following example shows a typical use of these forms to
implement a local service computing the square of a number
and a client requesting to square 5 (both in the same node):
(define square-server

(spawn
(lambda ()

(let loop ()
(recv

((from tag 'square x) ;; message pattern
(! from (list tag (* x x))))

(msg
(warning "Ignored message " msg)))

(loop)))))

(!? square-server (list 'square 5)) ;; => 25
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;; ping.scm (running on node1)
(declare (block))
(import (termite))

(define pong-server
(remote-service 'pong-server node2))

(define new-server
(spawn

(lambda ()
(let loop () ;; code that will be migrated

(recv
((from tag 'clone)
(call/cc

(lambda (k)
(! from (list tag k)))))

((from tag 'ping)
(! from (list tag 'pong)))

(('update k)
(k #t)))

(loop)))))

(node-init node1)

(!? pong-server 'ping) ; => gnop
(! pong-server (list 'update (!? new-server 'clone)))
(!? pong-server 'ping) ; => pong

;; buggy-pong.scm (running on node2)
(declare (block))
(import (termite))

(define pong-server
(spawn

(lambda ()
(let loop ()

(recv
((from tag 'ping)
(! from (list tag 'gnop))) ;; BUG!

(('update k)
(k #t)))

(loop)))))

(node-init node2)

;; publish the pong server
(publish-service 'pong-server pong-server)

Figure 1: Hot code update example

Here the created thread loops forever receiving lists of the
form (from tag square x ) where from is the source thread,
tag is a unique tag created for this request/response, and x
is the number to square. The thread responds with a message
of the form (tag result ) where result is the square of x .

2.1 Hot code update
In many distributed system implementations, updating the
code of a node requires restarting the program running on
that node. Performing hot code updates while a program is
running is useful to change its behaviour without interrupting
the service. This can be to fix a bug or to extend the service.
In Termite, this is possible in part because both procedures
and continuations are serializable.

A basic ping-pong example is enough to unveil issues of
the original implementation of Termite. In this example there
are two nodes each running a thread; one that sends ping
and the other that replies pong. The Termite Scheme code
in Figure 1 demonstrates how to perform a hot code update
of the server without interrupting its service. The actors
in this scenario are the server (buggy-pong.scm) and the
client (ping.scm). Note that the server’s implementation has
a deliberately introduced bug: it replies to a ping request
with the message gnop instead of pong.

The client application designed to fix the server is com-
posed of a thread that contains the new behaviour of the
server. The thread must handle the same messages as the

buggy pong server to be compatible. Additionally, it is dis-
tinguished in two ways, first it fixes the response message
to pong when receiving ping, second it handles the message
clone which captures the continuation of the client thread
which will be sent to the buggy server to fix it.

The client starts by creating a local service with spawn. It
pings the buggy pong server and prints the (incorrect) result,
creates and sends the continuation of the new-server to the
buggy pong server in an update message. Then, it re-pings
the server and prints the (correct) result. In the original
implementation of Termite this works correctly when the
code is run interpreted, but it fails when compiled. This is
because the message sent by the client contains a continuation
that refers to return points in compiled code that do not
exist on the server that receives the message. Our module
system offers a mechanism solving this problem.

2.2 RPC/RMI
Remote procedure call (RPC) and remote method invocation
(RMI) are both mechanisms that allow remote execution of
code on a remote computer. The essential difference is that
RMI is object-oriented while RPC is not. Java RMI sup-
ports direct transfer of serialized Java classes and distributed
garbage collection. A remote call[5] can be described as the
following sequence of events:

(1) The client calls a local stub with parameters passed to
it in a normal way.
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(2) The client stub packs the parameters into a message.
This is called marshalling.

(3) The client sends the message to a server on the remote
node.

(4) The server stub unpacks the parameters of the message.
This is called unmarshalling.

(5) Finally, the server stub invokes the procedure with the
arguments. The result is marshalled then sent back to
the client.

In Termite Scheme and Erlang, RPC servers can be imple-
mented by creating a service that dispatches the messages to
the right procedure. The square service example given earlier
is a RPC server allowing a single procedure to be called. In
general, the message dispatch used in the server constrains
the procedures that can be executed to the ones handled by
the dispatcher.

Termite has the on procedure to circumvent this constraint
by allowing the execution of a thunk on any node. This pro-
cedure takes as parameters a node and a thunk and returns
the result of calling the thunk on that node, for example
(on node2 (lambda () (directory-files))). This simpli-
fies the implementation of RPC servers to a simple node
initialized with the node-init procedure.

The procedure remote-spawn is similar to spawn but the
thread it creates is on the node specified as a parameter. This
thread can then be used to execute specific code. No interface
code is required because the client explicitly sends the thunk
to the destination node.

The power of these features rests on the transparent unre-
stricted code migration mechanism possible with our module
system.

3 EXISTING GAMBIT FEATURES
The implementation of our module system uses the following
existing Gambit features.

3.1 Symbolic paths
When a filesystem path begins with ˜˜name it expands to
the path bound to that name in the symbolic path dictionary.
This extension to the filesystem path syntax is convenient for
accessing directories whose location depends on the system
configuration or command line arguments. For example ˜˜lib
is bound to the directory containing the builtin Gambit
libraries and ˜˜userlib is bound to the directory containing
user installed libraries.

3.2 Module loader
A source code file may contain the declaration (##supply-module
module-id ) to identify the file as the module module-id .
It can also contain a set of (##demand-module module-id )
forms indicating dependencies on functionality provided by
the modules identified by module-id . When the file is com-
piled, these properties are embedded in the generated code
and available to the module loader. When the compiled file
M is loaded the Gambit runtime system will ensure that M ’s
required modules are loaded first. The required modules are

searched using the module-id in a set of directories known
as the module search order, which by default is ˜˜userlib
followed by ˜˜lib.

3.3 Object serialization
The serialization of objects in Gambit is done with the proce-
dure object->u8vector which takes as parameters the object
to serialize and optionally a transform procedure which is
called on every sub-object inside the object in order to cus-
tomize the serialization process. The result is a u8vector
(vector of bytes).

The serialization of most objects is straightforward. A
first byte indicates in the upper bits the type of the object,
and possibly some basic property such as its length in the
remaining bits of the byte (if it fits otherwise in the following
bytes). This is followed by the serialization of each field of the
object. For example the vector #(1 2 3) is serialized to the
four bytes #x23 #x51 #x52 #x53. The first byte indicates
the vector type and a length of 3, and the remaining bytes
the type and value of the small integers 1, 2 and 3.

Circular references and shared objects are handled by
keeping track of the position of serialized objects in the byte
stream and using a special type that refers to a previously
serialized object by its position in the stream.

The machine independent serialization of compiled proce-
dures, closures and continuations is based on the serialization
of control points. There are control points for procedure entry
points, closure entry points and non-tail call return points.

The serialization of control points is the key to serialize
closures and continuations. Gambit uses a flat closure repre-
sentation [7]. A closure is a vector-like object containing the
free variables and a reference to a control point (the closure’s
entry point). Gambit uses the incremental stack/heap strategy
[10] for managing continuations. A continuation is a chain of
continuation frames, either stored on the stack or the heap
(the details of the representation are given in [13]).

Continuation frames, like closures, are vector-like objects
containing values and a reference to a control point (the
return point of a non-tail procedure call). These objects are
serialized similarly to vectors. Each of their fields needs to
be serialized, the only particularity is that one of the fields
is a control point.

For historical reasons Gambit uses the term subproce-
dure for control points. Each subprocedure has a parent
which is the toplevel procedure that contains it. The sub-
procedures contained in a given parent are assigned a ma-
chine independent integer index identifying that control
point in the parent: its id. Each toplevel procedure has
itself as a parent and an id of 0. These attributes can
be obtained with the procedures (##subprocedure-parent
subproc ) and (##subprocedure-id subproc ) which access
meta-information maintained by the runtime system. The
inverse operation, namely the retrieval of the subprocedure
with a given parent and id, is performed by the procedure
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Figure 2: Machine independent control point identification

(##make-subprocedure parent id ). Figure 2 shows a pro-
cedure containing three control points, their logical relation-
ship, and how they can be retrieved with ##make-subprocedure.

The last issue to address is the machine independent
identification of the parent. Gambit has a block compila-
tion declaration, i.e. (##declare (block)), that tells the
compiler that all global variables defined in the file are not
mutated in other files. When this declaration is used, the
Gambit compiler assigns a name to each toplevel procedure,
which is typically the name of the global variable used in the
toplevel define, or a name derived from the filename when
the lambda-expression is not used in a toplevel define. The
serialization of parent procedures uses this name, which is
obtained with the procedure (##subprocedure-parent-name
subproc ). Deserialization needs to recover the reference to
the parent given its name, and this is done with the procedure
(##global-var-primitive-ref name ). This procedure fails
when a toplevel procedure with that name does not exist in
the receiving node’s program. Our module system catches this
case to trigger the dynamic loading of the missing compiled
code with a mechanism explained in Section 4.1. The main
point is that the name of the toplevel procedure contains
enough information to find the corresponding source code,
compile it and load it.

3.4 Namespaces
To avoid clashes of global variables and toplevel macros
between modules, Gambit partitions names into namespaces.
A name is qualified when it contains a #, such as math#pi, and
is unqualified when it does not, such as sqrt. This notation
is inspired by Curtis’ et al module system for Scheme [11]. A
namespace is a prefix that is added to unqualified variable
and macro names to make the name qualified. For example,
the math# namespace applied to the unqualified sqrt results
in the qualified name math#sqrt. A namespace is either the
special empty namespace or a name that ends with a #.

(##namespace ("math#")
("" (def define) if < * -))

(def (fact n)
(if (< n 2) 1 (* n (fact (- n 1)))))

Figure 3: Namespace declaration example

Gambit’s ##namespace declaration controls which names-
pace is added to unqualified names in the scope of the dec-
laration (which is the rest of the file if at toplevel). Three
forms of this declaration exist (to simplify we have used the
ns# namespace):

(1) (##namespace ("ns#"))
(2) (##namespace ("ns#" name1...))
(3) (##namespace ("ns#" (name1 alias1)...))

In the first form, all unqualified identifiers in the scope of
the declaration will be augmented with the ns# prefix. In
the second form only the unqualified names name1 . . . are
augmented. In the third form the unqualified names name1 . . .
are renamed to alias1 . . . and then the ns# prefix is added.

A toplevel ##namespace declaration placed at the begin-
ning of a file can map the names used in the rest of the code
to appropriate namespaces. Figure 3 shows a sample use to
implement a small math library. The declaration maps def
to define (in the empty namespace), and everything else
except if, <, *, - to the math# namespace. Consequently this
code actually defines the math#fact procedure. If the code
contained other definitions they too would define names in
the math# namespace. Another module could access this pro-
cedure directly with the qualified name math#fact, or with
fact if in the scope of a (##namespace ("math#" fact)), or
with factorial if in the scope of a (##namespace ("math#"
(factorial fact))).

4 OUR MODULE SYSTEM
4.1 define-library form
To help with the adoption of our module system we have
designed it to be compatible with the R7RS standard [24].
The main form for defining libraries (which is synonymous
to modules in this paper) is the define-library form which
has the following syntax:

(define-library <library name>
<library declaration> ...)

The first argument is the library name; a non-empty list
of identifiers such as (scheme base). The name is followed
by library declarations which can be any of the following
forms, of which the last six are extensions to the R7RS syntax
offering fine control over the compilation and linking process:

∙ (export <export spec> ...)
∙ (import <import set> ...)
∙ (begin <command or definition> ...)
∙ (include <filename> ...)
∙ (include-ci <filename> ...)
∙ (include-library-declarations <filename> ...)
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(define-library (github.com/fred hello)
(export hi)
(import (only (scheme base) define)

(rename (scheme write) (display show)))
(begin

(define (hi str)
(show "hello ")
(show str)
(show "\n"))))

Figure 4: The library (github.com/fred hello) exporting
the procedure hi

∙ (cond-expand <cond expand features> ...)
∙ (namespace <namespace> ): e.g. (namespace "X11#")
∙ (cc-options <options> ...): e.g. (cc-options "-O3")
∙ (ld-options <options> ...): e.g. (ld-options "-lX")
∙ (ld-options-prelude <options> ...)
∙ (pkg-config <options> ...): e.g. (pkg-config "X11")
∙ (pkg-config-path <path> ...)

The library’s variable and macro definitions are typically
contained in the begin declaration. It is also possible to put
the definitions in another file that is included with one of
the include forms. The cond-expand form allows conditional
activation of the library declarations it contains depending
on the system’s support for specific features.

The export declaration indicates the list of variables and
macros defined by the library that are accessible to code
importing this library. Like with R7RS the export declaration
can indicate that specific (internal) names are renamed to
other (external) names.

A library declares a dependency to another library with
the import declaration. This declaration identifies the im-
ported library. The import declaration may restrict the sub-
set of exported names that are imported (by default all
exported names are imported). The exported names may
also be renamed. This is specified in the <import set> with
the forms (only ...), (except ...), (rename ...), and
(prefix ...). We have extended the R7RS syntax for im-
ported library names to allow a trailing @version that indi-
cates the specific version required. Any mobile code libraries
imported must have a version indicator for reliable operation
of the module system.

Figures 4 and 5 are an example of libraries defined with
our extended define-library. Figure 4 implements a library
that exports the procedure hi. It uses an import declaration
that imports only the name define exported from the stan-
dard library (scheme base) and all the names exported from
the standard library (scheme write), but with display re-
named to show. Figure 5 is a library that depends on version
1.0 of the library defined in Figure 4.

The R7RS specifies that the library name “is used to
identify the library uniquely when importing from other pro-
grams or libraries”. In the context of mobile code libraries,
our system has the stronger requirement that libraries are

(define-library (gitlab.com/zoo cats)
(import (only (scheme base) define)

(github.com/fred hello @1.0))
(begin

(define (main)
(hi "lion")
(hi "tiger"))))

Figure 5: The library (gitlab.com/zoo cats) which de-
pends on version 1.0 of the library (github.com/fred
hello)

identified uniquely across all nodes of the distributed sys-
tem. This is achieved by requiring mobile code libraries to
be in code repositories hosted by version control system
servers (which could be a public service such as github.com
or a privately managed server) and to use the location of
the repository in the name of the library. The use of a ver-
sion control system allows multiple versions of the library
to be stored in a single repository; each identified with a
specific commit tag. The use of a network accessible repos-
itory makes it possible to obtain the code from any node
of the distributed system. In our example the library name
(github.com/fred hello) encodes the location of the repos-
itory, i.e. http://github.com/fred/hello.

The module system uses the library name and version to
construct a unique library identifier. The version is either
implicit (the current commit tag of the version control sys-
tem) or indicated explicitly in the import declaration. All
identifiers in the library name are concatenated with a / sep-
arator followed by an @ and the version identifier (implicit or
explicit). A trailing # is added to get the unique namespace
for the library. Unless the library has a namespace library
declaration to force the namespace (which is mainly useful
for builtin libraries), the namespace derived from the library
name is used to construct the qualified names of the (toplevel)
variables and macros defined by the library. Due to the guar-
anteed namespace uniqueness, name clashes between libraries
are not possible, including different versions of the same li-
brary. In our example, if the version of the library is 1.0, the
definition of hi is in reality defining the global variable with
the qualified name github.com/fred/hello@1.0#hi whereas
if the version is 1.5 it is github.com/fred/hello@1.5#hi
that is defined.

Having the library location and version information in the
global variable name provides valuable information to the
subprocedure deserialization mechanism. When the proce-
dure (##global-var-primitive-ref name ) fails because a
procedure with that name does not exist on the receiving
node the system uses the procedure name to determine where
to fetch a copy of the repository for the library containing
that procedure, and which version of the repository is needed.
A local copy of the repository at the required version is
then made and the Gambit compiler is invoked to create the
compiled code which is dynamically loaded into the running
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;; expansion of (define-library (github.com/fred hello) ...)

(##declare (block))

(##supply-module github.com/fred/hello@1.0)

(##namespace ("github.com/fred/hello@1.0#")
("" define

(show display)
write-shared
write
write-simple))

(define (hi str) ;; defines github.com/fred/hello@1.0#hi
(show "hello ") ;; calls display
(show str) ;; same
(show "\n")) ;; same

;; expansion of (define-library (gitlab.com/zoo cats) ...)

(##declare (block))

(##supply-module gitlab.com/zoo/cats@2.0)
(##demand-module github.com/fred/hello@1.0)

(##namespace ("gitlab.com/zoo/cats@2.0#")
("" define)
("github.com/fred/hello@1.0#" hi))

(define (main) ;; defines gitlab.com/zoo/cats@2.0#main
(hi "lion") ;; calls github.com/fred/hello@1.0#hi
(hi "tiger")) ;; same

Figure 6: Expansion of version 1.0 of the library
(github.com/fred hello) and version 2.0 of the library
(gitlab.com/zoo cats)

program, allowing the deserialization to resume. The com-
piled code is kept locally to avoid costly recompilations if
that version of the library is used again in the future. The
local copy of the repository is also kept to avoid fetching it
again if another version of the library is required.

4.2 Implementation of define-library
The define-library form is implemented as a macro that
expands into existing Gambit forms. For the libraries shown
in Figures 4 and 5, expanding the define-library forms
produces the code shown in Figure 6, for versions 1.0 and
2.0 of the libraries respectively.

The expanded code starts with a (##declare (block))
declaration that informs the compiler that variables defined
in the library will not be mutated in other libraries (this se-
mantics is part of the R7RS specification). This enables some
optimizations by the compiler, such as constant propagation
and inlining, and it also causes the compiler to assign to each
toplevel procedure a name that includes the library’s location
and version, necessary for the deserialization process.

This is followed by a (##supply-module library-id ) that
provides the module loader with the identity of the library and
version implemented by the code. For each imported library

(with a non-empty set of definitions), a (##demand-module
library-id ) is generated to inform the module loader that
the specified library must be loaded first. The handling of
exported and imported names is done through a generated
##namespace form that maps the names used in the library’s
code to the qualified names. The definition of all imported
macros is then generated.

After that the library’s code is generated in its original
form. No further processing is needed by the define-library
macro because the compiler will use the namespace declara-
tions to map the names appropriately during the compilation
process.

4.3 Other features
In this section we explain other features of the module system
that are not essential for reaching our goal but that are useful
in day-to-day use.

4.3.1 Optional version. During the development phase it is
good to have a fast turnaround time when debugging a library.
It would be tedious to assign a new version after each change
of the code. For this reason the module system distinguishes
installed libraries from those that are not installed. When
a local copy of a library has been obtained from a version
controlled repository (on the network or the local filesystem)
it is installed and the different versions can be referenced
in import declarations. A library that is stored in a local
directory, possibly managed by a version control system, is
not installed. In this case import declarations must not refer
to a specific version and the current state of the code is used.
This improves the workflow as it avoids having to install the
library after each change. Nevertheless, if it is in a version
controlled repository, it is possible to install it whenever there
is a need to assign a version to it.

4.3.2 Module aliases. With the (define-module-alias
lib1 lib2) form, symbolic names can be defined to refer
to libraries and library references can be redirected to other
locations. This is useful for the development phase for quickly
swapping one library for another. It also allows putting the
choice of library versions in a centralized place instead of
each and every import declaration to be able to upgrade
to new versions with a single edit. For example, when the
following definitions are in effect:

(define-module-alias (gitlab.com/zoo cats)
(gitlab.com/zoo cats @2.0))

(define-module-alias (fh)
(github.com/fred hello))

an (import (gitlab.com/zoo cats)) will import the library
(gitlab.com/zoo cats @2.0) and an (import (fh @1.0))
will import the library (github.com/fred hello @1.0). The
module alias definitions that are put at the root of a library’s
directory in the file _setup_.scm of a directory will apply
automatically to the libraries in that directory (with lexical
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scoping rules respecting the nesting of the directories up to
the root of the repository).

4.3.3 Library management. Automatically installing a li-
brary from the network when it is referenced in a deserializa-
tion could be a security issue. The Gambit interpreter allows
manual installation of modules through command-line argu-
ments, for example gsi -install github.com/fred/hello.
Moreover, the runtime system maintains a whitelist of the
locations from which libraries are unconditionally installed.
By default the whitelist contains only github.com/gambit,
the Gambit project account. The whitelist can be extended
through environment variables and command line arguments.
When the library’s location is not on the whitelist a con-
firmation will be asked of the user if a REPL is currently
started (the runtime system can be configured to always ask
for confirmation, or to always refuse to install such libraries).

5 EVALUATION
The original implementation of Termite Scheme was able to
send messages containing code that the receiving node did not
have as long as the code was interpreted. Our module system
extends this capability to compiled code. In this section we
evaluate experimentally the performance gain due to the
more compact messages and the faster compiled code.

Three machines with different operating systems and archi-
tectures were used in the experiments to exercice the machine
independence. All three machines are on the same Gigabit
ethernet LAN. The machine MARM/Linux is a 4-core armv7l
with 2GB RAM running Linux 4.19 (Raspberry Pi). The
machine Mx86/macOS is a 6-core Intel i7-8700B with 32GB
RAM running macOS. The machine Mx86/Linux is a water-
cooled 4-core Intel i7-7700K with 16GB RAM running Linux
4.9. The later machine is the fastest and the execution time
measurements are the most stable of the three machines due
to the better thermal control. This fast machine is always
used as the destination of the code migrations; a situation
that is representative of the case where the destination of a
RPC is a fast compute server.

Three standard Scheme benchmark programs of different
source code sizes (in bytes) were used to see the effect of the
code size:

∙ Puzzle (4K)
∙ Scheme (40K)
∙ Compiler (400K)

The internal iteration count of the programs was adjusted
so that they would have an execution time when interpreted
that is roughly proportional to their size. So 400K has both
the largest code size and the longest run time (roughly 10
seconds on Mx86/Linux).

The programs are adapted to our use case as follows.
The program is turned into a library by wrapping it in
a define-library form that exports the program’s main
entry point and the library is put in a repository hosted
on github.com. A separate driver program simply imports
the library and then causes the program to be executed

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 146.4 ± 0.6 966.9 ± 6.1 10463.8 ± 3.3
On destination 131.6 ± 0.2 948.7 ± 5.9 10381.0 ± 2.7

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 179.2 ± 1.6 1002.7 ± 8.1 10801.1 ± 11.0
On destination 132.6 ± 0.7 954.6 ± 0.0 10390.5 ± 2.6

Figure 7: Timings in the INTERPRETED scenario with
Mx86/macOS or MARM/Linux as the start node

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 15.5 ± 0.7 48.5 ± 0.6 478.7 ± 0.6
On destination 2.2 ± 0.0 35.2 ± 0.1 463.3 ± 0.3

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 26.9 ± 1.2 60.4 ± 0.6 492.5 ± 0.7
On destination 2.2 ± 0.0 35.2 ± 0.0 462.8 ± 0.3

Figure 8: Timings in the STEADY-STATE scenario with
Mx86/macOS or MARM/Linux as the start node

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 1208.6 2460.3 148536.2
On destination 2.2 36.1 464.7

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 1159.8 2502.0 153272.6
On destination 2.2 37.1 464.1

Figure 9: Timings in the FIRST-INSTALL scenario with
Mx86/macOS or MARM/Linux as the start node

on Mx86/Linux using Termite’s on form calling the library’s
“main”. The total execution time is measured and also the ex-
ecution time on the destination node. The difference between
these measures is accounted for by the message transfers,
the serialization and deserialization, and when the library
isn’t currently installed, the installation of the library source
code locally from github.com, the Scheme to C compilation,
and the C compilation. The programs are run 20 times, the
top and bottom outliers are removed to account for random
variations in the network latency, and the tables of results
contain the average and standard deviation for each measure
in milliseconds.

Three scenarios are tested:
∙ INTERPRETED: The whole program is interpreted.

This represents the performance achievable before our
module system was implemented.

∙ FIRST-INSTALL: The compiled program is executed
and the destination machine is installing the library
for the first time.
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∙ STEADY-STATE: The compiled program is executed
and the destination machine has previously installed
and compiled the library.

Figures 7, 8, and 9 give the timings for the INTER-
PRETED, STEADY-STATE, and FIRST-INSTALL scenar-
ios respectively with either Mx86/macOS or MARM/Linux as
the start node, and always Mx86/Linux as the destination
node.

The first observation is that in all the scenarios the speed
of the start node has very little bearing on the total RPC
time. This is to be expected because most of the work is done
on the destination node. The slower times are generally for
MARM/Linux. This can be explained by the higher messaging
overhead.

The message transfer overhead (network latency and se-
rialization/deserialization) will increase with the size of the
messages. In the STEADY-STATE scenario the messages
are the parameters of the called procedure and the result.
This goes from less than a hundred bytes (for 4K) to tens
of kilobytes (for 400K). In this scenario the messaging over-
head varies between 13-15ms for Mx86/macOS and between
25-30ms for MARM/Linux (slower processor and network in-
terface). The execution time on the destination is essentially
identical. In the INTERPRETED scenario the messages also
carry a representation of the code to be executed, which is
large for 400K. In this scenario the messaging overhead varies
between 15-83ms for Mx86/macOS and between 47-411ms for
MARM/Linux (here again the overhead is impacted by the
slower processor and network interface). Nevertheless the
messaging overhead represents a small fraction of the total
RPC time. For the STEADY-STATE scenario, as expected
the messaging overhead is at its highest for 4K, the shortest
running program, because messaging represents more work
than the actual computation on the destination.

To evaluate the speed improvement of RPC calls achieved
with our module system, we can compare the INTERPRETED
and STEADY-STATE scenarios. The total RPC time for
STEADY-STATE is up to 22x faster for Mx86/macOS and
MARM/Linux on 400K. The shortest running program, 4K,
has the lowest but still considerable speedup of 6x-9x.

Figures 9 shows that the time for the installation and com-
pilation of the library can be quite large for large programs
(400K, which is about 10,000 LOC, takes about 150 seconds
and the others less than 2.5 seconds). Thankfully, installation
only has to be done once per library and version used and
libraries are rarely so big, especially when good modular
programming practices are used.

6 RELATED WORK
The package management offered by our system supports
installing multiple versions of a package, which ensures the
same dependencies on all nodes. The package management
of the Go [6] programming language supports installing and
using multiple versions of a module, but it does not support
execution time installation of modules that is needed for hot
code update. QuickLisp [27] follows a different approach of

only keeping the last installed version of packages, which
can break dependencies. The module identification does not
include the location as the module names are mapped to their
location using a central directory, which means the module
names have to be registered to avoid name clashes. Like our
system, QuickLisp stores modules on public VCS services
and has an automatic installation of modules but it is not
tied to deserialization. Nix [12] is a system package manager
that shares the same idea of keeping multiple versions of a
package to avoid breaking dependencies. However, it is not
meant to be used as a language package manager and thus
it is not integrated with a specific language. Erlang supports
hot code update but because the module identification does
not contain the location of the library the installation of
modules must be done separately.

Before the R6RS standard was ratified (2007), most Scheme
systems had designed their custom module system. Support
for R6RS and its module system was added to some systems
notably Chez Scheme, Guile, Larceny, and PLT Scheme (now
Racket). The R6RS standard includes a library form to
define libraries which has much syntactic similarity to the
R7RS define-library form used by our work. A relevant
difference is R6RS’ support for version information in the
library name. Our module system allows version informa-
tion in import declarations but not in the define-library
form. We believe it is less error prone to obtain this informa-
tion from the underlying version control system as it avoids
possible inconsistencies with the code.

Since the ratification of R7RS (2017), support for its less
complex module system is growing among Scheme systems
with close to 20 systems supporting it. For the strictly R6RS
compliant ones the Akku.scm project [26] has developed
a converter from the R7RS define-library form to the
R6RS library form. The more widespread support for R7RS’
module system is one of the motivations for adopting it in
our work.

Over the years different groups have implemented module
systems extending Gambit Scheme. Black Hole [1] is an R5RS
compatible module system designed to add as little extra
syntax as possible to Gambit Scheme. JazzScheme [8] and
Gerbil [25] are more intrusive as they promote a whole new
custom program structure and syntax, and add features such
as object orientation. The SchemeSpheres [2] project has used
a prototype implementation of our define-library macro,
so it has much similarity to our latest work.

However, none of these systems offer the same combination
of features as our work and specifically none offers transparent
deserialization of compiled procedures and continuations.

The library naming approach we have used which includes
the repository location to identify the library could be used
by other R7RS Scheme systems without modifying their
implementation. This would help avoid library name clashes
and also pave the way for future extensions of those Scheme
systems to automatically install the library from a public
repository (independent of any support for procedure and
continuation deserialization).
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ABSTRACT
We introduce the concept of sealable metaobjects, i.e., classes,

generic functions, and methods, whose behavior is restricted to

allow for some static analysis. �en we use these sealable metaob-

jects to de�ne fast generic functions, a variant of standard generic

functions that allow for call site optimization — ranging from faster

method dispatch to inlining of entire e�ective methods. Fast generic

functions support almost all features of standard generic functions,

including custom method combinations and non-trivial references

to the next method. Our benchmarks show that a straightforward

implementation of Common Lisp’s sequence functions using these

fast generic functions is competitive with the corresponding built-

in sequence functions of SBCL. Fast generic functions are thus an

a�ractive drop-in replacement for standard generic functions in

performance critical codes.
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(ELS’20), 7 pages.

DOI: 10.5281/zenodo.3743823

1 INTRODUCTION
A�er three decades, the Metaobject Protocol[7] of the Common

Lisp Object System is still the pinnacle of object oriented program-

ming technology. Objects, functions and classes can be created,

modi�ed and augmented continuously, without sacri�cing either

correctness
1

or performance. Because generic functions, methods

and classes are themselves objects, they can also be extended. �is

capability allows programmers to explore a whole space of object

oriented paradigms.

Yet there is one rather fundamental limitation of CLOS. Since

objects can be rede�ned at any time, implementations are forced to

use at least one indirection when calling a generic function. It is

not possible to move any part of a generic function into the call site.

�is indirection is great for modularity and extensibility, but means

1
Barring eccentricities like concurrent modi�cation of the class hierarchy.
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that generic functions are inherently ill suited for the representa-

tion very lightweight operations such as arithmetic operations on

�oating-point numbers. In particular, new Lisp programmers are

frequently disappointed that they cannot extend standard functions

like + and find to new data types.

In this paper, we show how these limitations can be li�ed while

preserving most of the �exibility that programmers expect from

CLOS. We �rst de�ne a set of sealable metaobjects with carefully

chosen limitations on how they can be extended and rede�ned.

�en, in a second step, we show how these metaobjects can be used

to implement fast generic functions, a variant of standard generic

functions that perform several powerful optimizations. Finally,

we show how fast generic functions can be used to de�ne e�cient

number and sequence functions and present some promising bench-

mark results. All our work is available on �icklisp. �e library

for metaobject sealing is called sealable-metaobjects, and the

library that provides fast generic functions is called fast-generic-

functions.

2 RELATEDWORK
�e idea of sealing metaobjects to speed up certain kinds of pro-

grams is not new. Similar functionality can be found both in Com-

mon Lisp libraries, and in the Dylan programming language. Our

main contribution is to gather these ideas and to make them acces-

sible in a high quality implementation. �erefore, we are indebted

to the following prior endeavors:

• Henry Baker has proposed a subset of CLOS called Static

CLOS[2], where it is not possible to change the class of

any object and the class hierarchy is �xed at compile-time.

In doing so, Static CLOS allows the compiler to eliminate

most of the overhead that is normally associated with calls

to generic functions. In contrast to our technique, Static

CLOS enforces its restrictions globally, not just for a chosen

set of metaobjects, and it bypasses most of the machinery

of the Metaobject Protocol altogether.

• �e Dylan programming language[9] has a feature called

de�ne sealed domain that permanently freezes a part of the

domain of a generic functions, while still allowing changes

outside of the sealed domain. Our technique closely mimics

this feature, except for the necessary adaptions to integrate

it into Common Lisp.

• �e library inlined-generic-function[1] by Masataro

Asai provides generic functions that can be inlined into

the call site. Our work is directly inspired by this library,

but tries to improve upon several issues. �e crucial di�er-

ence is that the inlined-generic-function library works by

inlining the dispatch function and all reachable e�ective
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methods into the call site, while our technique will only

inline e�ective methods if they are marked as reasonably

cheap, and if the dispatch function can be reduced to a

single case. By using more conservative inlining rules, we

achieve that users can unconditionally use fast generic

functions without worrying about code bloat.

• �e library specialization-store[4] by Mark Cox pro-

vides an alternative to generic functions that trade various

features of CLOS — like method combinations, argument

precedence ordering and class-based dispatch — for be�er

compile-time optimizations.

• �e library static-dispatch[6] by Alexander Gutev pro-

vides a mechanism of static dispatch that is implemented

via compiler macros and shadowing of defmethod. How-

ever, the library is not extensible and doesn’t support

method combinations.

3 METAOBJECT SEALING
Common Lisp permits incremental changes to the class hierarchy

and to the methods of a generic function. �e purpose of metaobject

sealing is to restrict these capabilities in order to enable static

analysis and optimization.

3.1 Sealable Metaobjects
Sealable metaobjects are classes, generic functions, methods, slot-

de�nitions or method combinations with two states — sealed and

unsealed. Once a metaobject is sealed, it remains sealed inde�-

nitely. Furthermore, the following restrictions apply to all sealed

metaobjects:

(1) Calling reinitialize-instance on a sealed metaobject has no

e�ect.

(2) It is an error to change the class of a sealed metaobject.

(3) It is an error to change the class of any object to a sealed

metaobject.

(4) It is an error to change the class of an instance of a sealed

metaobject.

(5) Each superclass of a sealed metaobject must be a sealed

metaobject.

Restriction (1) ensures that slots cannot be mutated without

going through the corresponding accessors or protocols. �e re-

strictions (2), (3) and (4) allow a compiler to reliably perform static

type inference. �e restriction (5) ensures that the behavior of a

sealed class cannot be changed adding new superclasses to it, or by

modifying existing superclasses.

Built-in classes, structure classes, and system classes are sealed

metaobjects according to our de�nition. In addition, we provide a

sealable-metaobject-mixin class that can be used as a building

block for other kinds of sealable metaobjects.

3.2 Sealed Specializers
A sealed specializer is either a sealed class, or an EQL specializer

whose object is an instance of a sealed class. Each sealed specializer

also denotes a Common Lisp type. For a specializer that is a class,

the type is the set of all objects that are of that class. For an EQL

specializer, the type is the set of all objects that are EQL to the

specializer’s object.

3.3 Domains
A domain is the cartesian product of the types denoted by some

specializers. A sealed domain is a domain whose constituting spe-

cializers are sealed. �e domain of a method with n required argu-

ments is the n-ary cartesian product of the types denoted by the

method’s specializers. We say a method is inside of a domain D if

the method’s domain is a subset of D, and outside of a domain D if

the method’s domain is disjoint from D.

A domain designator is either a domain, or a list of specializer

designators. A specializer designator is either a specializer, or a

class name, or an expression of the form (eql X) for some object

X. Most functions that work with domains will accept arbitrary

domain designators and convert them to domains in the obvious

way.

3.4 Sealable Generic Functions
A sealable generic function is both a generic function and a sealable

metaobject. It may contain any number of sealed domains. Initially,

a sealable generic function has zero sealed domains. New sealed

domains can be added by the function seal-domain, which takes

a sealable generic function and a domain designator. �e following

rules apply to sealed domains of a generic function.

(1) All sealed domains of a generic function must be disjoint.

(2) Each method of the generic function must either be fully

inside of the sealed domain, or fully outside of the sealed

domain.

(3) Each method inside of a sealed domain must be sealed, and

all of its specializers must be sealed.

(4) It is an error to add or remove methods from inside of a

sealed domain.

(5) It is an error to create a subclass of a sealed class that would

violate any of the previous rules for any sealed generic

function.

�ese rules ensure that the behavior of a sealed generic function

whose arguments are provably within any of its sealed domains is

fully known at compile time.

3.5 Potentially Sealable Methods
A potentially sealable method is both a method and a sealable

metaobject. It is called potentially sealable because it can only

be actually sealed if all of its specializers are sealable. �e main

purpose of potentially sealable methods is to use them (or a subclass

thereof) as the generic function method class of a sealable generic

function.

Potentially sealable methods have one additional feature in that

they support method properties. Method properties are declarations

that are automatically extracted from the method body and are

made available with the generic function method-properties. �e

generic function validate-method-property checks whether a

method property is valid. Figure 1 shows how one can de�ne and

use method properties. �e purpose of method properties is to

allow annotations in custom methods, e.g., whether the method is

lightweight enough for inlining.
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(defclass my-method1

(potentially-sealable-standard-method)2

())3

4

(defclass my-generic-function5

(sealable-standard-generic-function)6

()7

(:default-initargs8

:method-class (find-class 'my-method))9

(:metaclass funcallable-standard-class))10

11

(defmethod validate-method-property12

((m my-method) (p (eql 'foo)))13

t)14

15

(defmethod validate-method-property16

((m my-method) (p (eql 'bar)))17

t)18

19

(defgeneric my-gf (x)20

(:generic-function-class my-generic-function))21

22

(defmethod my-gf ((x number))23

(declare (method-properties foo)))24

25

(defmethod my-gf ((x sequence))26

(declare (method-properties bar foo)))27

28

(mapcar #'method-properties29

(generic-function-methods #'my-gf))30

;;; => ((bar foo) (foo))31

Figure 1: De�ning and using method properties.

3.6 Automatic Sealing
When a sealable metaobject is sealed, it automatically a�empts

to seal all its superclasses. When a sealable method is sealed, it

automatically a�empts to seal all its specializers. Furthermore, the

function seal-domain seals both the generic function and all its

methods that lie inside of the sealed domain. �is way, users usually

don’t have to worry about the distinction between sealable and

sealed metaobjects at all.

4 FAST GENERIC FUNCTIONS
So far, we have characterized sealable metaobjects solely by show-

ing what they can’t do. In this section, we will show how one can

exploit the restrictions that we have introduced to speed up generic

function calls. To do so, we de�ne fast generic functions and fast

methods as subclasses of sealable standard generic functions and

potentially sealable standard methods, respectively.

Fast generic functions behave exactly like standard generic func-

tions, except that their generic function method class is fast-method,

and that they are sealable. �e behavior of a fast method is just like

that of a standard method, except that it inherits all the restriction

Type Prototype
(eql 42) 42

(and integer (not (eql 42))) 5

(and real (not integer)) 0.0

Figure 2: Static call signatures for the domain of real num-
bers, for methods specializing on (eql 42) integer and real.

that are imposed on sealable methods, and that all fast methods

must be de�ned in a null lexical environment.

By enforcing that all fast methods are de�ned in a null lexi-

cal environment, we create several optimization opportunities. In

particular, we may inline method functions directly into each e�ec-

tive method, and inline entire e�ective methods into the call site.

Furthermore, knowing that a method is de�ned in a null lexical

environment allows us to safely manipulate the method lambda.

We exploit this to introduce a more e�cient calling convention for

method functions.

�e next subsections contain a more detailed description of the

individual steps towards faster generic functions.

4.1 Static Call Signatures
Whenever a sealed domain is added to a generic function, we com-

pute its set of static call signatures. A static call signature consists

of a list of types and a list of prototypes, each with one element

per required argument of the generic function. �e lists of types

of each static call signature are disjoint and their union covers the

entire sealed domain. �e list of prototypes is chosen such that

each prototype lies within the corresponding type, and not within

the corresponding type of any other static call signature. We give

an example of static call signatures in Figure 2.

Static call signatures are the backbone of fast generic functions.

�e compiler checks the types of all static call signatures to deter-

mine whether one of them is applicable. If so, our library can pass

the prototypes of that static call signature to compute-applicable-
-methods to determine the ordered list of applicable methods. �e

list of applicable methods can then be used to compute an optimized

e�ective method.

4.2 Call-site Analysis
Once a call to a fast generic function occurs in the source code, we

have to check whether a static call signature of that function is

applicable. One way to do so is by de�ning a compiler macro for the

fast generic function, and using introspection to �gure out the types

of the arguments in the current environment. But this approach

tends to work only if all required arguments of that generic function

are lexical variables with explicitly declared types.

A more robust approach is to use the compiler infrastructure of

each Lisp implementation. On SBCL, we generate one IR1 transfor-

mation for each static call signature, using deftransform.

4.3 Computing the E�ective Methods
Once there is a unique applicable static call signature and a corre-

sponding sorted list of applicable methods, we still have to gener-

ate an e�cient e�ective method that can be called without going

through the discriminating function.
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Our initial a�empt to do so was to modify fast generic functions

such that a special initial method would �rst check a global variable,

and if that variable is set, the initial method would return #’call-
-next-method instead of directly calling the next method. �en, we

could invoke this next method function with the new arguments to

get the desired behavior, without going through the discriminating

function. However, we had to learn that accessing call-next-
-method in such a way disables many transformations that usually

make generic functions reasonably e�cient. �e performance hit

from losing these transformations was much larger than the cost of

going through the discriminating function, so we had to abandon

this approach.

Our current technique is to bypass the last stage of a generic

function invocation, and to expand the result of calling compute-
-effective-method ourselves, using our own versions of make-
-method and call-method. �is technique has the advantage that

we can use a very e�cient calling convention for method functions.

Each method function receives one required argument per bind-

ing in its original lambda list, and has no keyword, optional and

rest arguments. All parsing is performed by the e�ective method

function. Another bene�t of this technique is that it still allows fast

generic functions to use arbitrary method combinations.

4.4 Call-site Optimization
Once we have determined that a fast generic function can be opti-

mized at a particular call site, and have computed a suitable e�ective

method, we still have to invoke the e�ective method somehow. To

do so, we support three options:

(1) Inlining of the entire e�ective method.

(2) Inlining of keyword parsing only.

(3) Only bypassing the generic function dispatch.

Option (1) can increase the size of the generated code dramat-

icaly, so it is only chosen when all applicable methods have the

inlineable method property. Option (2) can be chosen when the

fast generic function expects keyword arguments. It generates an

inline lambda function that performs all necessary keyword pars-

ing, and then calls a (not inlined) custom variant of the e�ective

method with required arguments only. Option (3) is the default

when none of the two previous options applies. It can still lead

to faster performance than a regular generic function call because

there is zero dispatch overhead, and because we generate e�ective

methods that are faster than those of most implementations
2
.

5 LIMITATIONS
In this section, we outline the quirks and limitations of our tech-

nique.

No Rede�nability. Once a domain of a generic function has been

sealed, there is no way to update any of the methods therein. �is

means that it is not possible to retroactively �x bugs in any sealed

method. We are thinking about adding a unseal-domain function

for development. But currently, the only portable way of �xing a

bug in a sealed function is by loading the �xed code into a new Lisp

image.

2
�is is not to say we are be�er than, say, PCL. We just exploit the additional restrictions

that we have imposed on fast generic functions and methods.

(defun class-subclasses (class)32

(when (symbolp class)33

(setf class (find-class class)))34

(let ((table (make-hash-table)))35

(labels36

((subclasses (class)37

(unless (gethash class table)38

(setf (gethash class table) t)39

(cons40

class41

(mapcan42

#'subclasses43

(closer-mop:class-direct-subclasses44

class))))))45

(subclasses class))))46

47

(defmacro replicate-for-each-vectoroid48

(symbol &body body)49

`(progn50

,@(loop for class in (class-subclasses 'vector)51

unless (subtypep class '(array nil))52

append (subst class symbol body))))53

54

(replicate-for-each-vectoroid #1=#:vectoroid55

(defmethod first-elt ((vector #1#))56

(elt vector 0)))57

Figure 3: An example of specializing on various subclasses
of vector.

No Inlining of Discriminating Functions. We deliberately do not

inline discriminating functions, primarily to avoid code bloat. �is

means that users have to make sure that the compiler can statically

compute the list of applicable methods for all relevant cases. To

compute this list, the compiler has to be able to distinguish whether

any sealed method is applicable or not. �is can be problematic

when a method has EQL specializers or very narrow types (If the

compiler cannot prove that an argument is either matches that

specializer or doesn’t match that specializer, there will be no opti-

mization at all). For example, users should not specialize the same

argument both on list and null, or the compiler cannot optimize

calls to objects that might be either conses or NIL.

Non-Portable Specializers. Specializers are either classes or EQL

specializers, not types. �is is problematic in our case, since the

Common Lisp standard doesn’t mandate that each primitive type

has a corresponding class. An example is the type single-float,

where the standard only guarantees the existence of a float class.

Another desirable case is that of specializing on subtypes of vector,

which would allow for dispatching on the element type. �e good

news is that doing so works in practice, and can even be made

portable by using a macro that replicates a method template for all

subclasses of a supplied class. �e list of subclasses can be obtained

using closer-mop[3]. An example of such a macro is given in

Figure 3.
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6 EXAMPLES
In this section, we show how fast generic functions can be used in

practice.

6.1 Extensible Number Functions
�is �rst example is about using fast generic functions to de�ne

an extensible version of the function +. To do so, we �rst de�ne a

single fast generic function for two argument addition
3

in Figure 4.

(defgeneric binary-+ (x y)1

(:generic-function-class fast-generic-function))2

Figure 4: A generic function for two-argument addition.

With this de�nition in place, we can add individual methods.

Initially, a single method like the one shown in Figure 5 will su�ce.

More methods would be needed if cl:+ weren’t so �exible already.

(defmethod binary-+ ((x number) (y number))3

(+ x y))4

Figure 5: A method for two-argument addition of numbers.

At this point, neither the generic function binary-+, nor its

methods are sealed. �ey can be treated just like standard generic

functions and methods. To enable optimization, we have to seal a do-

main by calling (seal-domain #’binary-+ ’(number number)).

�e generic function seal-domainwill automatically seal the generic

function and all methods within the sealed domain. It would also

signal an error if some methods were only partially within the

sealed domain. But the most important step is that it installs a

compiler transformations for calls whose arguments are provably

within the sealed domain, and which provably lead to a �xed list of

applicable methods.

Before we actually use our new addition function, we de�ne an

auxiliary function generic-+ to extend the behavior of binary-+
to any number of arguments, as shown in Figure 6.

�e compiler macro is necessary, because we don’t expect a

compiler to be able to inline such a call to reduce. Without this

compiler macro (or inlining of reduce, if it would succeed) there

wouldn’t be any compile-time type information at the call site of

binary-+ and, consequently, no optimization.

Now, with everything in place, we can use our new addition

operator to de�ne other functions. Figure 7 shows such a function,

and the corresponding assembler code. We see that each call to the

generic function binary-+ can be reduced to a single assembler

instruction. �is observation is especially remarkable when we

consider the size of the code that has been inlined, as shown in

Figure 8.

But the real power of our generic addition operator is that we

can still extend it outside of its sealed domain. �is capability is

illustrated in Figure 9.

3
A real-world protocol would probably include additional generic functions for implicit

coercion and dealing with commutativity.

(defun generic-+ (&rest things)5

(cond ((null things) 0)6

((null (rest things)) (first things))7

(t (reduce #'binary-+ things))))8

9

(define-compiler-macro generic-+ (&rest things)10

(cond ((null things) 0)11

((null (rest things)) (first things))12

(t (reduce (lambda (a b) `(binary-+ ,a ,b))13

things))))14

Figure 6: Extending binary-+ to any number of arguments.

(defun add3 (x y z)1

(declare (single-float x y z))2

(generic-+ x y z))3

mov RAX, [R13+16]
mov [RBP-8], RAX
movaps XMM1, XMM4
addss XMM1, XMM3 ; floating-point addition 1
addss XMM1, XMM2 ; floating-point addition 2
movd EDX, XMM1
shl RDX, 32
or DL, 25
mov RSP, RBP
clc
pop RBP
ret

Figure 7: A function using generic-+ and the corresponding
x86-64 assembler code on SBCL.

(lambda (#:x-7 #:y-8)1

(let ((.gf. #'binary-+))2

(macrolet ((call-method3

(method &optional next-methods)4

...))5

(flet ((next-method-p () nil)6

(call-next-method ()7

(no-next-method8

.gf.9

(specializer-prototype10

(find-class 'fast-method)))))11

(funcall12

(lambda (x y)13

(block binary-+ (+ x y)))14

#:x-7 #:y-8)))))15

Figure 8: �e (slightly simpli�ed) inline lambda generated
for a single call to generic-+ on two single �oats.
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(defmethod binary-+ ((x string) (y string))1

(concatenate 'string x y))2

3

(generic-+ "foo" "bar" "baz")4

;;; => "foobarbaz"5

Figure 9: Extending binary-+ to strings.

6.2 Extensible Sequence Functions
In this example, we will show how generic functions can be used

to de�ne an extensible sequence protocol. Our approach di�ers

from the extensible sequence protocol by Rhodes [8] in that the

sequence functions themselves are generic, with the exception of

methods inside of their sealed domains.

Our exemplary sequence protocol consists of just three functions

– generic-length, generic-elt and generic-count. �e full

source code of these functions is shown in Figure 10. Each generic

function is extensible except for the domain of vectors. A more

realistic protocol would provide more functions, additional keyword

arguments, and an additional sealed domain for lists, but none of

this is relevant for our explanation. As soon as the generic functions

are de�ned, we use the trick from Figure 3 to generate specialized

methods for all subclasses of vector.

�e main point we want to make with this example is that fast

generic functions can be nested. �e de�nition of generic-count
consists of calls to generic-length and generic-elt. Neverthe-

less, all this indirection disappears within a sealed domain, a fact

that can be seen by looking at the assembler code for an exemplary

function call as in Figure 11.

7 BENCHMARKS
Even though the assembler code in Figure 7 and Figure 11 looks

promising in terms of performance, we have also conducted some

further real-world benchmarks. We decided to compare the perfor-

mance of the sequence function cl:find on SBCL with an equiv-

alent de�nition that uses fast generic functions that we wrote for

SICL[10], based on some earlier work by Durand and Strandh[5].

For our version, we present timings both with e�ective method in-

lining enabled and without. Furthermore, show timings for various

element types and numbers of supplied keywords. �ese keywords

have been chosen so that they supply the same values as the corre-

sponding default values, i.e., we supply #’eql as the test function,

#’identity as the key function, the sequence’s length as the value

of :end and false as the value of :from-end. Our benchmark results

are shown in Figure 12.

�e benchmark results are very promising. In particular, they

show that eliminating the method dispatch and inlining the key-

word argument parsing step can yield substantial bene�ts when

working with short sequences. In almost all cases, our implementa-

tion of find is on par or even slightly faster than that of SBCL. �e

only cases where SBCL’s implementation has a small lead is that

of processing lists, and the case of having zero static information

at the call site. We hope that we can speed up these cases in the

future, too.

(defgeneric generic-length (sequence)1

(:generic-function-class fast-generic-function))2

3

(defgeneric generic-elt (sequence index)4

(:generic-function-class fast-generic-function))5

6

(defgeneric generic-count (item sequence &key test)7

(:generic-function-class fast-generic-function))8

9

(replicate-for-each-vectoroid #1=#:vector10

(defmethod generic-length11

((vector #1#))12

(declare (method-properties inlineable))13

(length vector))14

15

(defmethod generic-elt16

((vector #1#) (index integer))17

(declare (method-properties inlineable))18

(elt vector index))19

20

(defmethod generic-count21

(item (vector #1#) &key (test #'eql))22

(declare (method-properties inlineable))23

(loop for index below (generic-length vector)24

for elt = (generic-elt vector index)25

count26

(funcall test item elt))))27

28

(seal-domain #'generic-length '(vector))29

(seal-domain #'generic-elt '(vector integer))30

(seal-domain #'generic-count '(t vector))31

Figure 10: A simple protocol for working with sequences
and the corresponding inlineable methods for the domain
of vectors.

But the important message for library authors is that a straight-

forward implementation using fast generic functions is at least as

good as any highly specialized hand wri�en dispatch mechanism,

yet o�ers almost all the �exibility and convenience of standard

generic functions. �is was a very important goal for us, because it

means programmers are not forced to choose between maintain-

ability and performance anymore — they can have both.

8 CONCLUSIONS AND FUTUREWORK
We have presented a library for metaobject sealing that requires

li�le more than access to the Metaobject Protocol of CLOS. In a

second step, we have demonstrated how these metaobjects can be

used to design fast generic functions. Finally, we have provided ex-

amples how these fast generic functions solve an infamous problem

of Common Lisp — de�ning generic functions that are extremely ef-

�cient for a set of primitive types, yet extensible in general. We are

especially proud that fast generic functions support the full set of
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(defun generic-count-user (vector)1

(declare (simple-vector vector))2

(declare (optimize (safety 0))) ; simplify asm3

(generic-count 5 vector :test #'equal))4

mov RAX, [R13+16]
mov [RBP-8], RAX
mov RDI, [RSI-7] ; (length vector)
xor EAX, EAX ; (setf index 0)
xor ECX, ECX ; (setf count 0)
jmp L2
nop

L0: mov RBX, [RSI+RAX*4+1]; (generic-elt vector index)
cmp RBX, 10 ; (equal elt 5)
jeq L3

L1: add RAX, 2 ; (incf index)
L2: cmp RAX, RDI ; (= index (length vector))

jl L0
mov RDX, RCX
mov RSP, RBP
clc
pop RBP
ret

L3: add RCX, 2 ; (incf count)
jmp L1

Figure 11: A function using generic-count and the corre-
sponding x86-64 assembler code on SBCL. �anks to e�ec-
tive method inlining, the compiler was able to eliminate
even the keyword parsing step and could turn the call to
equal to a single cmp instruction.

features of standard generic functions, including arbitrary method

combinations and calls to call-next-method with arguments.

One issue we still have to address is performance portability.

So far, the full set of fast generic function optimizations is only

available on SBCL. At the very minimum, we’d like to port these

optimizations to CCL and ECL. We are also willing to support

closed-source implementations, given that someone can tell us how

to access the necessary mechanisms in the compiler.

�e other issue we are still working on is that of inheritance

from multiple sealable classes. We have to ensure that doing so

does not merge two previously disjoint domains of some generic

functions. One way around this issue would be to allow only single

inheritance of sealable classes, but we are trying to �nd a less

restrictive technique.

�is work was born out of our work on extensible sequence

functions for the new Common Lisp implementation SICL[10]. Our

hope is that what is useful to us is also useful to others. Experience

reports and feedback are most welcome!
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element 1 Element 50 Elements

type k SBCL SICL Inline SBCL SICL Inline

∗ 0 30 32 32 447 342 343

∗ 1 36 60 60 454 371 372

∗ 2 39 87 87 454 397 396

∗ 4 51 140 140 466 507 490

single-�oat 0 20 17 2 422 360 181

single-�oat 1 20 18 6 444 354 213

single-�oat 2 21 18 9 445 354 305

single-�oat 4 21 21 9 436 406 474

list 0 15 15 5 404 424 175

list 1 17 17 7 422 422 263

list 2 17 21 9 402 585 224

list 4 18 23 9 574 696 337

Figure 12: Benchmark results comparing SBCL’s built-in
implementation of find with our implementation in SICL.
All timings are given in nanoseconds. �e �rst column de-
scribes the statically known vector element type, the sec-
ond column describes the number of supplied keyword ar-
guments, and the following two groups of three columns de-
scribe the results for processing a single element and 50 el-
ements, respectively. �erein, the SBCL columns show the
results on SBCL 2.0.1, the SICL columns show the results of
our implementation that uses fast generic functions and no
inlining, and the Inline columns show the results of our im-
plementation but with inlining enabled.
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ABSTRACT
An enumerator E outputs the elements of a sequence Ê = e0, e1, . . .,

one at a time. The sequence Ê may be finite (en )n∈[0,c[ or infinite
(en )n∈N.

The Enum package is part of the TRAG system which is written in

Common Lisp. The code can be found at https://idurand@bitbucket.

org/idurand/trag.git and a web interface at trag.labri.fr. The first

version of the Enum package was presented at ELS 2012 in Zadar

(Croatia).

The first version of the package offered the possibility of creating

basic enumerators (inductive or from a list) and combining them

using operations like products, sequences, filters, mapping. The

topic of this paper is the enumeration of the tuples of the general

cartesian product Tp = Ê1 × Ê2 . . . × Êp of the sequences associ-

ated with p enumerators E1, . . . , Ep . The first property that one

would want is fairness: each one of the enumerators will regularly

move forward. The fairness property was already achieved by the

diagonal product enumerator of the 2012 version. In this paper

we address an additional property which concerns the distance

between two enumerated tuples. A 2-ordering ofTp is such that the

distance between two consecutive enumerated tuples is at most 2.

The binary diagonal product of the 2012 version had the 2-ordering

property. But recursive application of this binary product to obtain

Tp does not give a 2-ordering for p ≥ 3. In this paper, we define

bidirectional leveled enumerators and a binary product with these

enumerators such that recursive application of the binary product

gives a leveled 2-ordering which is as desired a 2-ordering.
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1 INTRODUCTION
Since the beginning of the 21st century, the topic of enumeration

has become more and more widespread both in theoretical and

practical computer science.

An enumeratorE outputs the elements of a sequence Ê = e0, e1, . . .,

one at a time. The Ê may be finite (en )n∈[0,c[ or infinite (en )n∈N.
In combinatorics, the problem of enumerating objects comes as

a generalization of counting objects. Many recent books deal with

theoretical questions raised by enumeration problems [2, 8, 10].

Practically, enumerating sets of objects is essential when the sets

are too large (or even infinite) to be computed in extenso. Typical
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examples are database queries, extraction problems for large data

collections like the web, and answers to constraint satisfaction

problems [12].

Enumerators
1
are also very useful for programming. In Python2,

the function range(n) computes and returns the list

[0, 1, ..., n - 1].

People used to write "for i in range(n):" to perform an iteration

on the elements of the list [0, ..., n - 1]. The iterator of the list

was provided by xrange(n). In order to avoid the computation of

the list the programmer could write

for i in xrange(n):

Now in Python3 (starting from 2008), xrange has become the ba-

sic operation and has been renamed range. In order to obtain the

behavior of range(n) of Python2 one must write list(range(n))

Python 3.6.9 (default, Nov 7 2019, 10:44:02)
>>> range(3)
range(0, 3)
>>> for i in range(3):
... print(i, end=' ')
... print(' ')
0 1 2
>>> list(range(3))
[0, 1, 2]

Some programming languages (Java, Lisp [7, 13]) provide li-

braries for enumerating simple objects such as lists, arrays, strings

or hash tables, but no operation to combine these simple enumera-

tors in order to build enumerators for more complex user defined

objects. The Sage [11] software is a free open-source mathemat-

ics software system licensed under the General Public License. It

combines the power of many existing open-source packages into a

common Python-based interface. It implements enumeration for

complex objects like graphs, posets, etc.
However, Sage does not handle terms and term automata which

are the objects we were interested in for the framework of the

TRAG[5, 6] systemwhich is almost
2
entirely written in Common Lisp.

Also, we would like a Lisp implementation rather than a Python

one. That is why we initially started developing the Enum package.

The SERIES Lisp package by Richard C. Waters[9] also deals

with finite or infinite sequences. However, these series are not

enumerators in the sense that a series or a finite consecutive part

of it is treated as a blackbox. There is no explicit cursor that moves

along the elements of a series and which is accessible to the user.

However, such cursors must exist in the implementation. Otherwise

an operation like computing the cartesian product of two series

would not be possible.

Many basic features provided by our enumeration package are

essentially the same as the ones provided by the SERIES package.
The essential difference is that an enumerator points to a current

element of its underlying sequence. A series is a functional object

1
There are sometimes called iterators in the programming context.

2
The web interface code contains some JavaScript.
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while an enumerator is a state machine (a non functional object).

In other words, there may be several enumerators, pointing to

different elements of the same (possibly virtual) sequence while

there is just one series for a given sequence.

Our package also gives an object-oriented version of these con-

cepts while the SERIES package does not use generic functions nor

standard classes. The use of CLOS gives object-oriented extensibility
that we do not have with the SERIES package. We make great use

of this extensibility in TRAG and in the implementation presented in

this paper.

The infinite lists of Haskell[1] offer the same kind of possibili-

ties as the SERIES package.

Our Enum package is part of the TRAG3 system[5, 6] which is

written in Common Lisp. The code can be found at https://idurand@
bitbucket.org/idurand/trag.git. The first version of this package was

presented at ELS 2012 [4] in Zadar (Croatia). That first version of

the package offered the possibility of creating basic enumerators

(inductive or from a list) and combining them using operations like

products, sequences, filters, and mapping.

Our enumerators may be useful for Lisp programmers and Lisp
implementors as shown by the following implementation of the map

function from the Common Lisp HyperSpec. This function must deal

with sequences of heterogeneous types: some are lists, some are

vectors. By creating an enumerator for each sequence, we obtain an

homogeneous list of enumerators which can be put in parallel to ob-

tain the tuples to which we apply the function fun passed as second

parameter. In case the result-type is not NIL, collect-enum collects

the final elements of the sequence into a list which is converted to

the desired result-type.

(defun map (result-type fun &rest sequences)
(let ((enumerator

(make-parallel-enumerator
(mapcar
(lambda (s)
(make-sequence-enumerator s))

sequences)
:fun (lambda (tuple)

(apply fun tuple)))))
(if (null result-type)

nil
(coerce (collect-enum enumerator) result-type))))

The topic of this paper is the enumeration of the tuples of the

general cartesian product Tp = Ê1 × Ê2 . . . × Êp of the sequences

associated with p enumerators E1, . . . , Ep . A 2-ordering of Tp is

such that the distance between two consecutive enumerated tuples

is at most 2. The binary diagonal product of the 2012 version had

the 2-ordering property. But recursive application of this binary

product to obtains Tp does not give a 2-ordering for p ≥ 3. In this

paper we define bidirectional leveled enumerators and a binary

product with these enumerators such that recursive application of

the binary product gives a leveled 2-ordering which is as desired a

2-ordering.

3
trag.labri.fr

2 ENUMERATORS AND BIDIRECTIONAL
ENUMERATORS

In the following, the sequence enumerated by an enumerator E will

be denoted by Ê.
An enumerator E is a state machine which outputs the elements

of a sequence Ê = e0, e1, . . . one at a time. The sequence may be

finite (en )n∈[0,c[ or infinite (en )n∈N.
All function names ending with -p are are predicates.

2.1 General enumerators
In the Enum package, each enumerator E has at least the following

elementary operations:

• next-element-p (E): does there exist a next element?

• next-element (E): move to the next element.

For the implementation, we also need

• init-enumerator (E): put E in its initial state

• copy-enumerator (E): return an independent copy of E

Examples with a finite enumerator.
ENUM> (setq *abc* (make-list-enumerator '(a b c)))
=> #<LIST-ENUMERATOR {100ADDAAC3}>
ENUM> (next-element *abc*) => A
ENUM> (next-element *abc*) => B
ENUM> (next-element-p *abc*) => T
ENUM> (next-element *abc*) => C
ENUM> (next-element-p *abc*) => NIL
ENUM> (collect-enum *abc*) => (A B C) ; only if finite

The function collect-enum may be used on a finite enumerator

E and returns the elements of the sequence Ê as a list.

All the upcoming code will implicitly take place inside the ENUM

package.

Examples with an infinite enumerator.

(setq *naturals* (make-inductive-enumerator 0 #'1+))
=> #<INDUCTIVE-ENUMERATOR {100AEA9653}>
(next-element *naturals*) => 0
(next-element *naturals*) => 1
(next-element *naturals*) => 2
(init-enumerator *naturals*)
(next-element *naturals*) => 0
(next-element *naturals*) => 1
(next-element-p *naturals*) => T ; always true
;; collect the first 9 values
(collect-n-enum *naturals* 9) => (0 1 2 3 4 5 6 7 8)
(collect-n-enum *abc* 9) => (A B C)

The function collect-n-enum may be used on any enumerator E

and a natural integer n and returns the first n elements of the Ê as a

list (or all the elements of Ê if n is less than the number of elements

of Ê).

2.2 Bidirectional enumerators
A bidirectional enumerator B is based on an underlying non bidirec-

tional enumerator E. The bidirectional enumerator has additional

code in order to move backwards as well as forwards. In addition to

the operations defined for all enumerators, B has a way (+1 to move

forwards, -1 to move backwards), an initial-way and the following

operations to handle ways:
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• initial-way (B): return initial way

• way (B): return current way

• invert-way (B): invert way of B

together with the following operations:

• way-next-element-p (way B):

does there exist a next element in this way?

• way-next-element (way B):

move to the next element in this way.

• latest-element (B): return latest element enumerated.

The operations next-element-p and next-element can be written

in terms of way-next-element-p and way-next-element:

(defun next-element-p (B) (way-next-element-p (way B) B))

(defun next-element (B) (way-next-element (way B) B))

The implementation of a bidirectional enumerator uses a slot

latest-element to store the latest enumerated element, and two

slots past-elements and future-elements, the first one containing

a stack of already enumerated elements that occur before the latest

enumerated element and the second a stack of the elements that

occur after.

• If the enumerator is moving backwards:

the top element of past-element is popped and moved to

latest-element while the former latest-element is pushed

on future-elements.

• If the enumerator is moving forwards:

if future-elements is empty the underlying enumerator E

is called and the result is pushed on future-elements; then

the top of future-elements is popped and moved to the slot

latest-element.

In both cases, latest-element is returned.

2.2.1 Creation and initialization of a bidirectional enumerator.
Given a nonempty enumerator E, enumerating e0, e1, . . ., one can
obtain its bidirectional version BE with the operation:

make-bidirectional-enumerator (E &key (initial-way 1))

Let BE =

(make-bidirectional-enumerator E :initial-way initial-way).

In BE, one has access to E, the underlying enumerator, by (enum BE).

At initialization, if initial-way is -1, we move (enum BE) for-

wards, so towards the first element of E, e0, in order to go back

to this element at the next call of next-element. Consequently,

the first call (next-element-p BE) will return true, the first call

(next-element BE) will return the first element of (enum E) that

is e0; then (next-element-p BE) will return NIL as long as its way

remains -1.

2.2.2 Example of creation and use of a bidirectional enumerator.

(setq *B-NATURALS*
(make-bidirectional-enumerator *naturals*))

=> #<BIDIRECTIONAL-ENUMERATOR {100B59FEB3}>
(next-element *B-NATURALS*) => 0
(next-element *B-NATURALS*) => 1
(next-element *B-NATURALS*) => 2
(way *B-NATURALS*) => 1
(invert-way *B-NATURALS*) => -1
(way *B-NATURALS*) => -1
(next-element *B-NATURALS*) => 1

(describe *b-naturals*) =>
#<BIDIRECTIONAL-ENUMERATOR {100B61AF13}>
[standard-object]

Slots with :INSTANCE allocation:
ENUM =
#<INDUCTIVE-ENUMERATOR {100B61AED3}>
INITIAL-WAY = 1
WAY = -1
LATEST-ELEMENT = 1
LATEST-ELEMENT-P = T
PAST-ELEMENTS = (0)
FUTURE-ELEMENTS = (2)

; No value

(next-element *B-NATURALS*) => 0
(next-element-p *B-NATURALS*) => NIL
(invert-way *B-NATURALS*) => 1
(next-element-p *B-NATURALS*) => T
(next-element *B-NATURALS*) => 1
(next-element *B-NATURALS*) => 2
(latest-element *B-NATURALS*) => 2
(way-next-element -1 *B-NATURALS*) => 1

3 ENUMERATION OF CARTESIAN
PRODUCTS

Let E1, . . . , Ep be nonempty enumerators (finite or not) such that

each Ei enumerates

• ei
0
, ei

1
, . . . if Ei is infinite

• ei
0
, ei

1
, . . . , eic i−1 where c

i = card(Ei ) otherwise.

Let Tp = Ê1 × Ê2 . . . × Êp be the cartesian product of the se-

quences associated with the Ei . It consists of all the tuples t =

(e1j1 , e
2

j2 , . . . , e
p
jp ) such that ∀i ∈ [1,p], eij i ∈ Ei .

If every Ei is finite, card(Tp ) = Π
p
i=1c

i
otherwise Tp is infinite.

There are multiple ways of ordering Tp so multiple possible

enumerators of Tp . A random ordering would be possible but we

would have to store all the previously enumerated tuples in order

to avoid enumerating them again. We now discuss some interesting

properties which an ordering may have.

3.1 Fairness property
The necessity of a diagonal ordering arises when at least one of the

components is infinite. We would like to avoid being blocked at

a given value of some component while enumerating an infinite

other component. We call this property fairness. For instance in the

example above, when enumerating *naturals* × *abc*, we would
like to avoid enumerating: (0 A) (1 A) (2 A) (3 A) ... as shown
in Figure 1 and never switch to the B value of the *abc* enumerator.

We would rather want something like

0 1 2 3 4 5 6 7 · · ·

A

B

C

· · ·

Figure 1: Unfair ordering *naturals* × *abc*
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0 1 2 3 4 5 6 7 · · ·

A

B

C

Figure 2: Diagonal ordering of *naturals* × *abc*

(collect-n-enum
(make-product-enumerator (list *naturals* *abc*) 10)) =>

((0 A) (1 A) (0 B) (0 C) (1 B) (2 A) (3 A) (2 B) (1 C) (2 C))

where we move forwards regularly on all enumerators as shown

in Figure 2.

For simplicity, because there is a bijection between the indices

0, 1, 2, . . . and the elements of a sequence e0, e1, e2, . . ., we will use
examples where each Ei is eitherN or some finite interval [0, c−1] ⊂
N.

Figure 3 shows a diagonal-ordering of [0, 1] × [0, 1] and Figure 4

a diagonal ordering of [0, 2] × [0, 2]. This diagonal ordering was the

one implemented in [4]. However, this ordering lacks an interesting

property that we present below.

0 1

0

1

Figure 3: Diagonal-ordering of [0, 1] × [0, 1]

0 1 2

0

1

2

Figure 4: The diagonal-ordering of [0, 2] × [0, 2]

3.2 Bijective enumerators
To simplify the definitions of the next section, we assume that each

enumerator Ei is bijective (all its elements are distinct). If this is

not the case, it is easy to transform a non bijective enumerator into

a bijective one by making it run in parallel with a bijective one like

*naturals* which enumerates N. This transformation is illustrated

below.

(setq *e* (make-list-enumerator '(a b c) :circ t))
=> #<LIST-ENUMERATOR {101680B8F3}>
(collect-n-enum *e* 10)
=> (A B C A B C A B C A)
(defparameter *bijective*
(make-parallel-enumerator (list *naturals* *e*)))

=> #<PARALLEL-ENUMERATOR {101680C4E3}>
(collect-n-enum *bijective* 8)
=> ((0 A) (1 B) (2 C) (3 A) (4 B) (5 C) (6 A) (7 B))

Note the :circ keyword parameter that makes *e* an infinite enu-

merator cycling on the elements of the list (A B C).

3.3 d-orderings
We are going to define a concept of distance between two enumer-

ated tuples. The aim will be to minimize the maximum distance

between two consecutively enumerated tuples.

Definition 1. The distance between two tuples

tj = (e1j1 , . . . , e
p
jp ) and tk = (e1k1

, . . . , e
p
kp )

of the cartesian product Tp is defined by

d(tj , tk ) = Σ
p
i=1 | ki − ji | .

This definition works well if every Ei is bijective, that is to say

that if p , q then eip , eiq ; otherwise we would not have a mapping

from tuple of indices to tuples of elements. If some Ei is not bijective,
we may transform it into a bijective one as described in Section 3.2.

Definition 2. A pair of consecutive elements of an enumerator E is

called a step. If there is a concept of distance between the elements

(for instance E enumerates tuples), the size of a step (ej , ej+1) is the
distance between the two elements: d(ej , ej+1).

Definition 3. An ordering of Tp is a d-ordering if d is the maxi-

mum size of a step.

Our aim is to have a 2-ordering of Tp .

0 1 2 3 4 5 · · ·

0

1

2

3

4

5

...

Figure 5: A 1-ordering of N × N

0 1 2 3 4 5 6

0

1

2

3

4

Figure 6: A 1-ordering of [0, 6] × [0, 4]

Figure 5 shows a 1-ordering ofN×N. This ordering is not feasible
in our setting for arbitrary (finite or non finite) enumerators because

we would need to know one step in advance whether we have

reached the end of a finite enumerator to turn around before it is

too late. So the ordering depends on the parity of the size of the

finite enumerators as shown in Figure 6 and Figure 7. [3] explores

this idea in detail. Unfortunately, we just have the next-element-p

predicate to know whether there is a next element but no way to

know whether there are two upcoming elements.
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0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 7: A 1-ordering of [0, 7] × [0, 5]

In [4], the ordering of T 2
given by the binary diagonal product

DP(E1, E2) is a 2-ordering. But recursive use of this ordering does

not preserve the 2-ordering property as shown below. Figure 3

shows a diagonal ordering of [0, 1] × [0, 1] which is a 2-ordering.

However using the same ordering again to obtain an ordering for

[0, 1] × [0, 1] × [0, 1], we obtain the ordering shown in Figure 8

which is not a 2-ordering but a 3-ordering because of the step

(e3, e4) = ((0 0 1), (1 1 0)) which is of size 3. More generally, we

can show that repeated use of this ordering gives a p-ordering of
[0, 1]p .

0 1

00

10

01

11

Figure 8: The diagonal ordering of [0, 1]3

3.4 Leveled ordering of T p

The concept of leveled ordering is necessary to achieve our goal

of a 2-ordering of Tp = Π
p
i=1Ê

i
. A level will be the subset of tuples

having identical height. We now need the notion of height of a tuple
in the cartesian product.

Definition 4. The height of a tuple t = (e1j1 , e
2

j2 , . . . , e
p
jp ) ∈ Tp , is

the sum of the indices of the elements in the Êi :

h(t) = Σ
p
i=1j

i

Note that in the case where each Ei is either N or [0, c − 1] ⊆ N,
the height of a tuple is the sum of its elements.

Definition 5. The lth -level of Tp is the set of tuples with height l .

The lth level (finite) of Tp is denoted by Ll ,

Ll = {t ∈ Tp |h(t) = l}

If Tp is finite, it has a finite number of levels and can be written as

the partition of its levels:

Tp =

Σ
p
i=1(c

i−1)⋃
l=0

Ll

If Tp is infinite, it has an infinite number of levels:

Tp =
∞⋃
l=0

Ll

Definition 6. An ordering ofTp is leveled if it satisfies the follow-

ing constraints:

∀l > 0,∀j > 0, if tj ∈ Ll , we have either tj−1 ∈ Ll or tj−1 ∈ Ll−1.

In other words a leveled ordering traverses the levels L0, L1, . . .
in the increasing order of levels L0, L1, . . . (without constraint so
far on the order of enumeration inside a level).

Definition 7. A step giving a change of level is called major step.
A step inside a level is called a minor step.

In addition, leveled enumerators have the predicate:

• minor-step-p (E)

which returns T if the next step (next-element) does not change

the level (NIL otherwise). In other words, it returns false when we

are done with the enumeration of the current level.

4 IMPLEMENTATION OF BIDIRECTIONAL
LEVELED ENUMERATORS

Definition 8. A bidirectional leveled enumerator is a leveled enu-

merator which, in addition, is bidirectional (it has a way and an

initial-way).

When going forwards (way = +1), it enumerates the levels in

increasing order: L0, L1, . . .When going backwards (way = -1), it

enumerates the levels in decreasing order: Ll , Ll−1, . . . while keep-
ing the forward order inside each level.

4.1 Diagonal product of a bidirectional
enumerator with a bidirectional leveled one

Let X be a bidirectional enumerator and Y be a bidirectional leveled

enumerator, which when going forwards, enumerates the levels

Y0,Y1, . . .
Below, we define D = BL(X, Y), the leveled bidirectional product

of X and Y.

When D = BL(X, Y) is created, the initial way of X is set to +1

and the initial way of Y is set to -1.

Definition 9. A minor step on level is a step that changes the level

of X in a way and the level of Y in the opposite way but not the level

of D.

In addition to the usual operations, we have the following acces-

sors:

• enumX(D)

• enumY(D)

to access X and Y respectively.

The other operations are shown in Figure 9.

The call (sliding-step X Y 1) corresponds to a jump-up (move

to higher level) (sliding-step X Y -1) corresponds to a jump-back
(move to lower level).

In the case where neither X nor Y can move in their current way

and the enumeration is not finished, we are in a case called corner
step which may happen only when at least one of the enumerators

is finite (otherwise there is always a possible sliding step). In the
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(defun latest-element (D)
(cons (latest-element(enum-x D)

(latest-element (enum-y D)))))

(defun minor-step-p (D) ; precondition (next-element-p D)
(and (next-element-p (enum-y D))

(or (next-element-p (enum-x D))
(minor-step-p (enum-y D)))))

(defun way-next-element-p (way D)
(or (way-next-element-p (way D) (enum-x D))

(way-next-element-p (way(D) (enum-y D)))))

(defun way-next-element (way D)
(let* ((enum-x (enum-x enum))

(enum-y (enum-y enum))
(next-x (next-element-p enum-x))
(next-y (next-element-p enum-y)))

(cond
((and next-y (minor-step-p enum-y))
;; lower-level minor step
(next-element enum-y))
((and next-y next-x) ; minor-step on level
;; each one makes a major in its way
(next-element enum-x) (next-element enum-y))
;; major step
((not (or next-x next-y))
(corner-step enum-x enum-y way))
(t (sliding-step enum-x enum-y way))))

(latest-element enum))

(defun sliding-step (X Y way)
;; precondition: X or Y can move in its way
(if (next-element-p Y)

(way-next-element way Y)
(way-next-element way X))

(invert-way X)
(invert-way Y))

Figure 9: Code for D = BL(X,Y)

corner step case, we invert the way of the enumerator which goes

in the opposite direction of way (of the product enumerator) and

move it to the next level according to way. If way = 1, we move

to the higher level. If way = -1, we move to the lower level. The

other enumerator changes way (it could not contribute to the level

change because it is blocked in the direction way).

(defun corner-step (X Y way)
;; change the way of the enumerator
;; which goes in opposite direction
;; to way and move it; the other enumerator changes way
(when (plusp (* way (way X)))
;; put in X the one that goes in direction -way
(psetf X Y Y X))

(invert-way X) ; X will move in direction way
(next-element X) ; Y will move in direction -way
(invert-way Y))

Note that the diagonal ordering and the leveled ordering coincide

in the binary case (p = 2).

In Figure 10, one may see a corner step (dotted line) and sliding

steps (dashed line).

0 1 2

0

1

Figure 10: Diagonal (also leveled) ordering of [0, 2] × [0, 1]

4.2 Properties of BL(X, Y)

We will show that if Y defines a leveled ordering so does BL(X, Y).

Let X be a bidirectional enumerator that enumerates x0, x1, . . .
and Y a bidirectional leveled enumerator that enumerates the levels

Y0,Y1, . . .
Let L0, L1, . . . be the levels of D=BL(X, Y).

The distribution of an element among all tuples of a sequence is

denoted by ∗:

1 ∗ (0, 1), (0, 2), (1, 1) = (1, 0, 1), (1, 0, 2), (1, 1, 1)

and the concatenation of lists of tuples by +

We will show that

L0=x0 ∗ Y0
L1=x1 ∗ Y0 + x0 ∗ Y1
L2=x0 ∗ Y2 + x1 ∗ Y1 + x2 ∗ Y0

and more generally that for l ≥ 0:

L
2l =x0 ∗ Y2l + x1 ∗ Y2l−1 + . . . + x2l ∗ Y0

L
2l+1=x2l+1 ∗ Y0 + x2l ∗ Y1 + . . . + x0 ∗ Y2l+1

∀l ≥ 0, we note

Yl = {yl ,0,yl ,1, . . . ,yl ,kl−1}

where kl is the number of elements in the level Yl .

Lemma 10. X and Y move in opposite directions.

Proof. Initially, X moves forwards and ready to enumerate x0
and Y moves backwards ready to enumerate y0,0. In the code, we

see that X and Y change direction simultaneously. □

Lemma 11.

(1) X moves forwards when enumerating level 0 and backwards

when enumerating level 1.

(2)

L0=x0 ∗ Y0 (a)
L1=x1 ∗ Y0 + x0 ∗ Y1 (b)

Proof. Initially, X moves forwards ready to enumerate x0 and Y

moves backwards ready to enumerate y0,0. So 1., and 2. hold.

At the first call to next-element(D), we have (and next-x next-y)

and we do a minor step on level with

(next-element X) and (next-element Y);

the enumerators remain in the their current way. The enumerated

element is (x0,y0,0) and X moves forwards.

The next calls will do minor steps on Y in which only Y moves

forwards: (x0,y0,1), (x0,y0,2) . . . (x0,y0,k0 ). After k0 calls, we will
have enumerated x0 ∗ Y0. So 2.(a) holds. Point 1. remains true.
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At the next call (next-element D), the call (minor-step-p Y)will

return NIL because we have finished level 0 on Y . We will do a

sliding_step.

As (next-element Y) returns NIL, X will be the one that moves for-

wards (moves to level 1 because X is moving forwards) and both

change direction so Xwill move backwards and Y forwards. The enu-

merated element is (x1) + y0,0 (1. holds). Then we will have minor

steps on Y until the end of level 0 of Y, (x1) + y0,1, . . . , (x1) + y0,k1 .
So we have done x1 ∗ Y0.

The next step will be a minor step on level (X and Y change

directions but not D); we enumerate (x0)+y1,0 and X goes forwards

(1. holds). Then minor steps on Y: (x0)+ . . . (x0)+y1,k1 which gives

x0 ∗Y1 (1. still holds); so we have done x1 ∗Y0 + x0 ∗Y1 (2.(b) hold).
After 2k0 + k1 steps, we will have enumerated x0 ∗ Y0 + x1 ∗ Y0 +
x0 ∗ Y1. □

Proposition 12.

(1) X moves forwards when enumerating an even level.

(2) D is a bidirectional leveled enumeratorwhose levelsL0, L1, . . . ,
are such that for l > 0,

L
2l =x0 ∗ Y2l + x1 ∗ Y2l−1 + . . . + x2l ∗ Y0

L
2l+1=x2l+1 ∗ Y0 + x2l ∗ Y1 + . . . + x0 ∗ Y2l+1

(3) In the negative way, D enumerates Ll , Ll−1, . . . ,.

Proof. By induction on l .
Base case l = 0: solved by lemma 11

Induction l + 1: Induction hypothesis yields for l :

(1) X moves backwards when enumerating 2l + 1.
(2)

L
2l =x0 ∗ Y2l + x1 ∗ Y2l−1 + . . . + xi ∗ Y0

L
2l+1=x2l+1 ∗ Y0 + x2l ∗ Y1 + . . . + x0 ∗ Y2l+1

After enumeration of the last element of level L
2l+1, X is going

backwards.

The next step yields a sliding step which triggers a major step

in Y then a change of direction of both enumerators which gives

x0 ∗y2(l+1),0 the first element of level 2(l +1)with X going forwards

(1. hold) and Y going backwards. Then we will have minor steps of

level 2(l + 1) on Y which will give: x0 ∗ Y2(l+1).
Then a minor step on level, where Xmoves forwards and Ymoves

to the beginning of the lower level (x1)+y2l+1,0, X remains positive.

Then minor steps on Y yielding (x1) + Y2l+1. □

5 DIAGONAL ENUMERATION OF A
CARTESIAN PRODUCT

Definition 13. Let Null be the bidirectional leveled enumerator

corresponding to the empty product enumerating the singleton set

containing a single tuple of length 0.

Null = {()}

This enumerator has only one level L0 = {()}.

Lemma 14. Let X be a bidirectional enumerator enumerating

x0, x1, . . . BL(X ,Null) is a bidirectional leveled enumerator enu-

merating (x0), (x1) . . . whose levels are Li = {(xi )} and having

only major steps of size 1.

5.1 BL(X,Y) preserves leveled orderings
Lemma 15. Let E1, E2, . . . , Ep be bidirectional enumerators. The

enumerator BL(E1, BL(E2, BL(..., BL(Ep , Null)))) is a bidirectional

leveled enumerator and a leveled ordering of Tp = Π
p
i=1Ê

i
.

Proof. By induction on p.

If p = 1 Lemma 14 applied with X = BL(E1,Null) yields the
desired result.

Induction hypothesis

BL(E2, BL(E3, BL(..., BL(Ep , Null))))

yields the leveled 2-ordering of E2 × . . . × Ep .
Induction step Let X = E1 and

Y = BL(E2, BL(E3, BL(..., BL(Ep , Null))))

Let BL(X ,Y ) defined as in Section 4.1.

By Proposition 12, we have a bidirectional leveled enumera-

tor giving a leveled ordering

□

5.2 BL(X,Y) preserves 2-orderings
Lemma 16. An enumerator X enumerating x0, x1, . . . , can be seen

as a leveled enumerator whose levels are the singletons Li = xi
having only major steps of size 1.

Lemma 17. If all major steps of Y have size 1 then all major steps

of BL(X,Y) have size 1.

Proof. During a major step of BL(X,Y) (corner step or sliding

step) either X or Y makes a major step. This step has size 1 by

hypothesis for X and by Lemma 16 for X. □

Lemma 18. If all minor steps of Y have size 2 then all minor steps

of BL(X,Y) have size 2.

Proof. If BL(X,Y) does a minor step, it is either a minor step on

Y (of size 2 by hypothesis) or it consists of one major step on X and

one major step on Y. The major step on X has size 1 by Lemma 16

and the major step on Y has size 1 by Lemma 17. The total size will

again be 2. □

Lemma 19. Let E1, E2, . . . , Ep be bidirectional enumerators. The

enumerator BL(E1, BL(E2, BL(..., BL(Ep , Null)))) is a bidirectional

leveled enumerator and a d2-ordering of Tp = Π
p
i=1Ê

i
.

Proof. By repeated application of Lemma 18 and Lemma 17

. □

5.3 Leveled 2-ordering
Proposition 20. Let E1, E2, . . . , Ep be bidirectional enumerators.

The enumerator BL(E1, BL(E2, BL(..., BL(Ep , Null)))) is a bidirectional

leveled enumerator and a leveled 2-ordering of Tp = Π
p
i=1Ê

i
.

Proof. By Lemma 15 and Lemma 19. □
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6 EXAMPLES
In the examples, we will use only integers so that the level of a

tuple is the sum of its elements.

(setq *e2* (make-list-enumerator '(0 1)))
(setq *e3* (make-list-enumerator '(0 1 2)))
(collect-enum *e2*) => (0 1)
(collect-enum *e3*) => (0 1 2)
(collect-enum (make-product-enumerator *e3* *e3*))
=> ((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (2 1) (1 2) (2 2))
(collect-enum
(make-product-enumerator (list *e3* *e3* *e3*)))

=>
((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0)
(1 1 0) (1 0 1) (2 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1)
(1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1) (1 1 2) (2 0 2)
(2 1 1) (2 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2))
(collect-n-enum
(make-product-enumerator (list *naturals* *e3* *e3*)) 45)

=>
((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0)
(1 1 0) (1 0 1) (2 0 0) (3 0 0) (2 1 0) (2 0 1) (1 0 2)
(1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1) (1 1 2)
(2 0 2) (2 1 1) (2 2 0) (3 1 0) (3 0 1) (4 0 0) (5 0 0)
(4 1 0) (4 0 1) (3 0 2) (3 1 1) (3 2 0) (2 2 1) (2 1 2)
(1 2 2) (2 2 2) (3 2 1) (3 1 2) (4 0 2) (4 1 1) (4 2 0)
(5 1 0) (5 0 1) (6 0 1))

The latest example is illustrated by Figure 11.

0 1 2 3 4 5 6 · · ·

00

10

01

02

11

20

21

12

22

Figure 11: The leveled 2-ordering of N × [0, 3] × [0, 3]

The leveled ordering that we have used is not the only possible

one. Figure 12 shows another possibility. The code will be almost

the same but instead of just inverting the way of Y (which changes

the order or enumeration of the levels) we recursively invert the

ways of the underlying enumerators of Y which reverses the order

of enumeration of Y.

7 CONCLUSION AND FUTUREWORK
Wehave defined bidirectional leveled enumerators in order to obtain

a 2-ordering of a cartesian product of enumerators. The code exists

and is available. An iterative implementation that does not use

the recursive calls to the binary bidirectional leveled enumerator

BL(X ,Y ) exists but was not discussed in this paper. Although it is
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Figure 12: Another leveled 2-ordering of [0, 3]3

in TRAG, the Enum package is self-contained. In the near future we

plan to make the Enum package available as an independent system.
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ABSTRACT
We examine LuaJIT, an implementation of the dynamic program-
ming language Lua. By using a technique known as tracing just-
in-time compilation LuaJIT is able to evaluate high-level language
features with great efficiency. It does this by using only a conser-
vative set of optimization passes, and without resorting to explicit
type declarations, or abandoning type safety. In presenting the im-
plementation’s design we consider its strengths and weaknesses.
Finally, we propose future directions for dynamic language imple-
mentations that wish to leverage this technique.
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1 INTRODUCTION
Lua is a minimalist, dynamic programming language with Pasca-
lesque syntax and Schemeish semantics. LuaJIT [Pall 2017] is an
implementation of a Lua interpreter that uses tracing just-in-time
compilation [Bala et al. 2000] to accelerate the evaluation of Lua
programs.

A just-in-time (JIT) compiler intertwines run-time and compilation-
time of the program to leverage run-time information to guide
program optimization. Initially, the program is evaluated by a tra-
ditional interpreter program [Mccarthy 1960]. But soon enough
the interpreter pulls off a magical trick. It considers the program it
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is evaluating while it is executing it on a given input, and specu-
latively compiles machine code1 to perform the remainder of the
evaluation on the remaining input.

This trick has interesting implications for the evaluation of dy-
namically typed, late binding programming languages such as Lua,
Smalltalk, and Lisp.2 In implementations of these languages there
tends to be a lot of information about the program available at
run-time. However, traditional ahead-of-time (AOT) compilers are
in many cases not able to leverage this abundance of information to
optimize emitted code. At AOT compile-time, information about the
types of values and, by the extension, the specialization of methods
may be overly conservative due to limits of inference.3 The result
is redundant dispatch on value types during evaluation.

2 MOTIVATING EXAMPLES: COLLAPSING
ABSTRACTIONS

Consider this Common Lisp program which computes the sum of
the integers 1..𝑛 < 𝑥 .
(defun sum (x)

(loop for n from 1 to x sum n))

1Machine code here refers to a program for the Instruction Set Architecture (ISA) of the
computer that runs our interpreter.
2Incidentally, Smalltalk hackers pioneered many aspects of modern JIT compilation.
3Here we consider implicit type information primarily, (optional) type declarations
are a separate can of worms.
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When compiled with Clozure Common Lisp on x86_64 we can
observe the following disassembly for the loop body.

L38
(movq (% save0) (% arg_y)) ; [45]
(movq (% save2) (% arg_z)) ; [48]
(movl (% arg_y.l) (% imm0.l)) ; [51]
(orl (% arg_z.l) (% imm0.l)) ; [53]
(testb ($ 7) (% imm0.b)) ; [55]
(jne L63) ; [58]
(cmpq (% arg_z) (% arg_y)) ; [60]
(jle L90) ; [63]
(jmpq L204) ; [65]

L63
(lisp-call (@ .SPBUILTIN-GT)) ; [77]
(recover-fn-from-rip) ; [84]
(cmpb ($ 11) (% arg_z.b)) ; [91]
(jne L204) ; [95]

L90
(movq (% save1) (% arg_y)) ; [97]
(movq (% save0) (% arg_z)) ; [100]
(movl (% arg_y.l) (% imm0.l)) ; [103]
(orl (% arg_z.l) (% imm0.l)) ; [105]
(testb ($ 7) (% imm0.b)) ; [107]
(jne L126) ; [110]
(addq (% arg_y) (% arg_z)) ; [112]
(jno L140) ; [115]
(lisp-call (@ .SPFIX-OVERFLOW)) ; [117]
(recover-fn-from-rip) ; [124]
(jmp L140) ; [131]

L126
(lisp-call (@ .SPBUILTIN-PLUS)) ; [133]
(recover-fn-from-rip) ; [140]

L140
(movq (% arg_z) (% save1)) ; [147]
(movq (% save0) (% arg_z)) ; [150]
(testb ($ 7) (% arg_z.b)) ; [153]
(jne L174) ; [157]
(addq ($ 8) (% arg_z)) ; [159]
(jno L196) ; [163]
(lisp-call (@ .SPFIX-OVERFLOW)) ; [165]
(recover-fn-from-rip) ; [172]
(jmp L196) ; [179]

L174
(movl ($ 8) (% arg_y.l)) ; [181]
(lisp-call (@ .SPBUILTIN-PLUS)) ; [189]
(recover-fn-from-rip) ; [196]

L196
(movq (% arg_z) (% save0)) ; [203]
(jmpq L38) ; [206]

In the disassembly of the compiled loop we quickly see a pattern.
Run-time type checks ([55], [107], [153]) followed by a branch to
either fixnum-specialized code ([60], [112], [159]) or generic run-
time dispatch routines (SPBUILTIN-GT, SPBUILTIN-PLUS). Also no-
tably, as characteristic for Lisp, arithmetic overflow is checked for
([115], [163]), and handled by type promotion (SPFIX-OVERFLOW).

Let us look at a similar program written in Lua, and the machine
code emitted for the inner loop by LuaJIT.
function sum (x)

local a = 0
for n=1,x do a = a + n end
return a

end

If the above function was called as sum(100) the following code
will end up being executed.
->LOOP:
2a53ffe0 xorps xmm6, xmm6
2a53ffe3 cvtsi2sd xmm6, ebp
2a53ffe7 addsd xmm7, xmm6
2a53ffeb add ebp, +0x01
2a53ffee cmp ebp, eax
2a53fff0 jle 0x2a53ffe0 ->LOOP

Lua uses a single type for all numeric values—typically double
floats. Hence the accumulator 𝑎 is held in an SSE floating point
register (𝑥𝑚𝑚7). LuaJIT managed to infer that the type of the index
variable 𝑖 can be narrowed to a 32-bit integer, held in 𝑒𝑏𝑝 , and con-
verted to a double for arithmetic in 𝑥𝑚𝑚6. For the actual arithmetic,
native integer and floating point addition instructions are emitted
(𝑎𝑑𝑑 , 𝑎𝑑𝑑𝑠𝑑). Notably absent from the inner loop are any dispatches
on value types.4 Any guards needed to ensure correctness of the
program—say, what if 𝑥 is a string?—are hoisted before the loop.

The fundamental difference between the two compilers we just
examined is when they emit code. Clozure Common Lisp compiles
the function ahead of run-time, and emits one code path for all run-
time cases possibly encountered during the lifetime of the function.
LuaJIT on the other hand emits code at run-time, and only for code
paths that are actually executed. Subsequently, emitted code is more
narrowly specialized on particular evaluations of the program.

2.1 Object Orientation
Lua has no direct notion of object oriented programming. Instead,
the built-in setmetatable allows programmers to overload the vari-
ous built-in operators such as indexing (., :) by setting the so-called
“metatable” of an object. This mechanism lends itself to all sorts of
meta-programming, and enables customizations of the language
such as operator overloading, or prototype based object orienta-
tion.5

Acc = {}

function Acc:new ()
return setmetatable({a=0}, {__index=Acc})

end

function Acc:sum (n)
self.a = self.a + n

end

Again, with a similar program, we look at how LuaJIT compiles
a different set of abstractions. Instantiating our accumulator class,

4Also absent is handling of arithmetic overflow. However, we argue that this is satisfy-
ingly handled by the underlying hardware’s implementation of IEEE double-precision
floating point numbers.
5As a metatable can itself have a metatable installed, inhertiance comes quite naturally.
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and calling its summethod in a loop causes the following loop body
to be emitted.
local a = Acc:new()
for i=1,100 do a:sum(i) end

->LOOP:
2a53ffe0 xorps xmm6, xmm6
2a53ffe3 cvtsi2sd xmm6, ebp
2a53ffe7 addsd xmm7, xmm6
2a53ffeb movsd [rax], xmm7
2a53ffef add ebp, +0x01
2a53fff2 cmp ebp, +0x64
2a53fff5 jle 0x2a53ffe0 ->LOOP

To our satisfaction, the emitted code is almost unchanged. The
only differences are the store of our accumulator (2a53ffeb) not
being forwarded beyond the loop body, and the loop limit being
emitted as a constant literal instead of being held in 𝑒𝑎𝑥 . Notably,
the sum method has been inlined, hence there is no function call
overhead.

2.2 Functional Abstractions & Polymorphism
Lua supports closures and higher-order functions. Let us try higher-
order functions next, and add some gratuitously explicit polymor-
phism, too.
function make_acc ()

local a
return function (x)

if x == nil then
return a

elseif type(x) == 'number' then
a = (a or 0) + x

elseif type(x) == 'string' then
a = (a or "") .. x

end
end

end

For the last example, we create an accumulator closure. We want
to see how LuaJIT inlines the closure into the emitted loop body
code.
local acc = make_acc()
for i=1,100 do acc(i) end

->LOOP:
2a53ffd0 xorps xmm6, xmm6
2a53ffd3 cvtsi2sd xmm6, ebp
2a53ffd7 addsd xmm7, xmm6
2a53ffdb movsd [0x41d741d0], xmm7
2a53ffe4 add ebp, +0x01
2a53ffe7 cmp ebp, +0x64
2a53ffea jle 0x2a53ffd0 ->LOOP

The exact same code, again. Where did the branches go? Dead
code elimination did its trick since LuaJIT could specialize the emit-
ted code on numbers using run-time type information. Within the
loop body, code paths for handling strings and nil were not emitted
at all.

These few examples are intended to show the depths of abstrac-
tion that can be collapsed by means of JIT compilation, and to

motivate the reader’s interest in LuaJIT. In the following sections,
we wish to shine a light on LuaJIT’s design, and its limitations.

3 ARCHITECTURE AND IMPLICATIONS OF A
TRACING JIT COMPILER

At its heart, LuaJIT is a bytecode interpreter. Embedded in this inter-
preter is a special-purpose run-time profiler. For certain branching
bytecodes a table of “hot counts” is maintained. This table is indexed
through a hash of the program counter.

Whenever the interpreter encounters one of the bytecodes to be
tracked it increments its associated hot count. When incrementing
a hot count causes it to overflow beyond a certain value the inter-
preter will begin recording a trace, starting from the next bytecode
instruction.
0005 FORI i=1,n
0006 MODVN tmp1=i%2
0007 KSHORT const1=0
0008 ISGE const1>=tmp1
0009 JMP if 0008 is true => 0011
0010 ADDVV A=A+i
0011 FORL i=i+1, i>n => 0006

The exemplary bytecodes above represent a for loop that sums
odd integers 1..𝑛. The FORL bytecode controls loop iteration and is
tracked in a hot count for the program counter position 0011.

When the FORL bytecode becomes hot the interpreter begins
recording the following instructions it executes until a trace stop
condition is met. In this case, the trace stop condition will be trig-
gered upon encountering the FORL bytecode at position 0011 for a
second time, or on exiting the loop.

Assuming the loop exit condition is not met, the first bytecode to
be executed—and recorded in the trace—will be the MODVN bytecode
at position 0006, which calculates modulo 2 of 𝑖 . The next bytecodes
recorded are then 0007..0008 which load the constant zero, and
check if 𝑖 is odd—i.e., whether 𝑖%2 is greater than zero. If 𝑖 is odd at
the time of recording then the following JMP bytecode will not be
executed, and the remaining bytecodes to be recorded are ADDVV
and the initial FORL that closes the loop, and causes the interpreter
to stop recording with a successful trace (0006..0011).

This trace is then handed over to the JIT compiler, which trans-
lates the recorded bytecode instructions into a native program for
the target instruction set, optimized using the information gathered
during recording. [Gal et al. 2009] The interpreter then “patches”
the FORL bytecode at 0007 by replacing it with a JFORL bytecode
that causes the emitted code to be executed instead of the original
bytecode.

During code generation the recorded bytecodes are translated
into a SSA [Cytron et al. 1991] immediate representation (IR), and a
number of optimizing transformations are performed:

• FOLD: A rule-based fold engine dispatches to later optimiza-
tion stages, but also performs algebraic simplifications.

• ABC: Array Bounds Check Elimination.
• CSE: Common Sub-expression Elimination.
• LOOP: Loop invariant hoisting, and loop unrolling.
• DCE: Dead code elimination.
• AA: Alias Analysis.
• FWD: Load and store forwarding.
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• DSE: Dead-Store Elimination.
• NARROW: Narrowing of numbers (doubles to 32-bit integers).
• STRIPOV: Stripping of overflow checks.
• SINK: Allocation Sinking and Store Sinking.

Eventually, execution of a compiled trace will exit and return
to the interpreter. A compiled trace can exit for a number of rea-
sons. One way to exit emitted code is by executing it successfuly
to completion. Additionally, any deviation from the invariants en-
countered during trace recording will trigger an exit in the emitted
code. Any branches in the recorded trace as well as any checks for
invariants of the specialized code are converted to “guards” where
each guard represents an invariant assertion and a dedicated exit
point.
0002 > tab SLOAD #1 T
0003 p32 HREF 0002 "sum"
0004 > p32 EQ 0003 [0x41526458]

In the SSA immediate representation of a trace above we can
see two dependent guards, marked by > characters. The first guard
at 0002 loads an object via SLOAD, and asserts that it is of type
table. The second guard at 0004 ensures that the sum slot of the
table contains the object at address 0x415264586. If either of these
invariants is violated the compiled trace will abort execution, and
exit to the interpreter.

The same is true for branches converted to guards during trace
recording. In the IR below we can see a guard that exits the loop
body if the index is odd.

------ LOOP ------------
0010 int BAND 0007 +1
0011 > int GT 0010 +0

Two things should be said about trace exits. First, each guarded
trace exit is tracked with a dedicated hot count, and repeatedly
taken exits will cause a new trace to be recorded starting from the
respective branch. In LuaJIT, traces starting from a trace exit form
a distinct class of traces called “side traces”, and can not themselves
record loops.

Second, exiting a compiled trace represents the end of a compila-
tion unit, and requires consolidation between the interpreter state,
and the state mutated by the emitted code. Mutations performed
by emitted code are organized by LuaJIT in “snapshots”, and these
snapshots need to be restored to the interpreter state upon trace
exit. Likewise for transitions between compiled traces, side traces
cannot return directly into a loop body of their parent, and force
repeated execution of invariant guards.

3.1 Mechanical Sympathy
Trace selection in LuaJIT works analogous to a CPU branch pre-
dictor. While a modern computer speculatively executes certain
branches, a tracing JIT compiler might speculatively compile, and
hence bias, certain branches. Pitfalls of speculative execution ap-
ply equally to CPU branch predictors, and JIT engines. In LuaJIT
specifically, the speculative aspects of the compiler are less mature
than their hardware counterparts, and some pitfalls are present in
exacerbated variants.

6I.e., the object must be the sum method from section 2.1

It is easy, to construct a Lua program, even unknowingly, that ex-
ecutes an unbiased branch in a loop which cannot be hoisted before
the loop body. In LuaJIT’s current implementation, and specifically
under the limitations of the interaction between the trace as a com-
pilation unit, trace exits, and exit snapshots, the emitted code can
be unfavorable compared to traditional AOT compilers.

Furthermore, adversarial inputs can manipulate the outcomes
of speculative execution. [Kocher et al. 2019] This is an inherent
aspect of speculative execution in general, and deserves particular
attention when designing JIT compilers.

Listed below is the machine code emitted by LuaJIT for our
branchy loop from section 3. The first trace recorded covers the
loop. The second trace begins at the fifth exit (->5) of trace #1, and
covers a single iteration of the loop.
---- TRACE 1 mcode 100
2a53ff90 mov dword [0x41991410], 0x1
2a53ff9b cvttsd2si ebp, [rdx+0x8]
2a53ffa0 test ebp, 0x1
2a53ffa6 jle 0x2a530014 ->1
2a53ffac cmp dword [rdx+0x4], 0xfffeffff
2a53ffb3 jnb 0x2a530018 ->2
2a53ffb9 xorps xmm7, xmm7
2a53ffbc cvtsi2sd xmm7, ebp
2a53ffc0 addsd xmm7, [rdx]
2a53ffc4 add ebp, +0x01
2a53ffc7 cmp ebp, +0x64
2a53ffca jg 0x2a53001c ->3
->LOOP:
2a53ffd0 test ebp, 0x1
2a53ffd6 jle 0x2a530024 ->5
2a53ffdc xorps xmm6, xmm6
2a53ffdf cvtsi2sd xmm6, ebp
2a53ffe3 addsd xmm7, xmm6
2a53ffe7 add ebp, +0x01
2a53ffea cmp ebp, +0x64
2a53ffed jle 0x2a53ffd0 ->LOOP
2a53ffef jmp 0x2a530028 ->6
---- TRACE 1 stop -> loop

---- TRACE 2 mcode 49
2a53ff58 mov dword [0x41991410], 0x2
2a53ff63 add ebp, +0x01
2a53ff66 cmp ebp, +0x64
2a53ff69 jg 0x2a530014 ->1
2a53ff6f xorps xmm6, xmm6
2a53ff72 cvtsi2sd xmm6, ebp
2a53ff76 movsd [rdx+0x20], xmm6
2a53ff7b movsd [rdx+0x8], xmm6
2a53ff80 movsd [rdx], xmm7
2a53ff84 jmp 0x2a53ff90
---- TRACE 2 stop -> 1

Note how in trace #1 the first loop iteration is unrolled, and
invariant checks performed in the first iteration are not repeated in
subsequent interations. Trace #2 performs a single iteration of the
loop where 𝑒𝑏𝑝 is even, and returns to the beginning of trace #1.
Given the unbiased branch, every other iteration of the loop will
exit trace #1, and likely cause a rentry at its top re-executing any
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invariant guards. This compiler behavior effectively cancels out
high-impact loop optimizations.

Another important observation is that the emitted code is de-
pendent on which branch taken at the time of recording. Naturally,
control flow is exercised by the input to the evaluation of the pro-
gram. Situations arise in which for a heavily biased branch—more
common in practice than unbiased branches—either favourable (as
in trace #1) or unfavourable (as in trace #2) code is emitted de-
pending on the input to the evaluation. The quality of generated
code and, by extension, execution performance being affected by
adversarial input is problematic.7

3.2 Virtual Machine Words
LuaJIT uses NaN tagging to represent doubles and other built-in
types as single tagged 64-bit virtual machine (VM) words. 8 This
representation allows the most common types of values to be stack-
allocated without cooperation from the garbage collector (GC).

We have experience using LuaJIT for systems applications that
handle many 64-bit values such as large integers and pointers that
do not fit within a tagged VMword. This wasmade possible because,
within emitted machine code, LuaJIT is able to sink allocations of
objects, which otherwise must generally be heap-allocated, as long
as they are held in registers.9

However, we found this optimization to be unreliable in situa-
tions where 64-bit values spill out of registers onto the stack, and
subsequently cause GC pressure.

4 WHERE TO GO NEXT
LuaJIT is yet incomplete. Advancements in JIT compilation tech-
niques, such as in better code generation for loops with unbiased
branches could be incorporated in future implementations of JIT
compilers. [Gal and Franz 2006]

Double-precision floating point numbers have become a pop-
ular base type for numbers in dynamic programming languages.
Considering the advanced floating-point support of dominant ISAs,
we would like to pose a question: rather than building a machine
for their Lisp, should hackers build a Lisp for the best available
machine?

If we look at the interpreter as a component of an optimizing
compiler, rather than the primary execution engine itself, we might
wish to choose nontraditional trade-offs. We might increase the
VMsword size to fit the common 64-bit values we are having trouble
with. [Soldatov and IPONWEB 2018] After all, the stack overhead
of the interpreter is rendered mostly irrelevant in our emitted code.

A general design goal should be to find optimizing transforma-
tions with high-generality in order to provide reliable performance.
Brittle performance is giving JITs a bad name as it is. To no lesser
importance, future JIT compilers must ensure that adversarial pro-
gram inputs can only control which code paths are to be compiled,
but can never affect the quality of the emitted code.

With respect to Lisp, there are implementations such as Armed
Bear Common Lisp and Clojure that have inherited big, mature JIT
7Adversarial need not imply malevolent; undeterministic performance depending on
the workload handled within the first milliseconds of your application’s run-time is
frustrating, to say the least.
8NaN tagging or NaN boxing [Wingo 2011]
9Sinking here refers to avoiding boxing and unboxing of the object.

compilers. However, there is also Guile which recently added a new
young JIT compiler. [Wingo 2020]

We hope to present JIT compilers as an exciting, young field. And
in an ode to Squeak, we hope to garner interest in JIT compilation as
a technique for iteratively writing small, beautiful, and fast dynamic
language implementations. [Ingalls et al. 1997]
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ABSTRACT
The Open Dylan compiler, DFMC, was originally designed in the

1990s to compile Dylan language code targeting the 32-bit Intel

x86 platform, or other platforms via portable C. As platforms have

evolved since, this approach has been unable to provide efficient

code generation for a broader range of target platforms, or to ade-

quately support tools such as debuggers, profilers, and code cover-

age analyzers.

Developing a code generator for Open Dylan that uses the LLVM

compiler infrastructure is enabling us to support these goals and

modernize our implementation. This work describes the design

decisions and engineering trade-offs that have influenced the im-

plementation of the LLVM back-end and its associated run-time

support.
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1 INTRODUCTION
The Dylan programming language [8] is a member of the Lisp

family of languages designed to combine much of the dynamicity

of other Lisp dialects (such as Common Lisp) with features that

enable efficient compiled code and support application delivery

using stand-alone executables and shared libraries. One aspect

of the language design that enables these goals is library-centric

compilation. Program code is organized into individual libraries,

and all definitions for a library are submitted at once to the compiler.

Information about all of the source definitions in the library allows

the compiler to make use of Dylan’s sealing feature. Sealing a class

or a generic function guarantees to the compiler that it will not

be extended (through subclassing of classes, or adding methods to

a generic function) beyond what is in the library being compiled.

Dylan compilers can use sealing guarantees to statically enumerate

subtypes and applicable methods at compile time, enabling type

inference and optimizations such as method inlining and more

specific method dispatch.
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The structure of the Open Dylan
1
compiler, called DFMC (the

Dylan Flow Machine Compiler) is shown in Figure 1. When DFMC

needs to compile a Dylan library from a set of source files, process-

ing goes through the following phases:

• The Reader parses the input (using a state-based lexical ana-

lyzer and a LALR parser) into an abstract syntax tree based on

syntactic fragments. Interleaved with parsing, the Macroex-

pander rewrites the AST according to macro definitions vis-

ible in the source file’s lexical scope. When the compiler

parses a define library definition, it may load the library

databases of any referenced libraries so that macro (and

other) definitions become visible.

• The Object Modeling and Conversion phases build compile-

time representations of bindings, objects, and code. After

conversion, code from methods and other definitions is ex-

pressed using a Dylan-centric intermediate representation

called Dylan Flow Machine or DFM. The DFM representa-

tion is effectively Static Single Assignment (SSA), though

any variables that are assigned are converted into stack-

allocated or heap-allocated value cells rather than being split

into distinct SSA values.

• The Optimization phase iteratively transforms DFM func-

tions, performing (among others) type inferencing, tail-call

elimination, constant folding, common subexpression elimi-

nation, dead code removal, and method inlining.

• The Linking and Emitting phases use one of the selectable

back-ends to write out modeled objects and code for final

code generation and linking, as discussed in detail below.

• After compilation, the compiler writes out a database file to

persist information about the library for import into other

libraries.

Before the LLVM back-end described in the present work was

implemented, DFMC provided two selectable back-ends:

• The C back-end transforms the DFM intermediate represen-

tation into C language source code so that the final machine

code generation task can be passed on to a platform C com-

piler. Run-time support for this back-end is also written in

C, and the Boehm-Demers-Weiser conservative garbage col-

lector [2] is used to provide memory allocation.

• The HARP back-end, which was the primary one used for

the commercial Dylan product, generates 32-bit Intel x86

machine code for the Windows, Linux, and FreeBSD oper-

ating systems. After transforming the DFM representation

into a HARP-specific machine-oriented representation, the

back-end does basic x86 instruction selection, graph-coloring

register allocation, and simple branch optimization before

directly writing out (in the Windows case) COFF object files.

1
Before it was released as open-source software, the Open Dylan implementation was

initially known as Harlequin Dylan, and later as Functional Developer
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Figure 1: DFMC Compiler Structure

Microsoft CV4 Symbolic Debug Information format is also

written into the object file output.

Most of the run-time support for this back-end is written

in the HARP machine representation, made available us-

ing a stand-alone runtime generator tool. The remainder of

the run-time is in C. Either the Boehm-Demers-Weiser con-

servative collector, or the Memory Pool System [3] (which

supports incremental generational collection) can be used,

selectable at build time.

2 THE LLVM BACK-END
The LLVM back-end was developed with the following goals in

mind:

• Support debug information on platforms other than Win-

dows.

• Expand support to other architectures while minimizing the

inefficiencies incurred by compiling via C code.

• Take advantage of optimizations provided by the LLVM com-

piler infrastructure.

• Eventually support integrationwith non-conservative garbage

collectors such as the Memory Pool System.

The following sections discuss details of the design decisions

implemented in the back-end.

2.1 Back-end Intermediate Representation
LLVM defines an SSA-based representation for code, along with an

extensive set of architecture-independent and architecture-specific

intrinsic functions. Once code is compiled into the LLVM IR, the

LLVM analysis and optimization phases and code generators can

output assembly or machine code for a variety of target architec-

tures and platforms. Most compilers using the LLVM infrastructure

construct the IR representation by interfacing with the LLVM li-

braries (either directly from C++ or indirectly via C bindings). Other

alternatives include writing out the LLVM assembly language repre-

sentation and letting the infrastructure parse it, and directly writing

out the IR in LLVM’s compact binary “bitcode” format.

Though Open Dylan provides a foreign-function interface that

would have allowed using the LLVM libraries through their C bind-

ings, it was judged that it would be easier long-term to use a Dylan-

native intermediate representation. This has allowed the interface

to fit better stylistically with the surrounding code. For instance,

the LLVM libraries construct IR objects such as types, constants,

and instructions within a context so that (through hash-consing)

semantically equivalent objects are actually identical. Since the

DFMC back-end does very little code analysis at the LLVM IR level,

this property is not as useful there, making the burden of always

making a context available less worthwhile.

Given a Dylan-native IR, the back-end could either write out

textual LLVM assembly language or bitcode. In addition to the

overhead of writing out and parsing textual representations, the

assembly language has historically not provided many compati-

bility guarantees as the LLVM language has evolved. Though the

documentation for the bitcode format representation of LLVM IR

is somewhat incomplete, often requiring reverse-engineering, the

relative stability of the format has made this effort worthwhile.

Though the native IR does not attempt to unify equivalent objects

such as LLVM types or constant expressions, the bitcode represen-

tation requires that they be unified and enumerated in order to

represent references. The Dylan LLVM bitcode writer does this at

bitcode output time, collecting all referenced IR objects into equiva-

lence classes and performing partition refinement before assigning

indices and writing out bitcode records for each item.

2.2 Type Representation
LLVM uses a typed intermediate representation. This means that

unlike the HARP back-end (but like the C back-end), the LLVM

back-end must take care to use the right type representation within
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generated code and in run-time support routines, and to insert cast

operations when necessary.

Like many Lisp implementations, Open Dylan uses tagged point-

ers, with the lower two bits indicating whether a Dylan value

is a heap object, a (fixed-size) integer, or a character. At present

the LLVM generic byte pointer type i8* is used to represent Dy-

lan <object> values; in the future an alternative address space

marker may be added to the pointer type in order to mark garbage-

collectable pointers for the LLVM generator of static GC root infor-

mation.

When necessary, casts to other types are inserted at the point

of use. Operations on tagged integers or characters require an

inttoptr cast, along with (potentially) a shift to remove the tag.

Accesses to heap objects require a bitcast to a struct pointer

type reflecting the heap layout of the object. Dylan heap objects

are represented using a single header word, a pointer to a garbage-

collector “wrapper” structure (also used to provide concrete type

information at run time), followed by one or more pointer-sized

slots.

Objects may also have an optional “repeated slot” used to imple-

ment various types of containers. Repeated object pointer slots are

used for generic container types such as <simple-object-vector>,
and repeated “raw”-typed slots for specialty containers such as

<string>.
In addition to ordinary object pointer types that belong to the

Dylan value type hierarchy, Open Dylan supports a number of

raw types for values such as untagged bytes, machine words, and

floating-point values. These normally have a straightforward map-

ping to LLVM primitive types and are used to implement higher-

level operations and as part of the foreign-function interface.

2.3 Primitive Functions
The Open Dylan compiler defines a set of intrinsic “primitive” func-

tions, which are used in the implementation of the base dylan
library and other low-level libraries to represent operations such

as pointer equality, object memory allocation, numeric format con-

version, or raw memory access. The HARP and LLVM compiler

back-ends divide these primitive functions into three categories:

those that are expanded in-line when they are called, those that gen-

erate a call to a run-time support routine, and those that generate a

call to an implementation written in C. Many of these primitives

are called with or return raw-typed values.

The following demonstrates the implementation of the arith-

metic + operation on <single-float> using calls to primitive

functions that unbox the <single-float> values as raw values,

perform the addition as another raw value, and then box the result.

DFMC optimizations can make use of the fact that the boxing and

unboxing primitives are inverses of each other and allow them to

cancel each other out when calls to this method are inlined.

define sealed inline method \+

(x :: <single -float >, y :: <single -float >)

=> (z :: <single -float >)

primitive -raw -as-single -float

(primitive -single -float -add

(primitive -single -float -as-raw(x),

primitive -single -float -as-raw(y)))

end method;

Since the HARP back-end works primarily with word-size values,

and the C back-end is able to take advantage of C type promotion

rules, much of the Open Dylan code base was somewhat “loose”

with the types of arguments to primitives. The LLVM intermediate

language, being strictly typed, requires explicit integer widening

and narrowing operations, so the translation of primitive calls

frequently had to take this into account by adding automatic con-

versions. In some cases, explicit calls to cast primitives had to be

added to convert between pointer and (integer) address types.

2.4 Run-Time Support Routine Generation
The definition of the Dylan language requires that a base library

named dylan be provided so that programs can make use of the lan-

guage’s built-in macro syntax, classes, and functions by importing

the dylan module that it exports. The Open Dylan implementation

of this base library uses some “bootstrap” definitions found within

the source of the compiler, but with the bulk of the library written

as ordinary Dylan source files.

Included with the shared library generated for the dylan library

are the run-time support routines needed by all libraries written

in Dylan. These routines include implementations of the primitive

functions, helper routines that implement function entry points,

and interfaces with system facilities such as the garbage collector

or arithmetic trap handling.

To build the run-time support routines we use a specialized gen-

erator tool based on many of the libraries that make up DFMC. This

includes the reader, macroexpander, and enough of the modeling

phases that the tool can process the source for the dylan library.

This is desirable because many of the primitive functions and entry

points need to reference classes and functions defined in the base

library. Parsing the same source means that there is a single “source

of truth” for these definitions.

Listing 1 illustrates a compile-time expander for a simple prim-

itive function. The run-time support generator tool locates all of

the run-time primitive definitions such as this one and executes

them, causing the IR for support routines to be generated for output.

When necessary, these routines can access the compile-time models

for definitions found in the dylan library, giving information such

as the size and layout of <double-integer> class instances. Calls

to ins routines in the body of this definition insert LLVM basic

blocks and instructions into function definitions, which are then

written out (as bitcode) to be included in the run-time support.

It is often convenient for the run-time support routines written

in C (such as the interface to operating system thread and synchro-

nization primitives) to have access to the object layouts of a few

select Dylan types. To facilitate this, the run-time support generator

tool also writes out a C language header file with type definitions

corresponding to the definitions in the dylan library.

2.5 Entry Points and Calling Conventions
The Open Dylan implementation of multi-method dispatch [1] has

a number of different ways of generating code for function calls.

When the exact method to be called is known to the compiler

due to type inference and sealing rules, then DFMC can either

inline the method call or invoke the method’s internal entry point
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Listing 1: Sample Run-Time Primitive Function Definition
define side -effect -free stateless dynamic -extent

&runtime -primitive -descriptor primitive -wrap -unsigned -abstract -integer
(x :: <raw -machine -word >) => (result :: <abstract -integer >);

let word -bits = back -end -word -size(be) * 8;
let maximum -fixed -integer

= generic/-(generic/ash(1, word -bits - $dylan -tag -bits - 1), 1);

// Check for greater than maximum -fixed -integer
let cmp -above = ins --icmp -ugt(be, x, maximum -fixed -integer );
ins --if (be, cmp -above)

// Allocate and initialize a <double -integer > instance
let class :: <&class > = dylan -value(#"<double -integer >");
let double -integer = op--allocate -untraced(be, class );
let low -slot -ptr

= op --getslotptr(be, double -integer , class , #"%% double -integer -low");
ins --store(be, x, low -slot -ptr);
let high -slot -ptr

= op --getslotptr(be, double -integer , class , #"%% double -integer -high ");
ins --store(be, 0, high -slot -ptr);
ins --bitcast(be, double -integer , $llvm -object -pointer -type)

ins --else
// Tag as a fixed integer
let shifted = ins --shl(be, integer -value , $dylan -tag -bits);
let tagged = ins --or(be, shifted , $dylan -tag -integer );
ins --inttoptr(be, tagged , $llvm -object -pointer -type)

end ins --if;
end;

(IEP) directly. In this case, because the exact arity of the called

function is known and any keyword arguments are already split

into separate arguments, the call is able to use the LLVM fastcc
calling convention, ensuring that as many arguments as possible

are passed in registers.

The compiler generates an internal entry point for each com-

piled method. Following the formal arguments, artificial arguments

representing the next applicable method(s) (used to implement

next-method calls) and the <method> object itself (so that closed-

over values stored in closure objects can be accessed). When these

values are not used, the caller passes LLVM undef values, allowing

the LLVM code generator to avoid emitting code to set them.

At the other extreme, generic functions about which nothing is

known are called using the external entry point (XEP) convention.

Because the number of arguments the function will accept is un-

known, the caller passes the <function> object and the number of

arguments at the head of the function arguments. Since the func-

tion arity is not guaranteed to match between the caller and the

entry point, and because the entry point may need to collect #rest
arguments or keyword arguments into a stack-allocated vector,

LLVM ccc (C calling convention) is used.

The XEP entry points are pre-generated as part of the run-time

support, using LLVM intermediate representation builders similar

to those used for primitive functions. Several external entry point

variants are available, for monomorphic (single-method) functions

with or without optional arguments, for object slot accessors, and

for generic functions that need to use the dispatch machinery. For

each variant, 20 different variants are generated, one for each pos-

sible required argument arity. The compiler initializes the xep slot

of each <function> object according to the function signature and

number of methods.

When polymorphic method dispatch is known to be required,

either at the call site or within the generic function’s external entry

point, then a decision tree of objects called engine nodes is built.
Every engine node has an engine node entry point, also generated

as part of the run-time support, most with multiple variants. For

example, a discriminator engine point is responsible for checking

the argument value of a single argument position and then choosing

with which child node discrimination should continue. Some of

these node types make use of dispatch code written in Dylan to

make discrimination decisions before chaining to the next node’s

entry point. Engine node entry points are passed the engine node

object, a reference to the dispatch “head”, and all of the function’s

required arguments. These are also able to use the LLVM fastcc
convention.

Once the applicable method is located, when it can, the leaf en-

gine node will call into its internal entry point directly. For methods

with keyword parameters or other optional arguments, the method

entry point (MEP) is used instead. The MEP scans through the

optional arguments and determines the values of each keyword

argument (explicitly passed or defaulted) and then chains to the

IEP with a tail-call.
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2.6 Multiple Return Values
Like Common Lisp, the Dylan language allows functions to return

zero or more values. Most standard calling conventions are not

designed to support variable numbers of return values, making

this a challenge to support. DFMC solves this with a vector of 64

values in thread-local storage (part of a Thread Environment Block

structure). This storage is effectively a large register file, one that

sometimes needs to be spilled to stack and restored. The primary

(zeroth) value is returned in the main function return register, and

(in the HARP and C back-ends) the return value count is placed in

thread-local storage.

The LLVMback-end takes advantage of the fact that most current

architecture ABIs support returning a structure of up to two words

in registers. IEPs and the generated entry points return a type

defined as:

%struct.mv = type { i8*, i8 }

placing the count of return values in the second word.

When a function returning multiple values is inlined, the inter-

mediate return values may be available as local SSA values. Though

the DFM representation does not distinguish between different

kinds of multiple-value temporaries, the LLVM back-end makes an

effort to ensure that a local SSA representation is used rather than

forcing them to go through thread-local storage. These two strate-

gies reduce the overhead of working with multi-value functions.

2.7 Foreign Function Interface
Support for interfacing with C and other languages has been a goal

of most Dylan language implementations. Using the raw types to

represent scalar values, along with facilities for modeling C struc-

tures, variables, and functions, Open Dylan is able to interoperate

with a variety of C language application programming interfaces.

Some support for calling Objective C methods is also available.

The LLVM tools’ support for link-time optimization means that

code from Open Dylan and other languages using the LLVM inter-

mediate representation can be optimized or inlined across language

barriers.

One challenge for the LLVM back-end is that while the LLVM

intermediate representation is able to isolate front-end compilers

from most of the specifics of the calling convention, it does not hide

many of the details of passing and returning aggregate values such

as structures and arrays. Providing platform-specific support for

transforming aggregate argument and return values into function

signatures that LLVM will support, just as the Clang compiler does,

is an area for future work.

2.8 Non-Local Exit and Unwind-Protect
The Dylan language supports stack-unwinding non-local exit and

forced cleanups during unwinding with the block construct and
its cleanup clause.

The HARP code generator implements this by building a chain

of bind-exit and unwind-protect frames on the stack. Non-local

exits traverse this chain, executing unwind-protect cleanups and

then restoring the final frame and instruction pointers.

The LLVM back-end reduces the overhead of constructing bind-

exit frames by using the Itanium C++ ABI facilities for “zero-cost”

exception handling, which optimizes for the case where the excep-

tion is not taken. When starting a bind-exit block, only a single

word uniquely identifying the exit block needs to be stored into

the bind-exit frame. Function calls within the block that might po-

tentially cause an unwind contain branches to LLVM landingpad
blocks that handle the unwind or cleanup. LLVM code generation

builds tables that can locate these exception landing pads with

the help of a Dylan-specific “personality function” included in the

run-time support routines.

In addition to its low overhead in the usual case, this scheme

also has the potential to interoperate well with C++ exception

handling. The disadvantage, however, is that when non-local exits

are frequent the cost can be quite high, mostly due to the overhead

of locating the unwind tables using the system dynamic linker.

The Gabriel ctak benchmark [4] is an example of a program that

performs poorly with this scheme.

2.9 Thread-Local Storage
Open Dylan supports module variables that are thread-local. In the

LLVM back-end, these are implemented using the thread_local
storage model for global variables. This requires that when a new

thread is started, thread-local variables in all loaded libraries be set

to their initialization values, and that the storage locations be added

to the set of roots known to the garbage collector. Dynamically

loading a new library can also cause new thread-local storage to be

added.

2.10 Debugging Support
The LLVM intermediate representation can express source-level

debugging information, including source code locations, local and

global variable locations, and types. This information is translated

into platform-specific debug information, such as DWARF or Mi-

crosoft CodeView format. The Open Dylan LLVM back-end can

generate this debug metadata, so that profilers, code coverage ana-

lyzers, and other tools can work transparently with Dylan libraries.

The LLVM project’s LLDB debugger does require that it recog-

nize a language type before it will make use of local variable and

type information. The encoding of local variable and type metadata

was designed to be compatible with that generated by the Clang

compiler, and so we were able to submit a patch to the LLDB de-

velopers to explicitly support the Dylan language. Most debugging

tasks can be handled using this support.

The Open Dylan programming environment includes a debug-

ger that operates on a remote process. In addition to supporting

breakpoints, stepping, and reading local variables, the debugger can

also compile definitions and dynamically load them into the run-

ning remote process for execution, implementing a REPL for Dylan.

Redefinitions are handled by compiling libraries in “loose” mode,

which suppresses sealing and other kinds of optimizations, making

the compiled code rely on dynamic typing and introspection opera-

tions. While this has long been supported on theWindows platform

using the HARP code generator, we are currently expanding it to

work with LLVM-generated code, integrating the LLVM debugger

as a component to handle low-level and platform-specific debugger

functionality.
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3 BUILD SYSTEM INTEGRATION
The Open Dylan compiler uses the system linker to link compiler

output into shared libraries; for the LLVM and C back-ends, ex-

ternal tools are also used for the final machine code generation

task. Because different platforms, different toolchains, and even

individual installations can vary widely, it is helpful to have a way

to configure how Open Dylan invokes these external tools without

requiring changes to the compiler. To allow this, the Open Dylan

compiler implements an interpreted domain-specific language for

toolchain builds, Christopher Seiwald’s Jam [7], re-implemented

in Dylan for ease of integration. Toolchain-specific build scripts

provide Jam functions that can define build steps and establish

dependency relationships between build products. When the Open

Dylan compiler has finished compiling all libraries needed for a

project, it invokes these build script functions to determine final

code generation and linking steps. These steps are then executed

in parallel as dependencies and CPU resources allow.

Taking this approach to configuring build tools has made it

possible to support all three compiler back-ends and a variety of

external toolchains on Windows, Linux, BSD, and macOS platforms

with a minimum of effort.

4 RELATEDWORK
The CLASP[5, 6] implementation of Common Lisp is also designed

to compile a Lisp using the LLVM compiler infrastructure. As such,

there are many similarities in implementation techniques, including

the (external) calling convention, multiple-value return, and stack

unwinding. Dylan does have the advantage of being able to take

advantage of sealing information; for example, inlining of arith-

metic and other frequent operations can be handled in a general

way rather than with special-casing in the compiler.

5 CONCLUSION AND FUTUREWORK
The LLVM back-end to the Open Dylan compiler demonstrates a

number of techniques for building a Lisp-family compiler using the

general-purpose language implemetation infrastructure provided

by the LLVM project.

Future work will likely include adding support for LLVM type-

based alias analysis metadata, allowing the LLVM optimizer more

flexibility in reordering memory operations when it can infer that

different object pointers do not modify the same object. We also

hope to adapt our code generator to make use of LLVM’s garbage

collection safepoints facility, which generates GC root stack map

information for run-time garbage collection, and explicitly models

at compile time the relocations that a garbage collectormay perform.

This would allow us to use a relocating garbage collector such as

the Memory Pool System, expanding our GC options beyond our

current use of conservative collectors such the Boehm-Demers-

Weiser collector. Completion of these features will allow us to satisfy

the original goals we set for the LLVM back-end.
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ABSTRACT
We demonstrate the implementation of a partial evaluation based
CPS transformation in the context of pLisp, a Lisp dialect and IDE
for beginners. The CPS transformation employs a modular tech-
nique that unifies the treatment of the language constructs; we
illustrate the transformation by explicating the conversion process
for a single construct (viz., if). To the best of our knowledge, this
framework is also novel in that the partial evaluation and CPS
transformation techniques are implemented in the implementation
language of the system itself (i.e., C), as opposed to bootstrapping
from an existing Lisp dialect.
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1 INTRODUCTION
Partial evaluation [12] is a well-established technique for optimizing
programs. A program is partitioned into a static and a dynamic part,
with the static part comprising data and values known beforehand,
and the dynamic part comprising data and values not known at
compile-time. The compilation or translation process ’executes’ the
static part so that only a residual program is left over for execution
later, thereby resulting in a smaller/faster program.

Continuation Passing Style (CPS) [14] is a style of programming
in which every function call is augmented with an additional ar-
gument known as a continuation; this continuation embodies the
rest of the computation, and the function is expected to perform its
computation and then invoke the continuation with the result of
the computation. There are a number of advantages to program-
ming in CPS, a few of them being a) simplifying the effort needed
at the compiler back-end b) making explicit the semantics of the
computation (e.g., order/sequencing of execution primitives) and
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c) enabling the easier implementation of advanced control struc-
tures like non-local control transfers. Transformation of a program
to CPS is a step in a typical compiler pipeline that includes steps
like assignment conversion, renaming, closure conversion, and lift
transformation.

A naive CPS transformation [8] results in quite inefficient code,
and these inefficiencies are removed using techniques like inlining.
Another option for removing these inefficiencies is to leverage par-
tial evaluation based techniques [6]. The ’static’ program fragments
that would have been generated by the naive CPS transformation
are recognized as such and are executed by the so-called meta-
language interpreter [15] during the transformation process itself,
thereby preventing the inefficient code from being generated in the
first place.

Figure 1 illustrates the CPS transformation of the expression
(+ x 1) using both a naive approach (Figure 1a) and a partial
evaluation based approach (Figure 1d) 1. The output of the naive
transformation is typically optimized by repeated β-reductions
(Figure 1b) and inlining (constant propagation of a lambda form
followed by a β-reduction; Figure 1c). The quasi-syntactic (and
semantic) equivalence of the optimized naive CPS transformation
and the partial evaluation based CPS transformation is to be noted,
although this equivalence is achieved by different routes; in the
case of the partial evaluation approach, the inlining optimization is
effected by execution of the relevant code fragment (the let forms
in Figure 1b) by the metalanguage interpreter (explained in section
3).

pLisp [11] is a Lisp-1 dialect and an integrated development
environment modelled on Smalltalk that targets beginners, with
the following features:

• Graphical IDE with context-sensitive help, syntax colouring,
autocomplete, and auto-indentation

• Native compiler
• User-friendly debugging/tracing
• Image-based development
• Continuations
• Exception handling
• Foreign function interface
• Package/Namespace system

The native compiler in pLisp implements a partial evaluation
based CPS transformation step through a modular and flexible
framework, embodying an elegant construct-dependent technique
for the creation of the metalanguage closures, which is detailed in
this paper.

1This code was generated by the pLisp compiler; the names of the binding variables in
the abstractions have been shortened to improve readability
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(a) Naive CPS conversion

(b) After β -reduction

(c) After inlining

(d) Partial evaluation based CPS conversion

Figure 1: Naive and partial evaluation based CPS
conversion of ’(+ x 1)’

2 COMPILER PIPELINE
The pLisp compiler transforms the Lisp source code to CPS and
emits C code, which is then passed to LLVM to produce native code.
The compiler does the transformation in the following passes [15]:

• Desugaring/Macro expansion
• Assignment conversion
• Translation
• Renaming
• CPS conversion
• Closure conversion
• Lift transformation
• Conversion to C

These compiler passes produce progressively simpler Lisp di-
alects, culminating in a version with semantics close enough to
C. Figure 2 illustrates this transformation. Since LLVM is used to
convert the C code to native code, the pipeline does not include
passes like register allocation/spilling.

Desugaring/Macro expansion: This pass performs macro expan-
sion, resulting in a dialect called plisp_k (’k’ stands for ’kernel’)
that is shorn of all macro invocations. The backquote construct used
in macro-expansion is itself implemented as a macro, so the order
of definitions of backquote and its supporting functions is critical.
Accordingly, the source file listing the definitions of the core library
objects contains the macro-expansion-related infrastructure before
the other definitions.

Figure 2: pLisp compiler transformations

Assignment conversion: Assignment conversion replaces all as-
signed variables with mutable cells, thereby making variable bind-
ings immutable (i.e., the contents of the cell may change over time,
but the binding of a cell to a variable will not). In the interests of
simplicity and to avoid the introduction of one more object type,
mutable cells in pLisp are simulated by CONS objects whose CDR
is NIL. Assignment conversion produces code in a dialect called
plisp_k_no_set, which differs from plisp_k only with respect to
the absence of the set construct (replaced by the setcar primitive).

Translation: This pass produces an intermediate language dialect
called pLisp_IL (Figure 3) and differs from the previous dialects
in that a) it does not have a recursion construct (letrec) and b) a
new multibinding construct called let* is introduced (note: this
let* is distinct from the similarly-named core library form). This
pass also performs syntactic simplifications like removal of empty
lets, conversion of applications of lambda expressions to lets,
η-reductions and copy propagation.

exp ::= literal | var
| (if exp exp exp?)
| (primop exp+)
| (lambda (var*) exp)
| (error exp)
| (call/cc exp)
| (exp exp*)
| (let ((var exp)*) exp)
| (let* ((var exp)*) exp)

Figure 3: pLisp_IL grammar

Renaming: The renaming pass ensures that no two logically
distinct variables in the code have the same name, so that variable
capture is avoided. Introduction of fresh variable names utilizes
the same infrastructure that implements the gensym feature in the
pLisp core.

CPS Conversion: The CPS conversion pass converts the code
to CPS style, and produces the dialect plisp_IL_CPS (Figure 4)
characterized by restrictions on let forms: they can now only have
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one binding, and the expressions that can be bound to the let
identifiers (denoted by le in the figure) are restricted to literals,
lambda expressions, and primitive operations. The CPS conversion
pass also injects code to save the generated continuation object:
this is useful for implementing the break/resume functionality for
the debugger.

exp ::= (var val*)
| (if val exp exp)
| (let ((var le)) exp)
| (error exp)
| (call/cc exp)

val ::= literal | var
le ::= literal

| (lambda (var*) exp)
| (primop val+)

Figure 4: pLisp_IL _CPS grammar

Closure conversion: In this pass, functions are converted into
closures, so that the free variables referred in the lambda expression
body are fetched from the environment that is stored along with
the code. The lambda expressions are thus implicitly passed the
code/environment pair as their first parameter.

Lift transformation: The lift transformation pass converts all pro-
cedures to the top level and thereby linearizes the code. Please note
that lift transformation is predicated on the procedures having un-
dergone a closure conversion. This pass results in the plisp_IL_Lift
dialect, where the code linearization is manifested as further re-
strictions on let bindings (only literals and primitive operations
are permitted as letable expressions).

Conversion to C: The C conversion pass, in addition to handling
the Lisp-to-C syntax translation, also performs additional tasks like
decorating the variable names so that they do not violate the C
syntax rules for variable names and keywords.

Expressions entered at the top level (i.e., the Workspace in pLisp)
are compiled into anonymous closures, and are supplied the identity
function as their continuation.

3 PARTIAL EVALUATION BASED CPS
TRANSFORMATION

3.1 pLisp Object Representation
In this subsection we briefly describe the pLisp object model, inas-
much as is required to set the context for this work. The following
object types are supported by pLisp [11]:

• Integers
• Floating point numbers
• Characters
• Strings
• Symbols
• Arrays
• CONS cells
• Closures
• Macros

Objects are internally represented by OBJECT_PTR, a typedef for
uintptr_t, the C language data type used for storing pointer values.

The four least significant bits of the value are used to tag the object
type (e.g., 0011 for character objects, 0110 for CONS cells, and so
on), while the remaining (n-4) bits (where n is the total number
of bits) of the value take on different meanings depending on the
object type, i.e., whether the object is a boxed object or an immediate
object. If the object is a boxed object, the remaining bits store the
referenced memory location. The use of the GC_posix_memalign()
call (from the Boehm Garbage Collector library) for the memory
allocation obviates the loss of the four least significant bits and
ensures that the four least significant bits of the returned address
are zeros.

3.2 Metalanguage Interpreter
The metalanguage interpreter in pLisp is written in C. While the
semantics of the metalanguage interpreter are easier and more nat-
ural to represent and implement in Lisp, this option is not available
in the present situation: we are implementing pLisp from scratch
and therefore do not have a core/kernel Lisp implementation from
which to bootstrap. S-expressions which are input to the interpreter
are pLisp objects, more specifically linked CONS cells, internally
represented as OBJECT_PTR values. A subset of the pLisp object
types, viz., atoms (excluding types like closures, of course) and
CONS cells comprising atoms or other CONS cells, is thus accepted
by the interpreter.

The workhorse of the CPS transformation process is the function
mcps() 2. This function accepts the source language expression,
and depending on its type (i.e., abstraction, application, and so on),
creates the corresponding closure M which, when invoked, would
perform the code transformation for that type.

The CPS transformation process is also predicated on a class of
secondary closures m, the purpose of which is to transform value
expressions (identifiers and literals) in the source dialect (plisp_IL)
into general expressions in the target dialect (plisp_IL_CPS). The
closure M takes an argument of type m.

The partial evaluation semantics are captured in these two clo-
sures: the code executed by these closures would have, in a naive
CPS transformation, formed a part of the generated code, thereby
leading to code bloat and the attendant performance hit.

Listing 1 presents the data structures used by the interpreter.
The structures reg_closure_t and metacont_closure_t are the
realizations of the closures m and M respectively. The first three
fields of each structure correspond to the implementation of a
closure in a language like C, i.e., the function pointer representing
the function and the machinery required to store the closed-over
values. The function pointer field in effect specializes the closures:
by assigning different functions to this field, we are able to handle
the various source language constructs (if, let, and so on) in a
modular way. In addition to these three fields, the structure for
m has a field called data; the need for and usage of this field is
explained in the next section.

Figure 5 depicts the object model underpinning the interpreter.
In the interests of space, not all the elements corresponding to the
language constructs are shown. It is to be noted that there isn’t
a one-to-one mapping between the language construct entities
of M and m (e.g., there is an entity called lambda_metacont_fn,

2https://github.com/shikantaza/pLisp/blob/master/src/metacont.c
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but no entity called lambda_cont_fn). The absence of such an
entity is because it is not always the case that the body of M is
of the form (MCPS⟦E⟧ λV . ...), which necessitates the presence
of the symmetric entity. Also, the dependency or linkage between
the transforming entities and the transformed entities is cleanly
captured by the OBJECT_PTR reference; the use of this reference
enables flexibility and allows us to switch the object representation
easily if desired. Finally, please also note the self-referential loop
labelled ’data’ for reg_closure_t: the self-reference refers to the
data field, which, while generic in intent, is used in practice to
store only entities of class m (we have explained this further in
subsection 4.2).

4 A DETAILEDWALKTHROUGH
In order to explain the internals of the translation process and to
bring out the mechanics of the interpreter better, we walk through
the translation process for the pLisp if construct in this section.

4.1 An Abstract View
At an abstract level, the part of the implementation function mcps()
that translates if constructs (more precisely, the function stored in
the field mfn of the structure metacont_closure_t, corresponding
to M) can be represented [15] by the function shown in Figure 6.

MCPS⟦(if Etest Ethen Eelse)⟧
= (λm . (MCPS⟦Etest⟧

(λVtest . (let ((Ikif (mc → exp m)) ; Ikif fresh
(if Vtest

(MCPS⟦Ethen⟧ (id →mc Ikif))
(MCPS⟦Eelse⟧ (id →mc Ikif)))))))

Figure 6: Transformation function for if construct

We deconstruct the function as follows.
(1) The function MCPS returns a closure (tagged as M in the

previous section). The closed-over values for the returned
closure depend on the source language construct in question;
in this case, they are Etest, Ethen, and Eelse.

(2) The argument to this closure is another closure (tagged asm
earlier), which handles the conversion of value expressions
(literals and identifiers) in the source dialect.

(3) When the closure M is invoked with the argument, it evalu-
atesMCPS on Etest, creates another closure of classm (this
is explained below), and applies the former to the latter.

(4) The closure of class m mentioned above builds the target
expression in the plisp_IL_CPS dialect. The closed-over val-
ues for this closure are Ethen, Eelse, and m (the argument to
M itself). This is the canonical CPS transformation of if:
evaluate the test expression, branch on to the CPS transfor-
mation of the consequent or the alternative expression based
the truth-value of the test expression.

(5) The body of the closure defined by (λVtest.(let.. is an S-
expression built up partly with literals like let and fresh
symbols, and partly with return values of function applica-
tions in the metalanguage.

(6) id→mc andmc→exp are helper functions; the first converts
an identifier to a closure of classm, while the second converts
the metalanguage closure m into an abstraction in the target
dialect (i.e., the CPS-transformed equivalent expression).

In summary, elements of the source expression are partitioned
among multiple closures, and these closures (operating at different
stages of the transformation) utilize these elements to recursively
build the target expression.

4.2 Implementation
The definitions of the closure functions for transforming if con-
structs are provided in Listing 2.

The functions if_metacont_fn and if_reg_cont_fn slot into
mfn and fn in the respective closure data structures presented in
Listing 1. As mentioned earlier, the same data structures are repur-
posed to handle different constructs by suitably populating these
slots as required. Adhering to the convention for closure implemen-
tation, the first argument to both these functions are their parent
closure data structures themselves.

The computational steps of the abstract function MCPS are
jointly realized in an imperative fashion in these two functions:

if_metacont_fn:
(1) Retrieve the closed-over values from the closure data struc-

ture.
(2) Convert the if test expression to a closure M by calling

mcps().
(3) Create the regular closure object that would perform the

actual transformation.
(4) Invoke the closure created in step (2) on the regular closure

object and return the result.
if_reg_cont_fn:
(1) Retrieve the closed-over values from the closure data struc-

ture.
(2) Convert the consequent and alternative parts of the if ex-

pression to closures by calling mcps().
(3) Build the target expression by splicing together the S-expression

from literals like let and fresh symbols, and from results of
function calls of the above closures.

A couple of things are to be noted:
(1) The implementation contains calls like gensym() and list(),

which are C equivalents of the standard lisp operators.
(2) The slot data in reg_closure_t is also used to store closed-

over values (albeit not OBJECT_PTR values). However, such
a slot is useful to logically separate such values as originate
from the source language expressions (e.g., Ethen) from values
like m for purposes of clarity. There is also an element of
type-safety: closed_vals, being of type OBJECT_PTR *, is
safer from, e.g., an assignment perspective when compared
to data (which is of type void *).

4.3 Another Example
We illustrate the flexibility of the translation framework with a brief
look at the machinery for the translation of the let form (Figure
7).
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Figure 5: Transformation object model

Listing 1: Data structures used in metalanguage interpreter
1 / / f o rwa rd d e c l a r a t i o n s
2 s t ruc t r e g _ c l o s u r e ;
3 s t ruc t met a con t _ c l o su r e ;
4
5 typedef OBJECT_PTR ( ∗ r e g_ con t _ f n ) ( s t ruc t r e g _ c l o s u r e ∗ , OBJECT_PTR ) ;
6
7 typedef s t ruc t r e g _ c l o s u r e
8 {
9 r e g_ con t _ f n fn ;
10 unsigned int n o f _ c l o s e d _ v a l s ;
11 OBJECT_PTR ∗ c l o s e d _ v a l s ;
12 void ∗ da t a ;
13 } r e g _ c l o s u r e _ t ;
14
15 typedef OBJECT_PTR ( ∗ metacont_ fn ) ( s t ruc t met a con t _ c l o su r e ∗ , s t ruc t r e g _ c l o s u r e ∗ ) ;
16
17 typedef s t ruc t met a con t _ c l o su r e
18 {
19 metacont_ fn mfn ;
20 unsigned int n o f _ c l o s e d _ v a l s ;
21 OBJECT_PTR ∗ c l o s e d _ v a l s ;
22 } me t a c on t _ c l o s u r e _ t ;

MCPS⟦(let ((Ii Ei)ni=1) Ebody)⟧
= (λm . (MCPS⟦E1⟧

(λV1 .
...

(MCPS⟦En⟧
(λVn . (let* ((Ii Vi)ni=1)

(MCPS⟦Ebody⟧m)))) ... )))

Figure 7: Transformation function for let construct

This is the canonical transformation of let: each of the bind-
ing expressions Ei undergoes transformation (sequentially), and
invokes its respective continuation. Finally the transformation of
the let body Ebody, which would have the references to the bind-
ings Ii populated by the let* form, is invoked on m, which is the
continuation that would have been provided by the whole let ex-
pression transformation context. Each of the nested closures (also
of type m) closes over a part of the let binding components. The
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Listing 2: Closure function definitions for if construct
1 OBJECT_PTR i f _me t a c on t _ f n ( me t a c on t _ c l o s u r e _ t ∗mcls , r e g _ c l o s u r e _ t ∗ c l s 1 )
2 {
3 OBJECT_PTR t e s t _ e x p = mcls−> c l o s e d _ v a l s [ 0 ] ;
4 OBJECT_PTR then_exp = mcls−> c l o s e d _ v a l s [ 1 ] ;
5 OBJECT_PTR e l s e _ e xp = mcls−> c l o s e d _ v a l s [ 2 ] ;
6
7 me t a c on t _ c l o s u r e _ t ∗ t e s t _m c l s = mcps ( t e s t _ e x p ) ;
8
9 r e g _ c l o s u r e _ t ∗ c l s = ( r e g _ c l o s u r e _ t ∗ ) GC_MALLOC( s i z eo f ( r e g _ c l o s u r e _ t ) ) ;
10
11 c l s −>fn = i f _ r e g _ c o n t _ f n ;
12 c l s −>n o f _ c l o s e d _ v a l s = 2 ;
13 c l s −> c l o s e d _ v a l s = ( OBJECT_PTR ∗ ) GC_MALLOC( c l s −>n o f _ c l o s e d _ v a l s ∗ s i z eo f ( OBJECT_PTR ) ) ;
14
15 c l s −> c l o s e d _ v a l s [ 0 ] = then_exp ;
16 c l s −> c l o s e d _ v a l s [ 1 ] = e l s e _ e xp ;
17
18 c l s −>da t a = c l s 1 ;
19
20 return t e s t _mc l s −>mfn ( t e s t _mc l s , c l s ) ;
21 }
22
23 OBJECT_PTR i f _ r e g _ c o n t _ f n ( r e g _ c l o s u r e _ t ∗ c l s , OBJECT_PTR t e s t _ v a l )
24 {
25 OBJECT_PTR i _ k i f = gensym ( ) ;
26
27 r e g _ c l o s u r e _ t ∗ c l s 1 = ( r e g _ c l o s u r e _ t ∗ ) c l s −>da t a ;
28
29 OBJECT_PTR then_exp = c l s −> c l o s e d _ v a l s [ 0 ] ;
30 OBJECT_PTR e l s e _ e xp = c l s −> c l o s e d _ v a l s [ 1 ] ;
31
32 me t a c on t _ c l o s u r e _ t ∗ then_mc l s = mcps ( then_exp ) ;
33 me t a c on t _ c l o s u r e _ t ∗ e l s e _mc l s = mcps ( e l s e _ e xp ) ;
34
35 r e g _ c l o s u r e _ t ∗ k i f _ c l s = id_to_mc ( i _ k i f ) ;
36
37 return l i s t ( 3 ,
38 LET ,
39 l i s t ( 1 , l i s t ( 2 , i _ k i f , mc_to_exp ( c l s 1 ) ) ) ,
40 l i s t ( 4 ,
41 IF ,
42 t e s t _ v a l ,
43 then_mcls −>mfn ( then_mcls , k i f _ c l s ) ,
44 e l s e _mc l s −>mfn ( e l s e _mc l s , k i f _ c l s ) ) ) ;
45 }

conversion process lends itself naturally to a recursive implemen-
tation, with the final closure (which acts on Ebody) being the only
non-recursive component.

These desired behaviours are captured elegantly in our imple-
mentation (Listing 3): the recursive behaviour is realized (at closure
creation time) by setting the fn slot in reg_closure_t to a recur-
sive function (let_cont_fn_recur), while the ’tail call’ behaviour
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is realized by setting the same slot to a non-recursive function
(let_cont_fn_non_recur). The bindings and the body of the let
are closed over both these categories of closure.

The same technique—specializing a closure into recursive and
non-recursive variants as needed—is used for applications and prim-
itive operations, which, similar to let, involve a variable number
of sub-expressions that need to be CPS-transformed.

5 RELATEDWORK
The number of Lisp/Scheme compilers is quite large; therefore in
the interests of space we cover representative ones, highlighting the
implementation techniques utilized by them that are of relevance.

The CHICKEN Scheme-to-C compiler [2, 5] employs a CPS-based
compilation strategy, and CPS conversion is one of the steps in
its compiler pipeline. However, the CPS conversion is written in
Scheme itself, as opposed to the implementation language of the
compiler (e.g., C). The CPS conversion algorithm is stated to be
based on the relatively naive algorithm outlined in [1], and the
optimizations induced by partial evaluation are realized at the later
(explicit) stages in the compiler pipeline.

Not all Scheme compilers use CPS transforms to provide support
for continuations. For example, Bigloo [3] implements call/cc by
copying the execution context to the heap, while Guile [10] imple-
ments continuations by copying the C stack to the heap. A similar
mechanism is employed by Gambit [7]. The Stalin Scheme compiler
[13] utilizes a lightweight CPS conversion technique that relies on
whole-program analysis, whereas normative CPS transformation is
syntax-directed and is concerned with local (expression-level) code
units.

Blocks [4] are an extension to the C, C++, and Objective-C imple-
mentations of Clang that provides a mechanism to create closures
in these languages. In contrast, the current work implements clo-
sures in ANSI C using the standard mechanisms available in the
language. Nested functions [9] are another available mechanism
for realizing closures in C. However, the extent of these nested
functions is limited to the containing scope, which falls short with
respect to the needs imposed by the CPS transformation.

6 CONCLUSION
We presented an implementation of a partial evaluation based CPS
transformation in the context of pLisp, a Lisp dialect and integrated
development environment for beginners. The object model un-
derpinning the metalanguage interpreter was presented, and the
implementation was illustrated with a detailed walkthrough of the
transformation for a single source language construct from both an
abstract and an implementation perspective. The framework has
been implemented in a modular fashion so that it is easy to swap
in and swap out implementations of the transformation functions
of the individual constructs, and to add support for new constructs.
A further improvement to flexibility would be to set up the struc-
ture of target expressions in a declarative manner, and to code the
transformation functions in such a way that the functions simply
fill in the computed values into a pre-built S-expression template
(somewhat along the lines of a context object with holes). This is
planned to be taken up as future work.
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Listing 3: Closure creation for let
1 r e g _ c l o s u r e _ t ∗ c r e a t e _ r e g _ l e t _ c l o s u r e ( OBJECT_PTR b ind ings ,
2 OBJECT_PTR f u l l _ b i n d i n g s ,
3 OBJECT_PTR body ,
4 unsigned int no f_va l s ,
5 OBJECT_PTR ∗ va l s ,
6 r e g _ c l o s u r e _ t ∗ c l s )
7 {
8 r e g _ c l o s u r e _ t ∗ l e t _ c l o s u r e = ( r e g _ c l o s u r e _ t ∗ ) GC_MALLOC( s i z eo f ( r e g _ c l o s u r e _ t ) ) ;
9
10 i f ( c on s_ l eng th ( b i nd i ng s ) == 0 ) / / l a s t b i n d i n g
11 l e t _ c l o s u r e −>fn = l e t _ c on t _ f n _non_ r e c u r ;
12 e l se
13 l e t _ c l o s u r e −>fn = l e t _ c o n t _ f n _ r e c u r ;
14
15 l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s = no f _ v a l s + 3 ;
16 l e t _ c l o s u r e −> c l o s e d _ v a l s = ( OBJECT_PTR ∗ ) GC_MALLOC( l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s
17 ∗ s i z eo f ( OBJECT_PTR ) ) ;
18
19 l e t _ c l o s u r e −> c l o s e d _ v a l s [ 0 ] = b i nd i ng s ;
20 l e t _ c l o s u r e −> c l o s e d _ v a l s [ 1 ] = f u l l _ b i n d i n g s ;
21 l e t _ c l o s u r e −> c l o s e d _ v a l s [ 2 ] = body ;
22
23 in t i ;
24 for ( i = 3 ; i < l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s ; i ++)
25 l e t _ c l o s u r e −> c l o s e d _ v a l s [ i ] = v a l s [ i − 3 ] ;
26
27 l e t _ c l o s u r e −>da t a = c l s ;
28
29 return l e t _ c l o s u r e ;
30 }
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ABSTRACT

The Common Lisp standard has few requirements on method
combinations, and so does the semi-standard metaobject
protocol for Common Lisp. For that reason, there is great va-
riety among different Common Lisp implementations regard-
ing how method combinations are represented and handled.
Some implementations allocate a new method-combination
instance for each generic function, whereas others attempt
to reuse existing instances as much as possible. Most im-
plementations are able to verify the validity of method-
combination options for the built-in method-combination
types, but no free Common Lisp implementation can verify
custom method-combination types using the long form of
the macro define-methodcombination immediately when a
generic function is created, nor when a method-combination
type is redefined. Instead, incompatibilities between supplied
options and the method-combination type are then veri-
fied only when an attempt is made to execute the resulting
method-combination procedure in order to create an effective
method.

We propose a technique that makes early detection of
incompatible method-combination options possible even for
custom long-form method-combination types. We augment
the lambda list of the method-combination definition with
&aux entries that verify restrictions, and we construct a func-
tion with the augmented lambda list that will fail whenever
there is such an incompatibility. With this technique, when
an incompatibility is detected, we are also able to signal more
relevant errors than most existing free implementations are
able to do.
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1 INTRODUCTION

The Common Lisp standard [1] contains very little informa-
tion about method combinations. The dictionary entry in the
standard for the system class method-combination requires
a method combination object to be an indirect instance of
the system class named method-combination. The standard
further requires such an object to contain information both
about the type of method combination and the arguments
used with that type.

The term indirect instance, as explained in the glossary, ex-
cludes the possibility of such a method combination object to
be an immediate instance of the class method-combination.
We can interpret this requirement as the need to create a sub-
class, say, standard-method-combination to parallel the situ-
ation for method vs standard-method and generic-function

vs standard-generic-function, i.e., so as to allow the pro-
grammer to create very different objects from those that the
standard- version can provide.

Clearly, the text of the dictionary entry means that when
the macro defgeneric is used with the :method-combination
option given, such a method combination object is what
the generic function will contain. We can confirm this view
by examining the description of the MOP generic func-
tion generic-function-method-combination (as described
in [2]) which states that the return value is “a method com-
bination metaobject”.

However, the macro define-method-combination does
not define a method combination object. The reason is of
course that no method-combination options are supplied to
this macro. The dictionary entry for this macro also clearly
says that the macro is used to define new types of method
combinations.

The main issue for the person implementing a Common
Lisp system, then, is how to interpret the relation between a
method combination type and a method combination object.

It is easy to draw the conclusion that a call to the macro
define-method-combination creates a new class, as sug-
gested by the use of the word type in the standard, and
that method combination objects of that type are instances
of the new class. However, this view creates several prob-
lems. In particular, one must then determine whether each
use of the same combination of the type and the argu-
ments in the :method-combination option to defgeneric

creates a new instance of the class, or whether existing in-
stances are somehow kept track of and reused. The first
possibility would have the unfortunate consequence that two
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Figure 1: Representation of method combinations.

calls to generic-function-method-combination with differ-
ent generic-function metaobjects would return two method
combination objects that are not identical.

In this paper, we argue that a method combination type
is itself an instance of a completely different class that we
shall call method-combination-template, and that a method
combination object is a variant of the template in that it
contains a reference to the template as well as the val-
ues of the options that this particular method combina-
tion type allows. To conform to the standard, we obviously
maintain that method combination objects are instances
of standard-method-combination. This idea is illustrated
in Figure 1, which shows two method combination tem-
plates (standard and and) and two variants of the and

method-combination template; one variant with the option
:most-specific-first and another variant with the option
:most-specific-last.

A call to the macro define-method-combination results
in a function that can be applied to a list of arguments which
include at least a generic function and a list of applicable
methods. This function becomes associated with the name
of the method-combination type thus defined. The standard
briefly uses the term procedure to refer to this resulting
function. We adopt that convention in this paper, and refer
to the resulting function as the method-combination procedure.

When a generic function is defined or redefined, it would
be desirable to have the options of the :method-combination

defgeneric option checked for validity immediately when
the definition or redefinition occurs. For the built-in method
combination types, most implementations also handle this

check as a special case. However, all implementations we have
investigated fail to check the options to a user-defined method-
combination type defined by the long form of the macro
define-method-combination. Instead, if the options are in-
compatible with the defined method-combination type, in the
best case, an error is signaled when the method-combination
procedure is applied to a list of applicable methods by the
generic function compute-effective-method. Furthermore,
the error being signaled can be hard to decipher, as it typ-
ically results from invalid arguments to a function with a
particular lambda list.

In this paper, we propose a general mechanism for early
detection of incompatible options to a particular method-
combination type. This mechanism is available to the creator
of custom method-combination types, and also used to verify
the options to the built-in method-combination types.

The macro define-method-combination comes in two ver-
sions called the long form and the short form in the Common
Lisp standard. The short form of the macro can be expressed
in terms of the long form, but it may not be obvious how the
options to the short form should be propagated to the long
form.

Furthermore, in the description of the short form of the
macro, the standard states that the method-combination
procedure resulting from such a definition accepts an op-
tional argument (named order) that can have two values,
:most-specific-first and :most-specific-last, with the
value :most-specific-first being the default. It is not ob-
vious how this restriction can be expressed as a long-form
definition of a similar procedure. A common solution to this
problem is to define a subclass short-method-combination

of the class method-combination, and to introduce special-
purpose code for checking this restriction. The technique
presented in this paper does not require such a subclass, as
the long-form version of the short-form definition is able to
check the restriction.

Throughout this paper, we assume that it is an error
to attempt to create a generic function using a method-
combination type that is not already created. Recall that the
standard states that when a define-method-combination

form appears at the top level, the compiler must recognize the
name of that type as valid in subsequent defgeneric forms,
but that the resulting method-combination procedure is not
executed until the define-method-combination form itself
is executed. In other words, since the method-combination
type is not created at compile time, it may not exist when
a defgeneric form using the name is encountered by the
compiler. However, our assumption is still valid, since the
compiler also does not create the generic function when a
defgeneric form appears at the top level.

For example, assume that some source file contains a
define-method-combination form, defining a method com-
bination type with a new name, followed by a defgeneric

form that refers to that method combination type in the
:method-combination option of the :defgeneric form. When
the compiler encounters the define-method-combination
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form, it registers its name as being valid for use in subse-
quent defgeneric forms, but the compiler does not create the
method-combination type. Subsequently, when the compiler
encounters the defgeneric form, it recognizes a valid name of
a method-combination type, but since the compiler also does
not create the generic function when the defgeneric form
is encountered, there is no need for the method-combination
type to have been created. When the compiled file is later
loaded, the new method-combination type is first created.
Subsequently, the generic function is created, referring to an
existing method-combination type. In this paper, we do not
address the mechanism by which the compile-time behavior
required by the standard is implemented.

There are several scenarios that are discussed in this paper:

(1) The user correctly defines a custom method-combination
type using define-method-combination. Subsequently,
the user defines a generic function with that method-
combination type, but makes a mistake in the list of
options.

(2) The user defines a custom method-combination type
using the long form of define-method-combination,
but makes a mistake in the lambda list supplied to the
macro, so that the options of the resulting method-
combination procedure are not the ones that were
intended. Subsequently, the user defines a generic func-
tion with a list of options that were intended to be
acceptable.

(3) The user initially correctly defines a custom method
combination type using define-method-combination,
and then also correctly defines one or more generic
functions with that method combination type. Then
the user decides to make a change to the code of
the method-combination type, so the define-method-

combination form is re-executed, but the new lambda
list is incompatible with the options given when the
generic functions were created, either as a result of a
mistake or of a deliberate decision.

To illustrate these scenarios, we can imagine a restricted
form of the and method combination that does not admit
any :around methods. This restriction means that the short
form of define-method-combination can not be used.

An example of the first scenario would be the following
code:

(define-method-combination simple-and

(&optional (order :most-specific-first))

(primary (and) :order order :required t)

...)

(defgeneric simple-and (...)

(:method-combination simple-and :msot-specific-first))

Here, the user has a typo in the second form. An example of
the second scenario would be the following code:

(define-method-combination simple-and

(&optional (order :msot-specific-first))

(primary (and) :order order :required t)

...)

(defgeneric simple-and (...)

(:method-combination simple-and :most-specific-first))

Here, the user has a typo in the first form. Finally, an example
of the third form would be the following code:

(define-method-combination simple-and

(&optional (order :most-specific-first))

(primary (and) :order order :required t)

...)

(defgeneric simple-and (...)

(:method-combination simple-and :most-specific-first))

Here, there are no mistakes, but the user later decides to
disallow the option , so the first form is altered to become:

(define-method-combination simple-and ()

(primary (and) :order :most-specific-first

:required t)

...)

In the first two scenarios, the ideal consequence would be
that a warning is initially signaled, stating that the options
supplied to the creation of the generic function are incompat-
ible with the type of the desired method combination. Any
subsequent attempt to execute the generic function would
result in an appropriate error being signaled. Once the in-
correct definition has been corrected and the corresponding
form has been re-executed, the generic function should be
operational.

In the third scenario, the ideal consequence would be that
a warning is signaled, giving a list of generic functions with
a list of options that are now incompatible with the rede-
fined method-combination type. Any subsequent attempt to
execute one of these generic functions would result in an ap-
propriate error being signaled. If a mistake was made, the re-
execution of a corrected define-method-combination form
should render the existing generic functions operational again.
If the change was deliberate, the list of generic functions in
the message can be used to determine which definitions to
correct and re-execute.

The technique described in this paper handles all these
scenarios, but it has been implemented only partially. We are
currently working on incorporating the remaining elements
of our technique into the SICL1 code base.

2 PREVIOUS WORK

In this section, we give an overview of how different free
Common Lisp implementations represent and handle method
combinations. In particular, we compare the technique that
each implementation uses with the three scenarios specified
in Section 1. We do not include commercial Common Lisp
implementations, simply because we can not know in detail
how the code is written. Extensive experimentation might
have given sufficient clues, but we prefer to limit ourselves
to implementation where we can examine the source code.

1https://github.com/robert-strandh/SICL
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2.1 PCL

Portable Common Loops2, PCL for short, is a library that
implements the functions defined in the book “The Art of
the Metaobject Protocol” [2], and is meant as an add-on to
pre-standard Common Lisp implementations, i.e., implemen-
tations without CLOS.

Most Common Lisp implementations that exist today were
initially written before the standard was published, and many
of those implementations chose to use PCL to incorporate
CLOS functionality, though frequently, the code has since
been adapted for each specific implementation. Much of the
analysis in this section was also described in [4], although the
description in that paper refers to the way SBCL handled
method combinations at the time that article was written.

PCL unsurprisingly defines the class method-combination
and then the class standard-method-combination as a sub-
class of the class named method-combination.

More surprisingly, it then defines two subclasses of the
class standard-method-combination, namely long-method-

combination and short-method-combination, each for use
with the different forms (long and short) of the macro define-

method-combination.
The class standard-method-combination contains slots

for the method-combination type (i.e., a symbol), and the
method-combination options.

The class short-method-combination adds two more slots:
namely, the operator and a Boolean that indicates whether
the operator, when given a single argument, is the identity
function.

The short form of define-method-combination adds a
method to the generic function find-method-combination.
The second parameter of this method has an eql specializer
with the name of the method-combination type being defined.
The method function of this method first checks that the
options given are valid for the short form of define-method-
combination, and then it creates a fresh instance of the class
short-method-combination. In other words, a fresh method
combination is created whenever find-method-combination

is called, which is typically whenever a generic function is
created. As a result, with a method-combination type defined
by the short form, the method combination of a generic
function using this type is not updated as a result of redefining
that method-combination type, which is undesirable.

Furthermore, compute-effective-method has a method
specialized to the class short-method-combination that han-
dles the case of the short method combination as a special
case.

The long form of define-method-combination turns the
body of the form into a method-combination procedure. This
procedure has the same lambda list as compute-effective-

method. The expansion of the macro stores this procedure
in a global hash table, using the method-combination type
as a key. There is a slot for this procedure in the class
long-method-combination, but this slot is not used.

2https://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/lang/lisp/oop/clos/pcl/0.html

Like the short form, the long form also creates a method on
find-method-combination, also with an eql specializer for
the second parameter. This method simply creates an instance
of the class long-method-combination. The generic function
compute-effective-method has a method specialized to the
class long-method-combination. This method consults the
hash table to find the method-combination procedure and
applies that procedure to the generic function, the method
combination, and the applicable methods.

Appendix B of [4] shows some very strange consequences of
the use of the global hash table, combined with the fact that
the effective-method caches of existing generic functions are
not flushed when the method-combination type is redefined
by the long form. A generic function may well end up with
some effective methods computed before the redefinition and
some computed after it. Needless to say, this behavior is very
undesirable.

In summary then, the generic function named find-method-

combination acts as a container for method-combination
types, encoded as eql-specialized methods. Furthermore,
there is no attempt to reuse existing method combinations.
A new one is created whenever find-method-combination is
called. Finally, while the validity of the options is verified for
the built-in method combination types, no such verification
is done for custom method-combination types defined by the
long form of define-method-combination.

2.2 SBCL

The SBCL3 Common Lisp implementation uses a heavily
modified version of PCL (See Section 2.1). Prior to April
of 2018, SBCL used the unmodified technique from PCL
as described in section 2.1. The technique described in this
section is a result of significant modifications to the code for
handling method combinations. The article by Didier Verna
[4] published at ELS in April of 2018 contained a detailed
description of the technique used by SBCL at that time. The
improvements to SBCL were likely a result of the descriptions
in that article.

One aspect of the SBCL code that remains from the previ-
ous version is that the two subclasses of method-combination
are still present.

An invocation of define-method-combination does not
create any new class. Instead, an info structure is created,
and stored in a hash table that uses the name of the method-
combination type as a key. This info structure contains a
cache, which is an association list. The key of an element of the
association list is a list of options for the method combination,
and the value of an element is the method-combination object.
Initially, the cache is empty, except for the info structure
associated with the standard method combination.

The function find-method-combination is given the name
of the method combination and the desired options. It looks
up the appropriate info structure, and searches the cache for
an element corresponding to the options. If such an element
is found, the method-combination object is returned. If no

3http://www.sbcl.org/
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element is found, a new one is constructed, pushed on the
cache, and returned. The new element is constructed by cons-
ing the list of options and the result of applying a constructor
function to the list of options. This constructor function is
stored in a slot in the info structure. As a result, existing
method-combination instances are reused whenever possible.

When a generic function is defined with one of the built-in
method combinations, or with a method combination defined
using the short form, SBCL will check that the options given
to the :method-combination defgeneric option are valid.
This verification is done by special-purpose code. However,
with a user-defined method combination using the long form,
no verification is done. It is only when an attempt is made
to invoke the generic function that the method-combination
procedure is invoked, and the incompatible lambda lists are
detected. Furthermore, the error message is very general and
can be difficult to decipher by the programmer.

SBCL handles reevaluation of define-method-combination
forms with the name of an existing info entry in the hash
table. Every method-combination instance contains a list
of back pointers to generic functions that use this method
combination. The cache of the existing info entry is traversed,
and for each method combination, the effective methods of its
generic functions are invalidated. The problems indicated in
Appendix B of [4] therefore no longer exist in recent versions
of SBCL. When the method-combination type is redefined
with a different form of define-method-combination, SBCL
correctly changes the class of the method-combinations of the
type in question, but it fails to verify that the existing options
are compatible with the new definition, even when the redefini-
tion is using the short form of define-method-combination.
The reason for this failure is that the options are verified
only as a result of a call to find-method-combination, and
this function is not called when a method-combination type
is redefined.

2.3 Clozure Common Lisp

The Clozure Common Lisp4 implementation (CCL for short)
defines the class method-combination and then three sub-
classes of that class:

∙ standard-method-combination with a single instance,
namely the standard method combination. This class
is used as a specializer in a method on the generic
function compute-effective-method so as to handle
the standard method combination as a special case.

∙ short-method-combination which is used for method
combinations defined by the short form of the macro
define-method-combination.

∙ long-method-combination which is used for method
combinations defined by the long form of the macro
define-method-combination.

The class standard-method-combination in CCL thus
does not play the role of a general instantiable subclass
of method-combination.

4https://ccl.clozure.com/

The generic function compute-effective-method has a
method specialized to each of these subclasses. The method
specialized to standard-method-combination uses special-
purpose code in order to achieve the effect of the standard
method combination. The standard method combination is
thus not defined using define-method-combination. Simi-
larly, the method specialized to short-method-combination

uses special purpose code. Only the method specialized to
long-method-combination invokes the method-combination
procedure to achieve the desired effect.

In CCL, the macro define-method-combination does not
define a method combination class. Instead it defines an info
vector (disguised as a structure) that acts as a template for
creating method combinations later. The info vector contains
the following elements:

∙ The name of the method-combination class to be cre-
ated which is either short-method-combination or
long-method-combination.

∙ An element that contains the short-form options if
the info vector was created as a result of the short
form of define-method-combination, and the method-
combination procedure (called the expander function
in CCL) if the info vector was created as a result of
the long form.

∙ A list of instances, i.e., method-combination objects
that share the same info vector.

∙ A list of generic functions using method combinations
of the type defined by the info vector.

This information is used in order to invalidate effective-
method caches when a method-combination type is redefined.
Therefore, CCL does not have the problem that PCL does,
described in Section 2.1.

When a long method-combination type is redefined us-
ing the short form of define-method-combination, every
generic function having a method combination of that type
is accessed, and the method-combination options are checked
so that they are valid for the short method combination, i.e.,
either there are no explicit options or the options consist
of a singleton list containing either :most-specific-first

or :most-specific-last. No analogous verification is made
when a short method-combination type is redefined using the
long form. However, in both cases, the method combination
with the redefined type is passed to change-class, thereby
making the redefinition effective in all generic functions with
a method combination of that type.

2.4 ECL

The ECL5 Common Lisp implementation defines the class
method-combination, and method-combination metaobjects
are direct instances of this class. Thus, in this respect, ECL
is not conforming.

Unlike PCL, SBCL, and CCL, ECL does not define any sub-
classes of the instantiable class. Method-combination types
defined by the short form are rewritten to the equivalent long
form.

5https://common-lisp.net/project/ecl/
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The macro define-method-combination does not define
a new method-combination class. Instead it defines a method-
combination procedure. This procedure computes the effec-
tive method of a generic function. The lambda list of the
method-combination procedure consists of two required pa-
rameters: namely, a generic function and a list of applicable
methods, followed by the lambda list given to define-method-

combination. For most built-in method-combination types,
that lambda list will contain an optional parameter named
order with a default value of :most-specific-first. The
resulting method-combination procedure is stored in a hash
table with the name of the method-combination type as a
key.

When a generic function is created, a new instance of
the method-combination class is created. The new instance
contains the method-combination procedure and a list of
the options given after the method-combination name in the
:method-combination option to defgeneric.

Redefining a method-combination type does not have any
effect on existing generic functions having a method com-
bination of that type. The hash table containing method-
combination procedures is updated, but this update does not
affect existing generic functions.

The standard method combination is not defined using the
macro define-method-combination. Instead, it is defined
using special-purpose code.

Incompatibilities between method-combination options
given to find-method-combination and the lambda list of
the method-combination procedure are detected when an
effective method needs to be computed. Because there is no
specific class for method combinations defined by the short
form, this behavior is true also for method-combination types
defined by the short form.

Because the short form is rewritten into the long form, and
the body of the resulting form contains no verification that the
option is either :most-specific-first or :most-specific-

last, it is possible to give any object as an option to find-

method-combination. Any object different from the keyword
:most-specific-last will make the resulting method com-
bination behave as if :most-specific-first had been given.
We argue that this behavior is not conforming, since the de-
scription of the short form of define-method-combination

states that this form “automatically includes error checking”.

2.5 Clasp

Clasp [3] is a Common Lisp implementation based on ECL
(See Section 2.4), although all the C code in ECL was rewrit-
ten in C++.

A large part of the Common Lisp code in Clasp is identical
or near-identical to the corresponding code in ECL, and that
includes the code for handling method combinations. As a
result, Clasp handles method combinations in exactly the
same way as ECL.

3 OUR TECHNIQUE

3.1 Representation of method
combinations

We introduce a class named method-combination-template.
An instance of this class represents all method combinations
with the same name, independent of the options. There is a
template for standard, a template for and, etc. Furthermore,
in order to respect the restriction required by the standard,
we introduce a class standard-method-combination which is
a subclass of method-combination. All method-combination
metaobjects are direct instances of this subclass. There are
no subclasses of standard-method-combination, neither for
specific method-combination types, nor for distinguishing
between method combinations defined by the long and the
short form of define-method-combination. In other words,
a method combination is a variant of a method-combination
template. The template contains a list of all its variants in
use.

A method-combination instance contains the following
slots:

∙ A reference to its template.
∙ The list of method-combination options to be given to
find-method-combination, and that typically appear
after the method-combination name of the :method-

combination defgeneric option.
∙ The method-combination procedure. This procedure

has two parameters, both required. The first parameter
is a generic function for which an effective method is to
be computed. The second parameter is a list of pairs.
Each pair contains an applicable method, and a list
of method qualifiers for that method. The result of
applying the method-combination procedure is a form
called the effective method. Notice that the method-
combination procedure does not have the method-
combination options in its lambda list.

∙ A list of generic functions that contain this method
combination.

3.2 When find-method-combination is
called

The expansion of the defgeneric macro contains a call
to the ordinary function ensure-generic-function. If the
:method-combination option is explicitly supplied to the call
to defgeneric, then the call to ensure-generic-function

contains an explicit keyword argument :method-combination
with the value form being a call to the generic function
find-method-combination with the generic function, the
name of the method-combination type, and the options. If
no :method-combination option is given in the defgeneric

form, the :method-combination keyword argument to the
call to ensure-generic-function is not supplied.

The call to find-method-combination either returns an
existing method-combination instance corresponding to the
type and the options given, or it creates and stores a new such
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instance. If the options are incompatible with the method-
combination template, a warning is signaled, and the method-
combination procedure is one that signals an error if invoked.
The mechanism for detecting this incompatibility is described
later in this section.

A call to ensure-generic-function results in a call to
ensure-generic-function-using-class where the first ar-
gument is either an existing generic function or nil if no
generic function with the given name exists. The method on
ensure-generic-function-using-class specialized to the
class null supplies the standard method-combination as
a default value of the :method-combination when calling
make-instance to create a new generic function.

To detect whether a list of method-combination options are
invalid for a particular method-combination template, we ana-
lyze the lambda-list given in the long form of define-method-
combination. The analysis consists of extracting all parame-
ters that can be referenced in the method-combination pro-
cedure. We then construct a lambda expression as follows:

(lambda (...)

(list v1 v2 ... vn))

which is then compiled so that a function is obtained. The
lambda list of this function is the lambda list that appears
in the define-method-combination form and v1, v2, ..., vn
are the lexical variables resulting from our analysis of the
lambda list. Applying this function to the options given to the
find-method-combination function returns a list of objects.
The lambda list typically contains &aux lambda list keywords,
with forms that check the validity of the options supplied,
and signal an error whenever an invalid option combination
is detected. Thus, if either the lambda list is incompatible
with the options given, or one of these &aux forms detects an
invalid option combination, an error is signaled. We handle
this error, turn it into a warning, and return a method-
combination instance with a method-combination procedure
that signals an error whenever invoked.

This technique for detecting incompatible or invalid op-
tions handles the first scenario described in Section 1. When
the user corrects the incorrect form that created or reinitial-
ized the generic function (typically a defgeneric form), the
validation process is re-invoked and a method-combination
with a viable method-combination procedure is assigned to
the generic function. This technique also detects the second
scenario described in Section 1. The way the user can correct
the situation in this scenario is described below.

When the options given to find-method-combination are
compatible and valid, a viable method-combination procedure
is constructed as follows:

(lambda (generic-function method-qualifier-pairs)

(let ((v1 ...) (v2 ...) ... (vn ...))

<body>))

where v1, v2, ..., vn are again the lexical variables resulting
from our analysis of the lambda list. The initialization forms
for the variables are the values returned in the resulting list
of our analysis function.

3.3 Redefining a method-combination
type

When a define-method-combination form is re-evaluated,
we locate the corresponding method-combination template.
We then invoke the same analysis as before to every vari-
ant, i.e., to every existing method combination having this
type name. If an analysis fails, we then signal a warning
containing all generic functions using the now invalid method-
combination, and we set the method-combination procedure
of the invalid method combination to one that will signal an
error when invoked. If the analysis succeeds, then the corre-
sponding method combination is assigned a viable method-
combination procedure.

3.4 Expanding the short form to the long
form

As mentioned in Section 1, it is not obvious how to transform
the short form of define-method-combination into the long
form. Recall that the syntax of the short form is:

(define-method-combination name [[short-form-options]])
where a short-form-option can be:

∙ :documentation documentation
∙ :identity-with-one-argument

identity-with-one-argument
∙ :operator operator

Here, documentation is a string that is not evaluated. When
the short form gets turned into the long form, it becomes an
ordinary documentation string, preceding the forms of the
body of the long form.

To illustrate where the remaining options end up in the
long form, recall the following example from the dictionary
entry for define-method-combination, where both the short
form and the long form are used to define the built-in method-
combination and. We have changed only the layout of the
code so that it will fit on the page.
The short form is:

(define-method-combination and

:identity-with-one-argument t)

The long form is;

(define-method-combination and

(&optional (order :most-specific-first))

((around (:around))

(primary (and) :order order :required t))

(let ((form (if (rest primary)

‘(and ,@(mapcar

#’(lambda (method)

‘(call-method ,method))

primary))

‘(call-method ,(first primary)))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

The option identity-with-one-argument is responsible for the
form:
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(if (rest primary)

‘(and ,@(mapcar

#’(lambda (method)

‘(call-method ,method))

primary))

‘(call-method ,(first primary)))))

Had this option been nil or not present, the corresponding
form would have looked like this instead:

‘(and ,@(mapcar

#’(lambda (method)

‘(call-method ,method))

primary))

In order for our technique to work for the short form, when
we express the short form in terms of the long form, we
modify the lambda list of the long form compared to the
example above as follows:

(&optional (order :most-specific-first)

&aux (ignore (unless (member order

’(:most-specific-first

:most-specific-last))

(error ....))))

Now, any attempt to call a function with this lambda list
with a number of arguments other than exactly 1, or with
one argument that is neither :most-specific-first nor
:most-specific-last will fail.

4 CONCLUSIONS AND FUTURE
WORK

We define a subclass standard-method-combination of the
specified class method-combination. Method combinations
created from a method-combination type defined by the
macro define-method-combination are all instances of this
subclass.

Our technique allows for early detection of mismatches be-
tween the method-combination options given when a method
combination is created as a result of calling find-method-

combination and the lambda list given to the invocation of
define-method-combination. We detect such mismatches
when a new method combination is created, but also when
a method-combination type is redefined with a modified in-
vocation of define-method-combination using the name of
an existing method-combination type.

Furthermore, while a mismatch exists, our technique results
in an error being signaled whenever an attempt is made to
use the faulty method combination in order to create an
effective method.

Future work includes incorporating our technique into
the SICL code base. The technique described in this paper
was developed after our initial implementation of method
combinations in SICL. (Hence, this technique was not in
SICL from the start.) Currently, SICL does not have any data
structure allowing weak references, but such references would
be desirable for the back pointer from a method combination
to the generic functions using it. Otherwise, a memory leak
would result from using fmakunbound or some other operator
that makes the back pointer be the only reference to the
generic function. In general, it is impossible to have such

operators remove the back pointer, since there could be any
number of references to the generic function in question.
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ABSTRACT
Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor
family. GNU Emacs can currently execute Elisp code either inter-
preted or byte-interpreted after it has been compiled to byte-code.
In this work we discuss the implementation of an optimizing com-
piler approach for Elisp targeting native code. The native compiler
employs the byte-compiler’s internal representation as input and
exploits libgccjit to achieve code generation using the GNU Com-
piler Collection (GCC) infrastructure. Generated executables are
stored as binary files and can be loaded and unloaded dynamically.
Most of the functionality of the compiler is written in Elisp itself,
including several optimization passes, paired with a C back-end
to interface with the GNU Emacs core and libgccjit. Though still a
work in progress, our implementation is able to bootstrap a func-
tional Emacs and compile all lexically scoped Elisp files, including
the whole GNU Emacs Lisp Package Archive (ELPA) [6]. Native-
compiled Elisp shows an increase of performance ranging from 2.3x
up to 42x with respect to the equivalent byte-code, measured over
a set of small benchmarks.
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pilers; Software performance; Development frameworks and envi-
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1 INTRODUCTION
GNU Emacs is known as the extensible, customizable, free/libre
text editor [19]. This is not only one of the most iconic text editors,
GNU Emacs (from now on just “Emacs” for simplicity) represents
metaphorically the hearth of the GNU operating system. Emacs
can be described as a Lisp implementation (Emacs Lisp) and a
very broad set of Lisp programs written on top that, capable of
a surprising variety of tasks. Emacs’ design makes it one of the
most popular Lisp implementations to date. Despite being widely
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employed, Emacs has maintained a remarkably naïve design for
such a long-standing project. Although this makes it didactic, some
limitations prevent the current implementation of Emacs Lisp to
be appealing for broader use. In this context, performance issues
represent the main bottleneck, which can be broken down in three
main sub-problems:

• lack of true multi-threading support,
• garbage collection speed,
• code execution speed.

From now on we will focus on the last of these issues, which con-
stitutes the topic of this work.

The current implementation traditionally approaches the prob-
lem of code execution speed in two ways:

• Implementing a large number of performance-sensitive prim-
itive functions (also known as subr) in C.

• Compiling Lisp programs into a specific assembly repre-
sentation suitable for targeting the Emacs VM called Lisp
Assembly Program (LAP) and assembling it into byte-code.
This can be eventually executed by the byte-interpreter [3,
Sec.1.2], [15, Sec. 5.1].

As a result, Emacs developers had to implement a progressively
increasing amount of functions as C code primarily for perfor-
mance reasons. As of Emacs 25, 22% of the codebase was written
in C [3, Sec. 1.1], with consequences on maintainability and exten-
sibility [24]. The last significant performance increase dates back
to around 1990, when an optimizing byte-compiler including both
source level and byte-code optimizations was merged from Lucid
Emacs [15, Sec. 7.1]. However, despite progressive improvements,
the main design of the byte-code machine stands unmodified since
then. More recently, the problem of reaching better performance
has been approached using Just-In-Time (JIT) compilation tech-
niques, where three such implementations have been attempted or
proposed so far [15, Sec. 5.11], [23]. Possibly due to their simplistic
approaches none of them proved to introduce sufficient speed-up,
in particular if compared to the maintenance and dependency ef-
fort to be included in the codebase. In contrast, state-of-the-art
high-performance Lisp implementations rely on optimizing com-
pilers targeting native code to achieve higher performance [12].
In this context, C-derived toolchains are already employed by a
certain number of Common Lisp implementations derived from
KCL [2, 9, 17, 18, 31], where all these, except CLASP, target C code
generation.

In this work we present a different approach to tackle this prob-
lem, based on the use of a novel intermediate representation (IR)
to bridge Elisp code with the GNU Compiler Collection [20]. This
intermediate representation allows to effectively implement a num-
ber of optimization passes and for Elisp byte-code to be translated
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Figure 1: Program representation formats used by byte-
compiler (blue) native compiler (red) pipelines.

to a C-like semantic, compatible with the full pipeline of GCC op-
timization passes. This process relies on libgccjit to plug into the
GCC infrastructure and achieve code generation without having to
target any intermediate programming language [14]. The result of
the compilation process for a compilation unit (CU) is a file with
.eln extension (Emacs Lisp Native). This is a new file extension we
have defined to hold the generated code and all the necessary data
to have it re-loadable over different Emacs runs. This last charac-
teristic, in contrast with typical JIT-based approaches, saves from
having to recompile the same code at each run and allows for more
time expensive optimization passes. Also, the classical Lisp image
dump feature is supported.

From a more general point of view, here we demonstrate how a
Lisp implementation can be hosted on top of libgccjit. Although dif-
ferent libraries for code generation, such as libjit [13] or LLVM [11],
have been successfully employed by various Lisp implementations
so far [10, 18], we are not aware of any leveraging libgccjit. More-
over, the proposed infrastructure introduces better support for
functional programming style in Emacs Lisp with a pass perform-
ing tail recursion elimination [30] and the capability to be further
extended in order to perform full tail call optimization.

2 IMPLEMENTATION
The proposed compiler pipeline can be divided in three main stages:

• Front-end: Lisp programs are compiled into LAP by the cur-
rent byte-compiler.

• Middle-end: LAP is converted into “LIMPLE”, a new inter-
mediate representation named after GCC GIMPLE [8] which
is the very core of the proposed compiler infrastructure.
LIMPLE is a sexp-based IR used as static single assignment
(SSA) representation [7, 26]. Middle-end passes manipulate
LIMPLE by performing a series of transformations on it.

• Back-end: LIMPLE is converted into the libgccjit IR to trigger
the final compilation through the conventional GCC pipeline.

The sequence of program representation formats is presented in
Figure 1. The compiler takes care of type and value propagation
through the program control flow graph. We point out that, since
Emacs Lisp received in 2012 lexical scope support, two different
sub-languages are currently coexisting [15, Sec. 8.1]. The proposed
compiler focuses on generating code for the new lexically scoped
dialect only, since the dynamic one is considered obsolete and close
to deprecation.

2.1 LAP to libgccjit IR
Here, we briefly discuss the two endpoints of our compilation
pipeline: the Lisp Assembly Program and the libgccjit IR, by show-
ing different representations of an illustrative and simple code.

LAP representation is a list of instructions and labels, expressed
in terms of S-expressions. Instructions are assembled into byte-
code, where each one is associated with an operation and a ma-
nipulation of the execution stack, both happening at runtime and
defined by the opcode corresponding to the instruction. When
present, control flow instructions can cause a change in the exe-
cution flow by executing jumps to labels. As an example, the Lisp
expression (if *bar* (+ *bar* 2) 'foo) is compiled into the
following LAP representation:

1 (byte-varref *bar*)

2 (byte-goto-if-nil TAG 8)

3 (byte-varref *bar*)

4 (byte-constant 2)

5 (byte-plus)

6 (byte-return)

7 (TAG 8)

8 (byte-constant foo)

9 (byte-return)

where byte-varref pushes the value of a symbol into the stack,
byte-goto-if-nil pops the top of the stack and jumps to the
given label if it is nil, byte-constant pushes the value from an
immediate into the stack, byte-plus pops two elements from the
stack, adds them up and pushes the result back into the stack and
byte-return exits the function using the top of the stack as return
value. An extensive description of these instructions is available in
Ref. [3, Sec. 1.3].

libgccjit allows for describing code programmatically in terms of
gcc_jit_objects created through C or C++ API [14, Sec. Objects].
The semantic it can express can be described as a subset of the
one of the C programming language. This includes l and r values,
arithmetic operators, assignment operators and function calls. The
most notable difference with respect to C is that conditional state-
ments such as if and else are not supported and the code has to
be described in terms of basic blocks. Inside GCC, libgccjit IR is
mapped into GIMPLE when the actual compilation is requested.
One key property of Emacs Lisp LAP is that it guarantees that, for
any given program counter, the stack depth is fixed and known at
compile time. The previous LAP code can be transformed in the
following pseudo-code, suitable to be described in the libgccjit IR:

1 Lisp_Object local [2];

2

3 bb_0:

4 local [0] = varref (*bar*);

5 if (local [0] == NIL) goto bb_2;

6 else goto bb_1;

7

8 bb_1:

9 local [0] = varref (*bar*);

10 local [1] = two;

11 local [0] = plus (local[0], local [1]);

12 return local [(int)0];

13

14 bb_2:

15 local [0] = foo;

16 return local [0];
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This transformation accomplishes the following:

• performs opcode decoding during the transformation so that
it is not needed anymore at runtime.

• decodes and compiles all the operations within the original
stack into assignments.

• splits the initial list of LAP instructions into basic blocks.

These tasks are performed by means of an intermediate translation
into LIMPLE, which enables standard code optimization routines
present in GCC as well as dedicated optimization passes.

2.2 LIMPLE IR
As previously introduced, in order to implement a series of opti-
mization passes, we defined an intermediate representation, that
we called “LIMPLE”, whose main requirement is to be SSA. The de-
scription of every variable inside the compiler is accomplished with
instances of a structure we called m-var and reported in Appen-
dix A. This represents the Lisp objects that will be manipulated by
the function being compiled. A function in LIMPLE is a collection
of basic blocks connected by edges to compose a control flow graph
where every basic block is a list of insn (instructions). The format
of every LIMPLE insn is a list (operator operands) whose valid
operands depend on the operator itself, such as:

• (set dst src) Copy the content of the slot represented by
the m-var src into the slot represented by m-var dst.

• (setimm dst imm) Similar to the previous one but imm is a
Lisp object known at compile time.

• (jump bb) Unconditional jump to basic block whose name
is represented by the symbol bb.

• (cond-jump a b bb_1 bb_2) Conditional jump to bb_1 if
a and b are eq or to bb_2 otherwise.

• (call f a b . . . ) Call a primitive function f where
a, b, . . . are m-vars used as parameters.

• (comment str) Include annotation str as comment inside
the .eln debug symbols (see Sec. 5.3).

• (return a) Perform a function return having as return
value the m-var a.

• (phi dst src1 . . . srcn) Conventional Φ node used by
SSA representation. When all m-vars src1 . . . srcn have
the same immediate value this is assigned to dst. Similarly
it happens for the type (no handling for type hierarchy is
implemented up to date).

3 COMPILATION PASSES
The compilation pipeline is composed by a sequence of passes
that, starting from the input Elisp source code, apply a succession
of transformations to finally produce the executable code in the
form of a .eln file. The following sections describe each of the
compilation passes, all of them are implemented in Lisp with the
exception of final.

However, before getting into the details of each pass, it is useful
to discuss the reasonwhy the data-flow analysis and optimization al-
gorithms already present in the GCC infrastructure are not enough
for the Elisp semantic, and dedicated ones had to be developed in
Lisp.

Type propagation. Emacs Lisp is a strong dynamically-typed
programming language. Typing objects is done through tagging
pointers [27]. While GCC has passes to propagate both constants
and ranges, it has no visibility of the Lisp type returned by Lisp
primitive functions and, as a consequence, on the tag bits set.

Pure functions. Similarly, GCC does not know which Lisp func-
tions can be optimized at compile time having visibility only on
the local compilation unit. Optimizable functions are typically pure
functions or functions that are pure for a specific set of parameters.

Reference propagation. Another useful property to be propagated
is if a certain object will or will not be referenced [29] during
function calls. This information is required to generate a more
efficient code, as discussed in Sec. 3.8.

Unboxing. GCC does not offer infrastructure for unboxing val-
ues. Although not yet implemented, the proposed infrastructure is
designed to host further improvements, such as unboxing, requiring
data-flow analysis [28].

Compiler hints. The data-flow analysis can be fed with compiler
hints about the type of certain expressions, included as high-level
annotations in the source code by the programmer.

Warning and errors. A data-flow analysis engine as the one pro-
posed in this work could be used in the future to provide more
accurate warnings and errors during the compilation phase.

GCC optimization constraints. GCC optimization passes often
adopt conservative strategies not to break the semantic of all the
supported programming languages. As an example, the GCC tail
call optimization pass does not perform transformations when-
ever an instruction referencing memory is present in the compiled
function. Given the specific semantic of the code generated by
the proposed work, conditions as the one mentioned may be too
restrictive resulting in missed optimizations.

3.1 spill-lap
As already discussed, the main input for the compilation process
is the Lisp Assembly Program Intermediate Representation (LAP
IR). spill-lap runs the byte-compiler infrastructure with the Elisp
source as input collecting all top-level forms and spilling the LAP
before it is assembled into final byte-code.

3.2 limplify
This pass is responsible for translating LAP IR into LIMPLE IR. In
general, LAP is a sequence of instructions, labels and jumps-to-
label. Since the Emacs byte-interpreter is a stack-based machine,
every LAP instruction manipulates the stack [3], [15, Sec. 5.1]. It
is important to highlight that at this stage all the stack manipula-
tions performed by LAP instructions are compiled into a series of
m-var assignments. Spurious moves will eventually be optimized
out by GCC. This pass is also responsible for decomposing the
function into lists of LIMPLE insns, or basic blocks. The code nec-
essary for the translation of most LAP instructions is automatically
generated using the original instruction definition specified in the
byte-compiler.
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3.3 static single assignment (SSA)
This pass is responsible for bringing LIMPLE into minimal SSA
form, discussed in [7, Sec. 2.2], as follows:

a) Edges connecting the various basic blocks are created.
b) The dominator tree is computed for each basic block [4].
c) Dominator frontiers are computed for each basic block.
d) Φ functions are placed as described in [7, Sec. 3.1].
e) m-vars goes through classic SSA renaming.

Once LIMPLE is in SSA form every m-var object appears as
destination of an instruction only in one place within the SSA
lattice. The same object can be referenced multiple times as source
though, but each m-var can be identified by its unique id slot.

3.4 forward data-flow analysis
For each m-var, this pass propagates the following properties within
the control flow graph: value, type and where the m-var will be
allocated (see Sec. 3.8). Initially, all immediate values set at compile
time by setimm are propagated to each destination m-var. After-
wards, for each insn in each basic block the following operations
are iteratively performed:

a) If the insn is a Φ, the properties of m-vars present as source
operands are propagated to the destination operand when
in agreement.

b) If a function call has a known return type, this is propagated
to the result.

c) If a function call to a pure function is performed with all
arguments having a known value, the call is optimized out
and the resulting value is substituted.

d) Assignments by set operators are used to propagate all
m-vars.

This sequence is repeated until no more changes are performed
in the control flow graph.

3.5 call-optim
This pass is responsible for identifying all function calls to primi-
tives going through the funcall trampoline and substitute them
with direct calls. The primitive functions most commonly used
in the original LAP definition are assigned dedicated opcodes, as
described in [3, page 172]. When a call to one of these functions
is performed, the byte-interpreter can thus perform a direct call
to the primitive function. All the remaining functions are instead
called through the funcall trampoline, which carries a consider-
able overhead. This mechanism is due to the intrinsic limit of the
opcode encoding space. On the other hand, native-compiled code
has the possibility to call all Emacs primitives without any encoding
space limitation. After this pass has run, primitive functions have
all equal dignity, being all called directly irrespective of the fact
that they were originally assigned a dedicated byte-opcode or not.
The same transformation is performed for function calls within the
compilation unit when the compiler optimization level is set to its
maximum value (see Sec. 5.1). This will improve the effectiveness of
inlining and other inter-procedural optimizations in GCC. Finally,
recursive functions are also optimized to prevent funcall usage.

3.6 dead-code
This pass cleans up unnecessary assignments within the function.
The algorithm checks for all m-vars that are assigned but not used
elsewhere, removing the corresponding assignments. This pass is
also responsible for removing function calls generated by compiler
type hints (see Sec. 5.2) if necessary.

3.7 tail recursion elimination (TRE)
This peephole pass [16, Chap. 18] performs a special case of tail call
optimization called tail recursion elimination. The pass scans all
LIMPLE insns in the function searching for a recursive call in tail
position. If this is encountered it is replaced with the proper code
to restart executing the current function using the new arguments
without activating a new function frame into the execution stack.
This transformation is described in [16, Chap. 15.1].

3.8 final (code layout)
This pass is responsible for converting LIMPLE into libgccjit IR
and invoking the compilation through GCC. We point out that the
code we generate for native-compiled Lisp functions follows the
same ABI of Elisp primitive C functions. Also, a minimal example
of pseudo C code for a native-compiled Elisp function is listed in
Appendix B.

When optimizations are not engaged, m-vars associated to each
function are arranged as a single array of Lisp objects. This array has
the length of the original maximum byte-code stack depth. Depend-
ing on the number of their arguments, Elisp primitive functions
present one of the following two C signatures [22]:

a) Lisp_Obj fun (Lisp_Obj arg01, ..., Lisp_Obj argn),
for regular functions with a number of arguments known
and smaller or equal to 8.

b) Lisp_Obj fun (ptrdiff_t n, Lisp_Obj *args),
otherwise.

where ptrdiff_t is an integral type, n is the number of arguments
and args is a one-dimensional array containing their values. When
a call of the second kind is performed, GCC clobbers all the args
array content, regardless the number of arguments n involved in
the call. This means that the whole array content after the call
is considered potentially modified. For this reason the compiler
cannot trust values already loaded in registers and has to emit new
load instructions for them. To prevent this, when the optimization
we have called “advanced frame layout” is triggered, each m-var
involved in a call of the second kind is rendered in a stack-allocated
array dedicated to that specific call. All other m-vars are rendered
as simple automatic variables. The advanced frame layout is en-
abled for every compilation done with a non zero comp-speed, as
discussed in Sec. 5.1.

This pass is also responsible for substituting the calls to selected
primitive functions with an equivalent implementation described
in libgccjit IR. This happens for small and frequently used functions
such as: car, cdr, setcar, setcdr, 1+, 1-, or - (negation). As an
example, the signature for function car implemented in libgccjit IR
will be:

1 static Lisp_Object CAR (Lisp_Object c,

2 bool cert_cons)
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If compared to the original car function a further parameter
has been added, cert_cons which stands for “certainly a cons”.
final will emit a call to CAR setting cert_cons to true if the data-
flow analysis was able to prove c to be a cons or setting it to
false otherwise. This mechanism is used in a similar fashion with
most inlinable functions injected by this pass in order to provide
the information obtained by the data-flow analysis to the GCC
one. Since the GCC implementation has the full definition of these
functions, they can be optimized effectively.

4 SYSTEM INTEGRATION
4.1 Compilation unit and file format
The source for a compilation unit can be a Lisp source file or a single
function and, as already mentioned, the result of the compilation
process for a compilation unit is a file with .eln extension. Tech-
nically speaking, this is a shared library where Emacs expects to
find certain symbols to be used during load. The conventional load
machinery is modified such that it can load .eln files in addition
to conventional .elc and .el files.

In order to be integrated in the existing infrastructure we define
the Lisp_Native_Comp_Unit Lisp object. This holds references to
all Lisp objects in use by the compilation unit plus a reference to
the original .eln. Every .eln file is expected to contain a number
of symbols including:

• freloc_link_table: static pointer to a structure of function
pointers used to call Emacs primitives from native-compiled
code.

• text_data_reloc: function returning a string representing
all immediate constants in use by the code of the compilation
unit. The string is formed using prin1 so that it is suitable
to be read by Lisp reader.

• d_reloc: static array containing the Lisp objects used by the
compiled functions.

• top_level_run: function responsible of performing all the
modifications to the environment expected by the load of
the compilation unit.

4.2 Load mechanism
Load can be performed conventionally as: (load "test.eln").
Loading a new compilation unit translates into the following steps:

a) Load the shared library into the Emacs process address space.
b) Given that .eln plugs directly into Emacs primitives, for-

ward and backward version compatibility cannot be ensured.
Because of that each .eln is signed during compilation with
an hash and this is checked during load. In case the hash
mismatches the load process is discarded.

c) Lookup the following symbols in the shared library and set
their values: current_thread_reloc, freloc_link_table,
pure_reloc.

d) Lookup text_data_reloc and call it to obtain the serial-
ized string representation of all Lisp objects used by native-
compiled functions.

e) Call the reader to deserialize the objects from this string and
set the resulting objects in the d_reloc array.

f) Lookup and call top_level_run to have the environment
modifications performed.

We show in Appendix B an example of pseudo C code for a native-
compiled function illustrating the use of freloc_link_table and
d_reloc symbols.

When loaded, the native-compiled functions are registered as
subrs as they share calling convention with primitive C functions.
Both native-compiled and primitive functions satisfies subrp and
are distinguishable using the predicate subr-native-elisp-p.

4.3 Unload
The unload of a compilation unit is done automatically when none
of the Lisp objects defined in it is referenced anymore. This is
achieved by having the Lisp_Native_Comp_Unit object been inte-
grated with the garbage collector infrastructure.

4.4 Image dump
Emacs supports dumping the Lisp image during its bootstrap. This
technique is used in order to reduce the startup time. Essentially a
number of .elc files are loaded before dumping the Emacs image
that will be invoked during normal use. As of Emacs 27 this is
done by default by relying on the portable dumper, which is in
charge of serializing all allocated objects into a file, together with
the information needed to revive them. The final Emacs image is
composed by an executable plus the matching dump file. Image
dump capability has been extended to support native-compiled
code, the portable dumper has been modified to be able to dump
and reload Lisp_Native_Comp_Unit Lisp objects.

4.5 Bootstrap
Since the Elisp byte-compiler is itself written in Elisp, a bootstrap
phase is performed during the build of the standard Emacs dis-
tribution. Conventionally this relies on the Elisp interpreter [15,
Sec. 5.2.1]. We modified the Emacs build system to allow for a full
bootstrap based on the native compiler. The adopted strategy for
this is to follow the conventional steps to produce .eln files instead
of .elc when possible (lexically scoped code) and fall-back to .elc
otherwise. More than 700 Elisp files are native-compiled in this
process.

4.6 Documentation and source integration
The function documentation string, describe-function, and “goto
definition” mechanism support have been implemented and inte-
grated such that native-compiled code behaves as conventional
byte-compiled code.

4.7 Verification
A number of tests have been defined to check and verify the com-
piler. These include somemicro test cases taken from Tom Tromey’s
JIT [15, Sec. 5.11], [23]. A classical bootstrap compiler test has also
been defined, where the interpreted compiler is used to native-
compile itself, and then the resulting compiler is used to compile
itself. Finally, the two produced binaries are compared. The test is
successful if the two objects are bytewise identical.
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5 ELISP INTERFACE
5.1 Code optimization levels
Some special variables are introduced to control the compilation
process, most notably comp-speed, which controls the optimization
level and safety of code generation as follows:

(0) No optimization is performed.
(1) No Lisp-specific optimization is performed.
(2) All optimizations that do not modify the original Emacs Lisp

semantic and safeness are performed. Type check elision is
allowed where safe.

(3) Code is compiled triggering all optimizations. Intra compila-
tion unit inlining and type check elision are allowed. User
compiler hints are assumed to be correct and exploited by
the compiler.

comp-speed also controls the optimization level performed by the
GCC infrastructure as indicated by the table below.

comp-speed 0 1 2 3
propagate n n y y
call-optim n n y y
call-optim (intra CU) n n n y
dead-code n n y y
TRE n n n y
advanced frame layout n y y y
GCC -Ox 0 1 2 3

5.2 Language extensions
In order to allow the user to feed the data-flow analysis with type
suggestions, two entry points have been implemented:

• comp-hint-fixnum
• comp-hint-cons

These can be used to specify that a certain expression evaluates to
the specified type. For example, (comp-hint-cons x) ensures that
the result of the evaluation of the form itself is a cons. Currently,
when comp-speed is less or equal to 2, type hints are compiled into
assertions, while they are trusted for type propagation when using
comp-speed 3. These low level primitives are meant to be used to
implement operators similar to Common Lisp the and declare [1].

5.3 Debugging facility
libgccjit allows for emitting debug symbols in the generated code
and dumping a pseudo C code representation of the libgccjit IR. This
is triggered for compilations performed with comp-debug set to a
value greater than zero. Debugging the generated code is achieved
using a conventional native debugger such as gdb [21]. In this
condition, the final pass emits additional code annotations, which
are visible as comments in the dumped pseudo C code to ease the
debugging (see Appendix B).

6 PERFORMANCE IMPROVEMENT
In order to evaluate the performance improvement of the native
code, a collection of Elisp benchmarks has been assembled and
made available as elisp-benchmarks in the Emacs Lisp Package
Archive (ELPA) [5]. It includes the following set of programs:

• List processing: traverse a list incrementing all elements or
computing the total length.

• Fibonacci number generator: iterative, recursive and tail-
recursive implementations.

• Bubble sort: both destructive in-place and non destructive.
• Dhrystone: the famous synthetic benchmark ported from C
to Elisp [25].

• N-body simulation: a model of the solar gravitation system,
intensive in floating-point arithmetic.

The benchmarking infrastructure executes all programs in se-
quence, each for a number of iterations selected to have it last
around 20 seconds when byte-interpreted. The sequence is then
repeated five times and the execution times are averaged per each
benchmark. The results reported in Table 1 are obtained from
an Intel i5–4200M machine. They compare the execution time of
the benchmarks when byte-compiled and run under the vanilla
Emacs 28 from master branch against their native-compiled ver-
sions at comp_speed 3. The native-compiled benchmarks are run
under Emacs compiled and bootstrapped at comp_speed 2 from the
same revision of the codebase.

The optimized native-code allows all the benchmarks to run at
least two times faster, with most of them reaching much higher
performance boosts. Despite the analysis being still preliminary,
the reason behind these improvements can be explained with sev-
eral considerations. First of all the removal of the byte-interpreter
loop which, implementing a stack-machine, fetches opcodes from
memory, decodes and executes the corresponding operations and
finally pushes the results back to the memory. Instead the native
compiler walks the stack at compile time generating a sequence
of machine-level instructions (the native code) that works directly
with the program data at execution time (see Sec. 3.2). The result
of this process is that executing a native-compiled program takes a
fraction of machine instructions with respect to byte-interpreting
it. Analyzing the instructions mix also reveals a smaller percentage
of machine instructions spent doing memory accesses, in favor of
data processing ones. This is the fundamental upgrade of native
compilation against interpretation and is probably the major source
of improvement for benchmarks with smaller speed-ups, where no
other optimizations apply.

On the other hand, benchmarks with larger improvements also
take advantage of Lisp specific compiler optimizations, in particular
from call optimizations (see Sec. 3.5). Function calls avoid the tram-
poline when targeting subroutines defined in the same compilation
unit or when calling pure functions from the C codebase. Moreover,
the data-flow analysis step allows to exploit the properties of the
structures manipulated by the compiler in order to produce code
with less overheads. Function calls can also be completely removed,
along with corresponding returns, and replaced by simple jumps
for optimized tail recursive functions, avoiding at the same time
new allocations on the execution stack.

Finally, the data-flow analysis can be made even more effective
when paired with compiler hints. Without these, the only types
known at compile time are the ones belonging to constants or values
returned by some primitive functions. Type hints greatly increase
the chances for the native compiler to optimize out expensive type
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benchmark byte-comp runtime (s) native-comp runtime (s) speed-up
inclist 19.54 2.12 9.2𝑥
inclist-type-hints 19.71 1.43 13.8𝑥
listlen-tc 18.51 0.44 42.1𝑥
bubble 21.58 4.03 5.4𝑥
bubble-no-cons 20.01 5.02 4.0𝑥
fibn 20.04 8.79 2.3𝑥
fibn-rec 20.34 7.13 2.9𝑥
fibn-tc 21.22 5.67 3.7𝑥
dhrystone 18.45 7.22 2.6𝑥
nbody 19.79 3.31 6.0𝑥

Table 1: Performance comparison of byte-compiled and native-compiled Elisp benchmarks

checks. In our measurements, the same benchmark (inclist) anno-
tated with type hints earns a further improvement of 50% in terms
of execution speed, while compiled under the same conditions.

7 CONCLUSIONS
In this work we discussed a possible approach to improve execu-
tion speed of generic Elisp code, starting from LAP representation
and generating native code taking advantage of the optimization
infrastructure of the GNU Compiler Collection. Despite its early
development stage, the compiler successfully bootstraps a usable
Emacs and is able to compile all lexically scoped Elisp present in the
Emacs distribution and in ELPA. The promising results concerning
stability and compatibility already led this work to be accepted
as feature branch in the official GNU Emacs repository. Moreover,
a set of benchmarks was developed to evaluate the performance
gain and preliminary results indicate an improvement of execution
speed between 2.3x and 42x, measured over several runs. At last, we
point out that most of the optimization possibilities allowed by this
infrastructure are still unexplored. Already planned improvements
include: supporting fixnum unboxing and full tail call optimization,
exposing more primitives to the GCC infrastructure by describing
them in the libgccjit IR during the final pass, and allowing to sig-
nal warnings and error messages at compile time based on values
and types inferred by the data-flow analysis.
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A DEFINITION OF M-VAR
1 (cl-defstruct (comp-mvar (: constructor make--comp-mvar))

2 "A meta-variable being a slot in the virtual-stack."

3 (id nil :type (or null number)

4 :documentation "SSA unique id number when in SSA form.")

5 (const-vld nil :type boolean

6 :documentation "Validity signal for the following slot.")

7 (constant nil

8 :documentation "When const-vld is non-nil this is used for holding a known value.")

9 (type nil

10 :documentation "When non-nil indicates the type known at compile time."))

B EXAMPLE OF A COMPILATION UNIT
Below we show an example of an elementary compilation unit followed by the pseudo C code generated dumping the libgccjit IR. The
compilation process is performed using comp-speed = 3 and comp-debug = 1.

1 ;;; -*- lexical-binding: t -*-

2 (defun foo ()

3 (if *bar*

4 (+ *bar* 2)

5 'foo))

1 extern union comp_Lisp_Object

2 F666f6f_foo ()

3 {

4 union comp_Lisp_Object [2] arr_1;

5 union comp_Lisp_Object local0;

6 union cast_union union_cast_28;

7 entry:

8 /* Lisp function: foo */

9 goto bb_0;

10 bb_0:

11 /* const lisp obj: *bar* */

12 /* calling subr: symbol -value */

13 local0 = freloc_link_table ->R73796d626f6c2d76616c7565_symbol_value (d_reloc [0]);

14 /* const lisp obj: nil */

15 union_cast_28.v_p = (void *)NULL;

16 /* EQ */

17 if (local0.num == union_cast_28.lisp_obj.num) goto bb_2; else goto bb_1;

18 bb_2:

19 /* foo */

20 local0 = d_reloc [2];

21 /* const lisp obj: foo */

22 return d_reloc [2];

23 bb_1:

24 /* const lisp obj: *bar* */

25 /* calling subr: symbol -value */

26 arr_1 [0] = freloc_link_table ->R73796d626f6c2d76616c7565_symbol_value (d_reloc [0]);

27 /* const lisp obj: 2 */

28 arr_1 [1] = d_reloc [3];

29 /* calling subr: + */

30 local0 = freloc_link_table ->R2b_ (2, (&arr_1 [0]));

31 return local0;

32 }
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ABSTRACT
“Interval Arithmetic” (IA) appears to be a useful numerical
tool to have at hand in several applications. Alas, the current
IA descriptions and proposed standards are always formulated
in terms of the IEEE-754 standard, and the status of IEEE-
754 compliance of most Common Lisp implementations is not
up to par.

A solution would be for Common Lisp implementations to
adhere to the Language Independent Arithmetic (LIA) IEC
standard, which includes IEEE 754.

While the LIA standard provides a set of proposed bindings
for Common Lisp, the format and depth of the specification
documents is not readily usable by a Common Lisp program-
mer, should an implementation decide to comply with the
provisions. Moreover, much latitude is left to each implemen-
tation to provide the LIA “environmental” setup.

It would be most beneficial if more precision were agreed
upon by the Common Lisp community about how to provide
LIA compliance in the implementations. In that case, a new
set of documentation or manuals in the style of the Hyper-
Spec could be provided, for the benefit of the Common Lisp
programmer.

The goal of this paper is to foster a discussion within
the Common Lisp community to converge on a complete
specification for LIA compliance. The paper discusses some of
the issues that must be resolved to reach that goal, e.g., error
handling and full specification of mathematical functions
behavior.
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1 INTRODUCTION
An interesting exercise (academic or not) that a programmer
(Common Lisp or not) may find intriguing is to implement an
Interval Arithmetic (IA) library1. Programmers of all stripes
would learn a lot if they tried to really implement an IA
library. But since most probably won’t, this paper may serve
as sufficient summary to get you through a cocktail party
conversation on the matter.

The usefulness of IA is rather established; many numerical
issues can be naturally dealt with by using an IA library, al-
beit at a slight increase in computation times. There is a nice
body of literature and proposed standards to ensure avail-
ability of IA in a computing environment, and many of these
eventually provide one or two different interval representa-
tions (endpoint and midpoint), the operations on them, and
nitpicking treatment of corner cases; e.g., intervals with infi-
nite endpoints and interval division by an interval containing
0.

As we shall see, the “nitpicking” boils down to using the
IEEE-754/IEC-60559 standards [11]. Eventually, in this work,
the use of the IEC Language Independent Arithmetic (LIA)
standards [6–8] will be advocated. The LIA standard is a
comprehensive collection of concepts and carefully thought
out behaviors a basic library of integer, floating point and
complex numbers mathematical functions and ancillary en-
vironment functionalities should look like. One of the, in
the opinion of the writer, unstated goals of LIA is that a
programmer should be able to relatively easily understand
mathematical software writeen in any language ecosystem
that abided the specification.

A word of caution. The present paper is neither a full
blown Common Lisp LIA specification, nor a description of
an implementation of the functionalities depicted herein. It
rather is a leaflet that intend to present the community a
project which, in the modest opinion of the writer, should
be completed after careful debate and careful consideration
of all the details.

1.1 An IA Library. . . Hitting the Wall
An IA library in Common Lisp implementing what is known
as an endpoint representation can be easily started as follows.
For brevity, since it is a valid Common Lisp identifier, we use

1See, for example [4], or [5] for a rather complete summary with
references to the seminal works in the area. IEEE has also published a
preliminary standard for IA [10].

76 ELS 2020



ELS 2020, April 27–28 2020, Zürich, Switzerland Marco Antoniotti

the name [] here for what other languages might call an
interval.

(defstruct ([] (:constructor [] (low high)))
(low 0.0 :type real)
(high 0.0 :type real))

(defun radius (i) (- ([]-high i) ([]-low i)))

(defun pointp (i) (= ([]-high i) ([]-low i)))

(defmethod add ((i1 []) (i2 []))
([] (+ ([]-low i1) ([]-low i2))

(+ ([]-high i1) ([]-high i2))))

(defmethod sub ((i1 []) (i2 []))
([] (- ([]-low i1) ([]-high i2))

(- ([]-high i1) ([]-low i2))))
After starting in earnest, a Common Lisp (or Java, C,

R, Python) programmer is soon faced with a number of
numerical issues, should she be willing to achieve the best
possible behavior out of the IA library.

The problem is that, as mentioned before, IA specifications
are usually formulated in terms of the IEEE-754 standard,
which, at this point is readily available only to C and C++
programmers2 In particular, the IA specifications exploit
rounding modes and infinities, which are unevenly available
in Common Lisp implementations; another, related issue is
the treatment of floating point exceptions.

Rounding Modes. If we had available some ways of handling
infinities and rounding modes, we could write the IA library
operations as follows:

(defmethod add ((i1 []) (i2 []))
([] (rounding-down (+ ...))

(rounding-up (+ ...))))
where rounding-down and rounding-up are macros with an
intuitive semantics. Unfortunately, at this point in time, it is
not possible to provide the rounding-down and rounding-up
macros without delving deeply in an implementation.

Infinities and NaNs. Another issue is the handling of spe-
cial values: essentially infinities and NaN s (not-a-number).
Both items are handled unevenly in Common Lisp implementa-
tions; infinities and quiet NaNs (cfr. the IEEE-754 standard)
are somewhat supported; signaling NaNs not so much so.

Handling of Floating Point Exceptions. Apart from our
doomed IA library, another issue that is not always very well
clarified in Common Lisp implementations (and especially
across them) is how floating points exceptions are handled.
The Common Lisp standard defines the conditions:

floating-point-overflow
floating-point-underflow
floating-point-inexact

2There are, e.g., Python bindings to IEEE-754, but they rely on the
underlying C library implementation.
Cfr., https://www.python.org/dev/peps/pep-0754/.

floating-point-invalid-operation
division-by-zero

Alas, their use is inconsistent across implementations (apart
from the mostly clear cut case of division-by-zero). Two
implementations may choose to signal
floating-point-invalid-operation or
floating-point-inexact on the same operation.

This is not the only issue vis-a-vis Common Lisp and the
IEEE-754. A deeper issue pertains the notification machinery
that is invoked when one of the aforementioned conditions is
to be signaled by an operation. Should an implementation
actually signal a (floating point) condition using error, or
should it go the C way [3] and record somewhere an indication
that a condition “happened”, for the programmer to check
directly?

1.2 Common Lisp Implementations and the
:ieee-floating-point Feature

The ANSI Common Lisp Standard [1] makes provisions for a
Common Lisp implementation to “declare” that it purports
to conform to the requirements of the IEEE Standard for
Binary Floating-Point Arithmetic (no reference given). There
are a few problems with this statement3.

The presence of the :ieee-floating-point feature in a
Common Lisp implementation is a (very) partial indication
that some support for the IEEE-754 is available. Table 1
shows a summary of the current state of compliance for a
number of implementations4 with respect to the notions just
described.

Infinities and NaNs. Many implementations provide infini-
ties and NaNs, but with obviously different lineages. E.g.,
the following syntax is used by LW and CCL, which is then
declined in various interesting ways:

∞ 1F++0, 1D-+0
NaN 1F+-0, 1S–0

but ACL chooses to provide “variables” with read-time syn-
tax.

ACL prompt> *infinity-single*
#.*INFINITY-SINGLE*

ACL prompt> (+ 42 *nan-single*)
#.*NAN-SINGLE*

While this may be perfectly sensible it has the drawback of
not playing so nicely with *read-eval*.

The only implementations that allow a programmer to get
a handle on a signaling NaN are CMUCL and SBCL. There
appear to be no easy way to create such a value in the other
implementations.

3A form of “left to the implementation”, which, as usual, does not
bode well for the programmer.
4The table is incomplete because not all implementations were checked
and because the notion of “compliance” is rather complicated to assess
in this case.
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CMUCL/SBCL LW ACL ABCL ECL CCL
Infinities Y Y Y U U Y
Quiet NaNs Y Y Y U U Y
Signaling NaNs Y N N U U U
Rounding Y N N U U N
Exceptions NACF P P P P P P
Exceptions NRI Y N N U U N

Table 1: Common Lisp implementations “compliance” status w.r.t. the IEEE-754. The acronym NACF stands for Notification by Alteration of
Control Flow, while the acronym NRI stands for Notification by Recording of Indicators (cfr., [6–8] ); they will be discussed later on. The entries
are Yes, No, Unknown, and Partial.

Rounding. Only CMUCL and SBCL allow the setting of
the rounding mode by accessing directly the equivalent of the
IEEE-754 floating point environment. However, the facility
– which resembles the C library fenv.h setup – is very low
level.

1.3 A Proposal
Alas, “just adding” infinities and rounding modes to a Com-
mon Lisp implementation may not not be quite sufficient, as
their semantics is deeply intertwined with the other parts
of the IEEE-754 standard. A better course of action would
be to nudge the implementors to comply with the current
standards. The definition of a new Common Lisp “arithmetic”
specification may be a better way to achieve the goal of
providing Common Lisp programmers with a layered set of
documented functionalities.

The observation is that by now, the IEEE-754 standards
(and to a lesser extent the LIA standards) appear to be
quite accepted and common place in many programming
language ecosystems. It is the opinion of rhe writer that for
the Common Lisp community, “to go with the flow” would
be the pragmatic thing to do.

2 GOALS AND ISSUES
The goal of this paper is to urge the various Common Lisp
implementations to provide better support for floating point
(hence complex) arithmetic, in order to make it possible to
directly write a IA library (and other numerical routines) in
an easier and and more correct way. The point of view is that
of a Common Lisp programmer and user. The main source of
this proposal are the Language Independent Arithmetic (LIA)
specifications [6–8], which incorporate IEEE-754/IEC-60559
[11].

2.1 The LIA Specifications and Common Lisp
The LIA specifications are three documents covering the
following topics.
LIA Part 1: integer and floating point arithmetic
LIA Part 2: elementary numerical functions
LIA Part 3: complex integer and floating point arithmetic
The LIA specifications take great care not to be overly con-
straining (they relax a few requirements of IEEE-754/IEEE-
754) while being very precise about the behavior of each item

they define. They also contain appendices describing sug-
gested bindings for various languages, C/C++ and Fortran
being prominent, including Common Lisp.

A Common Lisp implementor could, in principle, just read
through the LIA specifications and provide all the necessary
bits and pieces while building the arithmetic facilities of the
language. Yet, it is the writer’s opinion that this course of
action would still fall a bit short of providing a programmers’
computing environment with an “implementation indepen-
dent” firm ground. The reasons lie in the LIA specifications
themselves, as they understandably cannot provide more than
a suggestion about how a language binding should cover and
look like. There are some issues that a more Common Lisp
centric specification would and should clarify: naming con-
ventions, layering and packaging, programming environment
setup, rounding-modes and, above all, error handling and
the floating point environment. In the following each of these
issues will be discussed. Eventually, the result should be an in-
depth specification formatted in the style of the Common Lisp
standard [1, 2].

2.1.1 Naming Conventions. The LIA specifications suggest a
naming convention for its functionalities that reuses much
of Common Lisp names. some of the choices are not partic-
ularly in line with Common Lisp style. Two examples are
the functions sqrtUp and sqrtDwn, which compute square
roots with “up” or “down” rounding modes; Common Lisp
style would have avoided the “camel case”, given that Com-
mon Lisp implementations are uppercasing out-of-the box,
while preferring an hyphenated naming.

Another issue with the LIA suggested naming is that it
essentially requires an implementation to provide a set of
very basic LIA-compliant functions – e.g., +, *, 1-, sin, etc.
– which implies a reworking of an implementation core.

2.1.2 Layering and Packaging. In order to provide a Com-
mon Lisp centric LIA specification and adoption path, it would
be better to ensure that the new functionality were provided
as a library. This means, at a minimum, to provide a package
that contained all the “new” names introduced. Given the
partition of the LIA specifications, further sub-packaging
could be provided.

A first cut proposal would be to have a package named
(or nicknamed) CL-LIA that exported all the names that are
necessary to implement a form of the LIA specifications.
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As it will be discussed later on, it will be useful to have a
cl-lia:floating-point-invalid-operation condition, de-
spite the presence of the standard Common Lisp one.

2.1.3 Programming Environment Setup. The IEEE-754/IEC-
60559 and LIA specifications define a number of environment
checks that a compiler or a program may check to produce
code that complies and/or exploits their semantics. These
are akin to the :ieee-floating-point feature (which, as we
have seen, is only partially informative). At least two sets
of “checks”, both in functional and “feature” form could be
provided by a Common Lisp LIA implementation.

Library Compliance Checks. The LIA specifications re-
quire a boolean variable iec60559𝐹 that reports whether
or not an implementation complies with the IEEE-754/IEC-
60559 implementation of the floating point type 𝐹 . This is
more stringent than the “bulk” statement implied by the
:ieee-floating-point feature, although LIA1 (cfr, [6] Sec-
tion 5.2) explicitly states that no exact floating point repre-
sentation is required. A Common Lisp LIA implementation
should define similar constants, boolean functions and, possi-
bly, features.

Layered Library Checks. Another set of variables, boolean
functions and features should be made available to indi-
cate the level of compliance with the LIA specifications. A
suggestion is to provide the functions (and therefore con-
stants and features) LIA1-compliance, LIA2-compliance,
and LIA3-compliance. Finer statements may pertain parts of
each specification; one example is the provides-infinities-p
and provides-nans-p. Other such checks can be described
for other parts of the Common Lisp LIA implementation, as
seen below for exception handling. Finally, one important
check that could be provided is whether the Common Lisp im-
plementation carries over the LIA semantics to the functions
in the COMMON-LISP package: the check is-cl-using-lia
would state that a function like, for example, cl:sin imple-
ments the LIA semantics w.r.t. infinities and NaNs, rounding
modes and exception notifications (see below). Of course,
whether or not provide such “history rewriting feature” is up
for debate. One argument in favor is that old code would still
work without having to be tweaked to use the new functions
provided in a CL-LIA package.

2.1.4 Rounding Modes. Floating points numbers being ap-
proximation of real numbers carry with them notions of
rounding. The LIA specifications define how rounding modes
affect elementary and library operations.

Following in this case the C/C++ example, it could be
possible to define a set of constants with the meaning showed
in Table 2. The type rounding-mode can then be defined as:

Common Lisp constants Value LIA meaning
indeterminate -1
to-zero 0 truncate
to-nearest 1 nearest
to-positive-infinity 2 other
to-negative-infinity 3 other
to-nearest-even 4 nearesttiestoeven

Table 2: Proposed Common Lisp constants representing
rounding modes.

(deftype rounding-mode ()
`(member ,indeterminate

,to-zero
,to-positive-infinity
,to-negative-infinity
,to-nearest-even))

The rounding mode can then be tracked using a special
variable *rounding-mode*. A macro with-rounding-mode
is an obvious extension as well as macros wrapping one
expression: round-upward, round-downward, round-nearest
etc.

Moreover, the LIA specifications define some functions
that guarantee a given rounding result; e.g., there are three
versions of

√·, which compute square roots guaranteeing
rounding upward, downward and to nearest. For Common Lisp
it will probably be better to provide four such “names” with
the following, LIA-inspired, suffixes: sqrt (no suffix), sqrt.<,
sqrt.<>, and sqrt.>. The first version depends on the current
rounding mode, the other ones round down, near and up
(suffixes .<, .<> and .>).

2.1.5 Error Notification/Handling and the Floating Point “En-
vironment”. The LIA specifications must address the differ-
ences (and . . . “traditions”) that different communities have
developed over the years. The exegesis of the LIA specifi-
cations seems to point out that the major concern was to
disentangle concerns that earlier language specifications (es-
pecially the C/C++ ones) addressed in a idiosyncratic way.
Within the Common Lisp community, the Condition System -
as prefigured and hashed out in [9] – offers all the bells and
whitles to implement the programmer’s side of error handling,
but some issues must be dealt with at the implementation
level.

One of the main tangled issues regards the handling of
“errors”, that is, after what an “error” is agreed upon. This is
a notoriously complicated issue which the LIA specifications
appear to break down into two parts.

∙ How errors are notified.
∙ What happens depending on the notification style.

The LIA specifications assume that a language “environment”
establishes some forms of notification machinery. Three major
modalities are singled out.

(1) Notification by recording in indicators (NRI – LIA1,
Section 6.2.1).
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(2) Notification by alteration of control flow (NACF – LIA1,
Section 6.2.2).

(3) Notification by termination with message (NTM – LIA1,
Section 6.2.3).

The LIA1 specification, Annex D, proposes that Common Lisp
defined the arithmetic exception handling using the Condition
System, i.e., using the NACF notification approach. However,
SBCL/CMUCL provide – de facto – a NRI setup modeled
on the C NRI interface provided by <fenv.h>. It would be
better to accommodate both alternatives NRI and NACF,
and make them available to the programmer for finer control.

LIA1 provides an example about how Fortran may pro-
vide some compiler directives to choose between NRI and
NTM (cfr., LIA1, Annex E).

!LIA$ NOTIFICATION=RECORDING
!LIA$ NOTIFICATION=TERMINATE
In order to select and introspect what kind of exception

handling regime is in place in a given computation5 an ap-
propriate Common Lisp API will have to be defined.
To complete the discussion, we must consider the floating
point environment, conditions and continuation values, and
underflow/overflow.

Floating Point Environment. Having control over the kind
of notification style is nice, but it requires a better handling
of the floating point environment, which C handles through
<fenv.h>, and that CMUCL/SBCL manipulate using a few
functions and what looks like is an a-list.

The floating point environment is used as a kitchen sink
to keep track of rounding modes, exceptional situation notifi-
cations and other information. A unified item representing
these concerns still seems the best way to give access to them
in a dynamic way.

Conditions and “Continuation” Values. The operations
that operate on the “borderline” case in LIA (e.g., opera-
tions on NaN s, or that generate underflows and overflows,
are specified alongside a continuation value. This is most
important for the NRI notification style, where an operation
“continues”, while recording the indication of an exceptional
situation. To facilitate the implementation of a LIA-compliant
package for Common Lisp, it would be useful to mirror the
arithmetic-error sub-hierarchy and to equip the classes
with a continuation-value slot (alongside appropriate ini-
targs and readers).

3 CONSIDERATIONS FOR A NEW
COMMON LISP ARITHMETIC
SPECIFICATION

Having discussed some of the issues about providing support
for the LIA specification in Common Lisp, we here offer a
detailed opening bid in a hoped-for public discussion on the
creation of a Common Lisp binding, or otherwise integrating
its ideas into the language.
5The LIA specifications make no mention of any threading model; how-
ever, it is assumed that an implementation can make all the dynamical
behavior of numerical computations “thread safe”.

A full-blown document containing the full description of
each item, in a style reminiscent of the Common Lisp[] ANSI
Standard [1], is in the works. The LIA specification describes
each item and, especially, operation, in a terse and abstract
way, which requires quite a bit of effort to map onto a typical
Common Lisp description, especially for functions results. The
full blown description is intended to be read by a Common Lisp
programmer.

Package. All the names that will be introduced or shad-
owed from the "COMMON-LISP" package will be exported from
a new package. The proposed nickname is "CL-LIA-MATH"6.

Environmental Features and Switches. An implementation
will state what parts of the specification will be available. The
following (semi-hierarchical) set of environmental queries will
be available as functions, special variables, and/or features.

lia-subset-available
lia1-subset-available
lia2-subset-available
lia3-subset-available

lia-compliance
lia1-compliance

provides-infinities
provides-nans
provides-rounding-modes
provides-floating-point-environment
provides-nacf
provides-nri
provides-ntm

lia2-compliance
cl-package-uses-lia

lia3-compliance
The above list represents Boolean functions. The provides-...
functions return true when the specific functionality is fully
provided. In the above example lia1-compliance returns
true when all the provides-... functions return true.

Note that, while the list of introspective facilities listed
covers most of the dimensions in LIA compliance, certain
combinations are ruled out by the detailed specification and
by the way it is presented in the standards. E.g., it is not
very sensible to have an implementation for which
provides-floating-point-environment returned false, while
provides-nacf returned true.

Infinities, NaNs and Rounding. An implementation of the
specification will offer all the values pertaining infinities,
NaNs and rounding. In particular, a fully LIA compliant will
provide the environment introspection functions and variable
mandated by LIA1 and “typed” constants like
double-float-positive-infinity and infD. Moreover, the
full specification will clarify the behavior of each function
and operation when presented with NaNs, both quiet and
signaling, especially regarding the interplay with the error
notification style (see below).

6Or "CL.MATH", should a more ambitious naming be adopted.
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The rounding versions of all the LIA mandated operations
will be marked by the postfixes .<, .<>, and .>, signifying
rounding towards negative infinity, nearest, and positive in-
finity. The macro rounding has effect on the “unqualified”
versions of the arithmetic operations. E.g.

(+.< pi pi) ⇒ 2𝜋 rounded toward −∞.
(+.> pi pi) ⇒ 2𝜋 rounded toward ∞.

. . . , while using the rounding macro

(rounding :positive-infinity (+ pi pi))
⇒ 2𝜋 rounded toward ∞.

. . . , but

(rounding :positive-infinity (+.< pi pi))
⇒ 2𝜋 rounded toward −∞.

I.e., the rounding macro establishes a dynamic environment
with a specific rounding mode set up, which can be ignored
by the “hard rounding” versions of the operations in the
body.

Floating Point Environment and Error Handling. An im-
plementation of the specification shall assume the presence
of an opaque data type called floating-point-environment.
The access functions for this data structure are patterned
after the C/C++ standards in order to offer familiarity and,
possibly, ease of implementation.

An implementation of the specification will always offer
both NACF and NRI notification styles, with full control
offered to the programmer about when and where they turn
on and off each style. The NTM notification style will used
only for catastrophic events, which will be documented ac-
cordingly.

The type arithmetic-notification-style can be de-
fined as:

(deftype arithmetic-notification-style ()
'(member :recording ; I.e., NRI.

:error ; I.e., NACF.
:terminating ; I.e., NTM.
))

The main functions and macros that allow full control
of the notification style and continuation values possibly
returned by an operation are the following.

current-notification-style
set-notification-style
with-notification-style
trap-math

The trap-math macro is intended as a wrapper around
the Common Lisp error handling machinery (handler-case,
unwind-protect, etc. . . ) that automated some of the setup
and teardown operations on the floating point environment,
alongside the handling of continuation values. A possible
syntax is the following

(trap-math (<options >)
<expr >
<handler >* )

The options parameter is a list that may contain the key-
words :notify-by, :before, and :after. The :notify-by
is the notification style defaulting to :error, :before and
:after instead demarcate lists of actions that intend to sim-
plify the setting up and the teardown of indicators in the
floating point environment: :save saves the current float-
ing point environment, :clear creates a fresh floating point
environment with no indicators recorded, and :merge (in
an :after position) merges the current floating point envi-
ronment with the possibly saved one. Of course, a different
syntax is possible, and it is unclear to the writer which would
be the best; consider the following alternative.

(trap-math (&key notify-by before after )
<expr >
<handler >* )

The handler is a simplified list that has the following syntax.
(<aec > (&optional <varname >)

&rest <actions >)
where aec is an arithmetic-condition carrying a continu-
ation value, varname is a symbol that can be bound to the
condition instance and actions is a list that may contain
the following items.

∙ :default – the behavior is the standard one for aec.
∙ :clear – when combined with the :continue forms

and the complex :error form, it clears the indicator
corresponding to aec from the floating point environ-
ment.

∙ :raise – re-signals the aec
∙ (:raise c &rest args ) – signals a new contition c.
∙ :continue, (:continue expr ) – continues the compu-

tation by yielding the standard continuation value of
the result of evaluating expr ; the :continue actions
can be rendered by means of cl:use-value and/or
cl:continue restarts.

An example of the use of trap-math is the following, which
is also a rendering of [6] Appendix A.6.

(trap-math (:before :save :clear
:after :merge)

(fast-solution input )
(cl:floating-point-overflow ()

:clear
(:continue (reliable-solution input))))

or, with a different syntax
(trap-math (:before (:save :clear)

:after :merge)
(fast-solution input )
(cl:floating-point-overflow ()

:clear
(:continue (reliable-solution input))))

3.1 Providing the Specification – A Descriptive
Example

Eventually, the considerations put forth in this paper
should be crystallized in a specification that clarified all
the many thorny issues that will crop up when considering as
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Function =, /=
Syntax:
= a, b ⇒boolean
= a &rest bs ⇒boolean
/= a, b ⇒boolean
/= a &rest bs ⇒boolean

Arguments and Values:
a b – Numbers.
bs – A list of numbers.
boolean – a generalized boolean.

Description:
The dyadic version of = (and /=) performs an arithmetic equality (inequality) test between a and
b. The monadic and n-adic versions are built upon the dyadic one as per the regular Common Lisp
description in [2].
It is assumed that a and b are converted (as per the contagion rules of Common Lisp) to be of the
same type. Therefore the following cases can be be considered as per the LIA specifications.

(a) If a and b are either finite integers, finite floating point numbers, or finite complex numbers then
the result is true (respectively, false) if the two numbers are equal (respectively, different) in
the mathematical sense. In the LIA spec this is the result of eq𝑇 𝑎, 𝑏 ≡ 𝑎 = 𝑏 or neq𝑇 𝑎, 𝑏 ≡ 𝑎 ≠ 𝑏
for an appropriate 𝑇 . This is the standard Common Lisp case.

(b) If a and b are infinities then = returns true (respectively false) if they are both positive or both
negative; otherwise it returns false (respectively true).

(c) If either a or b is a quiet NaN, and, respectively, b and a is not a signaling NaN, then the result
is false.

(d) Complex numbers are checked recursively on the real and imaginary parts.

Exceptional Situations:
If either a or b is a signaling NaN, then, under the notification NACF regime, the indicator :invalid
is recorded and the floating-point-invalid-operation is signaled (with continuation value NIL
recorded); otherwise, under the NRI notification regime, the indicator invalid is recorded and NIL
(false) is returned as continuation value.
For complex numbers, the recording and signaling operations (under NRI and NACF) happens if the
condition above applied to either of the real or the imaginary parts of a and b.

Figure 1: An example entry that should appear in the full specification for the Common Lisp LIA-compliance documentation.

many details as possible. The goal will be to provide a speci-
fication á la Common Lisp HyperSpec [2], where each item
(function, variable, class, etc.) has a mostly self-contained
description with, by now, a conventional structure. This is
different from the presentation style adopted by the LIA spec-
ifications, which heavily rely on quite formal yet “generic”
description of each operation’s behavior.

The most important aspects a Common Lisp LIA specifi-
cation will be to describe, for each function (or other item),
the following behaviors.

(a) The corner cases: infinities and NaNs.
(b) The interplay between the notification style, the han-

dling of errors, the floating point environment and the
continuation values that are specified according to the
LIA documents.

As an example of what an entry in the envisioned full Com-
mon Lisp LIA specification would look like, Figure 1 shows a

description of the (dyadic) = and /= functions. Hopefully, all
details and corner cases listed above have been taken into con-
sideration. The reader can compare the equality specification
in the LIA1 document with the one in Figure 1.

4 CONCLUSIONS AND FINAL
DISCALIMERS

In order to write a fully functional (according to the available
literature and proposed standards) IA library in Common Lisp,
a programmer needs a finer control over the floating point
environment and access to functionalities such as rounding
modes.

This paper puts forth a proposal to complete a Com-
mon Lisp HyperSpec styled, LIA-based specification that
would provide a more accessible documentation for a program-
mer and a clear guideline about how certain functionalities
should be provided by an implementation.
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Given an implementation of the proposed “New Arithmetic
Specification” a programmer could at least start to write a
proper IA library. As an example, the add method would
look like the following.

(defmethod add ((i1 []) (i2 []))
([] (+.< ([]-low i1) ([]-low i2))

(+.> ([]-high i1) ([]-high i2))))
where +.< and +.> are the addition operations on floating
point numbers that round, respectively, downward and up-
ward.

Again, the writer wants to insist and repeat that the
present paper is a leaflet that intends to present the Com-
mon Lisp community a project which, in his modest opinion,
should be completed after careful debate and careful consid-
eration of all the details within the Common Lisp community.

A full blown specification covering LIA-1, LIA-2 and LIA-3
will run close to two hundred pages if written and formatted
according to the [2] style (a worthy goal in itself). Many of
the examples contained in this paper are suggestions about
how they could look. Agreement withing the Common Lisp
community will help settle down several issues this paper
puts forth.

What this paper wants to point out though, is that many
researchers and practitioners did lay down a sensible set of
standards, the LIA standards, which did take into account
Common Lisp. Following them appears to be one good way
to ensure that Common Lisp will keep its place among the
most important language ecosystems around, and welcome
programmers from other communities by offering them a
familiar playpen and more.
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ABSTRACT
Many programming systems feature a stepping debugger, a tool
that lets users execute code, section by section, in steps of their
own choosing. Despite many attempts throughout the decades,
the Common Lisp language is still lacking in this regard. We pro-
pose and describe the workings of a new, portable, visual stepping
facility for Common Lisp, realized as an extension to SLY, a cross-
implementation Common Lisp IDE for the Emacs editor. This facility
is realized as an increment to an existing source code annotation
system known as “stickers”, whose working principles we also de-
scribe in this work. As part of the solution arrived at for the main
objective, we also present two reusable software components: (1) a
simple, near portable technique for constructing a source-tracking
Common Lisp expression reader in terms of a preexisting compliant
expression reader and (2) a technique to carry over source-tracking
information to the expansion of macro expressions.
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1 INTRODUCTION
1.1 What is stepping
A program stepper lets users execute code, section by section, in
steps of their own choosing. A number of hidden control points are
inserted along the execution paths of the program. At each point,
the system may interrupt the program and wait for user instruc-
tions before and/or after executing the next section. Steppers often
fall within the category of program execution monitors, along with
profilers, tracers and other debugging tools. Stepping is the one
of the most popular forms of debugging since it allows users to
study the evolution of the state of a program by direct inspection,
as opposed to combining conjecture and experimentation. A step-
per gives users full control over the speed of the actual program
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and often even allows manipulations of that state. This frequently
presents a debugging advantage over guessing a programs’ state or
monitoring its outputs.

Many programming systems, indeed all of the most popular
programming systems provide stepper tools as a part of a debugging
tool-chain, i.e. a set of programs often developed and distributed
alongside language compilers and interpreters. In languages such
as C, the prevalence of a stepping system (such as the popular gdb
program) is so strong that it becomes synonymous with the term
“debugger”. This sometimes leads to users migrating to the Lisp
family of languages being surprised to find debugging systems that
aren’t about stepping at all.

Stepper systems usually function through text-based interfaces
that are capable of displaying the source code of the relevant code
sections. Nevertheless, many users of stepper tools prefer to use
them through the more sophisticated user interfaces of editor pro-
grams and integrated development environments (IDEs). We shall
call these tools visual steppers1: special-purpose programs running
inside the IDE communicate with the stepper tool by means of a
protocol and visually annotate the source text of a programwith the
results of the stepping session. The expression about to be executed
may e.g. be marked with a red dot or highlighted in a special color.
Furthermore, a modern user’s expectations of a stepper system
might include the ability to add break points; to “step over” an
expression; to “step into” a call to a function defined elsewhere in
the source code; to “step out of” the current call; to “continue” to a
certain point, and to inspect the values of local and global variables
by mouse-clicking on their manifestations in the source code.

1.2 Common Lisp stepping
Common Lisp programmers are so detached from the practice of
stepping that some will simply declare that’s proof that they don’t
need one at all. There is a hint of truth to this declaration, as Com-
mon Lisp systems have traditionally directed efforts to other types
of debugging facilities such as powerful interactive program restarts
and function traces. At any rate, it seems undeniable that, stepper
or no stepper, Common Lisp programs will be debugged.

Nevertheless, an abundance of Common Lisp steppers have been
proposed throughout the decades, even if few have actually enjoyed
any adherence. Anecdotal evidence suggests potential newcomers
shy away from Common Lisp because of missing stepper function-
ality. Indeed, this reality appears not to be lost even on the authors
of the Common Lisp specification, which have included in their
work a provision for a special implementation-defined CL:STEP
macro.

Some Lisp implementations can and do implement stepping
to various levels of ability. SBCL combines its implementation of
CL:STEP with the restarts system to provide a text-based stepper,

1After the nomenclature used in [9]
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while the LispWorks[2] and Allegro CL systems have sophisticated
graphical stepping dialogues with views to the source code and
program state. Unfortunately, these systems are unavailable to
whomever wishes to try portable programs across different Com-
mon Lisp implementations. Even if one switches between two im-
plementations that do have steppers, the difference in capability
and user interface is often enough to discourage the use of either
system.

The problem of interface inconsistency across implementations
is not exclusive to the stepper feature: other debugging tools such
as the inspector, the debugger or the REPL suffer from it. Thus,
many Common Lisp programmers will use a generic text editor
such as GNU Emacs[1] together with the SLIME[5] extension. This
combination forms a capable, implementation-agnostic Common
Lisp IDE that suppresses the problems described above and provides
a consistent user interface to many debugging features.

Regrettably, even though Emacs provides visual stepper inter-
faces for many programming languages, SLIME doesn’t provide
a portable stepper interface. We believe this to be due to the fact
that the technical challenges to be surmounted are greater than
for other debugging tools. Among other problems, the portability
mandate of SLIME implies it is ultimately only allowed to invoke
functionality present in all the Common Lisp systems it connects
to. This mandate implies that even if all implementations where to
implement some form of CL:STEP, that alone wouldn’t be powerful
enough to, say, communicate source location information to and
from Emacs, annotating the program source.

1.3 A portable, visual stepper for Common Lisp
We should note that none of the obstacles listed above are con-
ceptual in nature, so there must still be hope for a portable, visual
stepper for Common Lisp. The SLIME/Emacs combination makes
it a particularly attractive target for such a tool, given its relevance
among Common Lisp users and the flexibility of Emacs’s Elisp
language.

In fact, the SLY Common Lisp IDE[11], a derivative program of
SLIME, has redesigned some of the underpinnings of its predeces-
sor to make the development of new extensions easier. We shall
describe how “stickers”, a feature that SLY has recently acquired,
lets users manually instrument selected Common Lisp forms whose
results they are interested in. Stickers are already a “poor man’s
stepper”, in the sense that they have some fundamental semantics
of stepping but still encumber the user with work than could be
performed automatically. To fill this gap, we shall explore methods
of combining stickers with automatic code analysis. We shall then
be able to present an innovative stepper tool for the Common Lisp
language based on the SLY extension to the Emacs editor, hereafter
designated the SLY/Emacs stepper.

2 RELATEDWORK
“Stepping is an old idea.” So go the opening words of this section’s
namesake in the article “Annotation-Based Program Stepping”, writ-
ten by MIT’s G. Parker in 1987[9]. In this article, the author surveys
the efforts of the 1970 decade to develop various kinds of stepping
tools in the MACLISP environment. Likewise, we shall proceed to

evaluate a small sample of Common Lisp stepper systems, focusing
on the ones that are portable, visual and intersect our methodology.

In the remainder of Parker’s paper[9], a visual stepper system, Vi-
siStep, is described. Its distinguishing characteristics are the integra-
tion with the MACLISP system and an annotation-based approach,
a key difference to other evaluator-based techniques.

Annotation-based program stepping is a form of code instru-
mentation. It comprises the addition of statements to the program
shortly before its compilation. By way of a so-called wrapper macro,
these statements are added before and after each section to be
stepped. The addition is transient and invisible: it does not modify
the source file. Furthermore, the program cannot itself discern the
presence or absence of these additional statements, so its outputs
are unmodified. Parker[9] points out that this approach can work
with an unmodified evaluator, since the compiler is simply given
more instructions to compile. He also asserts this approach to be
more efficient, more portable and more selective, the latter mean-
ing that it allows the user to select only those sections of the code
that he wishes to step through. However, the author acknowledges
the annotation-based stepper’s difficulty in handling some macro’s
non-evaluated syntactic elements (such as the arguments to COND),
and how it must rely on “code-walking knowledge”[9, I-4.8] to
determine the forms where the wrapping may take place.

By contrast, an evaluator-based or interpretative approach in-
volves writing a Lisp evaluator or instrumenting the Lisp inter-
preter. The evaluator itself then becomes responsible for issuing
the stepper-enabling statements before and after each evaluation.
“UniCStep - a Visual Stepper for COMMON LISP”, written by I.
Haulsen and A. Sodan in 1989[6], presents such a stepper system,
written for an early version of the GNU Emacs editor. The au-
thors reply directly to Parker’s contention’s of the superiority of
the annotation-based approach, asserting the evaluator-based ap-
proach to be more comfortable and flexible because the user does
not have to specify in advance what to step and where to stop.
They assent to one technical disadvantage such as the fact that
evaluator-based alternative need a loader to be emulated and more
sophisticated ways of remembering the source of the loaded code.

We should note a more recent attempt at a Common Lisp stepper,
such as Pascal Bourguignon’s work[4]. This consists of a portable,
evaluator-based approach that replicates the implementation-defined
behavior of Common Lisp’s STEP macro. Bourguignon’s stepper
provides a replacement package for the standard COMMON-LISP
package, through which the user must re-load the code whose
forms can then be passed to the STEP macro. This stepper has no
editor or source-tracking integration as of yet, but it seems to have
been in the plans at some point during its development.

Finally, a word should be spared for Emacs’s edebug.el authored
ca. 1988 by Daniel LaLiberte[7]. Edebug is designed to step through
Emacs Lisp programs within Emacs itself. Since it executes inside
the Lisp machine that is also the editor, the source-tracking integra-
tion is very good. edebug.el is an annotation-based stepper that
deals with the problem of amacro’s un-evaluated syntactic elements
by skipping macros it knows nothing about. The macros whose
expansions the user is interested in can be annotated separately
with edebug.el-specific declarations.
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3 METHODS
Our proposed portable stepper system for SLY/Emacs can be broken
down into three main components:

(1) A non-intrusive source code annotation system, called “stick-
ers”. This system primarily allows “interesting” Common
Lisp forms to be designated by the user. On compilation, the
annotated code is transmitted to the Common Lisp compiler,
and executes equivalently to non-annotated code;

(2) A source-tracking reader, i.e. a process by which a stream
of characters containing source code forms is read into a
symbolic expression representing the form, whilst recording
the positions of the start and end characters of each sub-
form;

(3) A specialized code walker, a process by which an arbitrary
Common Lisp form can be traversed at compilation-time
to determine the syntactic value of each of its sub-forms as
processed by the compiler after the macro-expanding phase.

It should become apparent that the application of 3. to the results
of 2. relieve users in 1. of the need to manually designate forms of
interest. They sole job becomes requesting the annotated compila-
tion of arbitrary lengths of source code, leaving the stepper system
to automatically annotate all possible forms of interest.

The following subsections detail the workings of each compo-
nent in this arrangement.

3.1 Stickers
Stickers are a form of code annotation in use in SLY/Emacs. Initially
conceived as an alternative to the PRINT or FORMAT statements in-
troduced by users when debugging programs, this system lets users
visually mark individual symbolic or compound forms in whose fu-
ture execution they’re interested in. Crucially, the visual markings
exist only in Emacs’s memory for as long as the user wishes. They
aren’t saved in the source code itself. When the compilation of the
containing top-level form happens from within SLY/Emacs, SLY
will collect those visual markings, enumerate them, and emit for
compilation a modified version of the form. This process is called
arming the stickers.

The modified version is functionally equivalent to the original
in the sense that i.e. user programs have no way to detect which
one they are executing. The modifications consist of multiple in-
vocations of a special RECORD wrapper macro2, whose definition is
presented below in much simplified fashion:
(defmacro record (id &body body)

`(let ((%retval :exited-non-locally)
(%condition)
(%sticker (find-sticker ,id)))

(handler-bind ((condition (lambda (c)
(setq %condition c))))

(before-sticker %sticker)
(unwind-protect

(values-list
(setq %retval (multiple-value-list

(progn ,@body))))

2This macro is very similar to the WRAP macro presented in [9], which the exception
that for some technical reason that other version was realized as a special form.

(after-sticker %sticker %retval %condition)))))

E.g., if the user marks the forms (foo (bar)) and (bar) inside
the following expression:
(let ((baz 42)) (+ (foo (bar)) baz))

The sticker system will collect the two markings, label them
with the numbers 1 and 2 and emit the following equivalent form
for compilation:
(let ((baz 42)) (+ (record 1 (foo (record 2 (bar)))) baz))

As can be seen, every time the expression above is executed, ex-
pansion of thewrappermacro causes the functions before-sticker
and after-sticker to be called with the appropriate %sticker ob-
ject. Depending on the user’s preference, these functionsmay decide
to stop execution of the program (by way of invoke-debugger),
or to simply record the fact that the sticker was traversed. The
list of recordings can later be retrieved and replayed later inside
SLY/Emacs.

In our simple example, the benevolent user placed stickers on
two expressions that are indeed executed, i.e. they exist in places
of evaluation as defined by the syntax of the (let ...) special
form and the (+ ...) function form. If a sticker had instead been
placed on the expressions ((baz 42)) or + – two examples of non-
evaluated forms – that would have created a difficulty, since the
code would become syntactically invalid and fail compilation. In
a worse situation, the code would still be syntactically valid but
semantically absurd.

SLY/Emacs’s sticker system doesn’t have a way to reject these
individual stickers, so it proceeds heuristically: it rejects the com-
pilation of the whole top-level form if it determines that arming
stickers results in an increase to the number of compilation warn-
ings. In that case, the original form is compiled but the stickers
fail to arm. This strategy works for a vast majority of cases, but it
doesn’t seem impossible to construct a pathological case where the
principle of functional equivalence stated above is violated.

3.2 Source-tracking form reader
At its simplest definition, a source-tracking form reader is a vari-
ation of the Common Lisp CL:READ function that invokes a hook
every time a sub-form is read, and proceeds to pass to this hook a
measure of the character distance traveled so far to read it. This
enables programs that need both the usual results of CL:READ and
a table of form-to-source-code pairings.

Since the Common Lisp standard doesn’t specify any form of
source-tracking reader, some preexisting alternatives were evalu-
ated:

(1) Eclector[8], a self-described “portable Common Lisp reader
that is highly customizable and can return concrete syntax
trees”, is a full realization of a Common Lisp code reader
that doesn’t rely on any preexisting reader. Its distinguishing
characteristic are “concrete syntax trees” that aren’t repre-
sented by CONS cells, rather by CLOS objects that mimic the
properties of such cells while also keeping “concrete” source
file information;

(2) hu.DWIM.reader[3], by Pascal Bourguignon, is another full
realization of a compliant, portable and programmable Com-
mon Lisp reader. Though not a source-tracking reader per se,
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it could be used in conjunction with a mechanism to track
character counts in streams;

Any alternative could have been used for our purposes (the
second one with minor changes). However, since we wish to mini-
mize our program’s dependency chain we also searched for simpler
alternatives.

We reasoned that our stepper tool already expects a compliant
Common Lisp implementation. Therefore it may, by definition,
also expect a compliant CL:READ. So we set out to design a portable
source-tracking reader that completely reuses the implementation’s
reader instead of replacing its implementation entirely. To achieve
this, we settled on an arrangement of two separate techniques:

• A character counting stream. This wraps the input CL:STREAM
object (from which we intend to CL:READ from) inside a
so-called “gray stream” object. Such objects are not in the
standard but are still widely available and used extensions
to the Common Lisp standard3. Gray streams allow the in-
dividual character reading operations to be intercepted and
controlled by the user. In this case, our character counting
stream is equivalent to the wrapped input stream except for
the fact that it keeps count of the number of characters read
so far.

• A substitute read-table, achieved by rebinding the variable
*READTABLE*. This table shadows each of the entries of the
current read-table (using GET/SET-MACRO-CHARACTER) with
a function that fully controls the influence of each character
over the returned symbolic expression. By setting up this
function in a particular manner, the resulting table remains
functionally indistinguishable from the original one, while
gaining the ability to invoke a hook that records source
positions.

The inter-operation of the two techniques is summarized by the
READ-TRACKING-SOURCE function:
(defun read-tracking-source

(&optional (stream *standard-input*)
(eof-error-p t) eof-value
recursive-p (observer #'ignore))

(let* ((ccs (char-counting-stream stream))
(*readtable*

(substitution-table
*readtable*
(lambda (shadowed-entry)

(let (;; correct for the fact that
;; one character of the form
;; has already been read.
(start (1- (char-count ccs)))
(results (multiple-value-list

(funcall shadowed-entry)))
(end (char-count ccs)))

(multiple-value-prog1 (apply #'values results)
(when results

(funcall observer (car results)
start end))))))))

(read ccs eof-error-p eof-value recursive-p)))

3They are already heavily used in SLY/Emacs, for example

This mechanism provides a simple, reliable4 and portable5 way
to read source-code. We can demonstrate its use on the simple (let
...) form already presented above:
(with-input-from-string

(s "(let ((baz 42)) (+ (foo (bar)) baz))")
(read-tracking-source
s t nil nil
(lambda (form start end)

(format t "~&(~2,a ~2,a) <=> ~a"
start end form))))

This expression returns the intended symbolic expression rep-
resenting the form, (LET ((BAZ 42)) (+ (FOO (BAR)) BAZ)),
while also producing the desired table of source positions:
(1 4 ) <=> LET
(7 10) <=> BAZ
(11 13) <=> 42
(6 14) <=> (BAZ 42)
(5 15) <=> ((BAZ 42))
(17 18) <=> +
(20 23) <=> FOO
(25 28) <=> BAR
(24 29) <=> (BAR)
(19 30) <=> (FOO (BAR))
(31 34) <=> BAZ
(16 35) <=> (+ (FOO (BAR)) BAZ)
(0 36) <=> (LET ((BAZ 42))

(+ (FOO (BAR)) BAZ))

3.3 Specialized code walker
Equipped with a correspondence between forms and source code,
the Common Lisp side of our stepper system nears a state where
it may inform SLY/Emacs of where to place sticker annotations. A
final obstacle remains: as we have seen in 3.1, only a subset of these
forms may be annotated with the RECORD macro, i.e. we are only
interested in the ones that are executable.

Clearly, we need an agent that understands the semantics of
each Common Lisp special form6, determines sub-expressions of
interest in our source-mapped tree and discards all the others. As
was already noted in [9], this seemingly simple task is severely
complicated by macros and by the specific constraints of a stepper
system.

3.3.1 Mnesic macroexpansion. To reach a state where nothing but
special and function forms exist, a macroexpander must remove
macro calls by expanding them. However, in doing so, our program
must also remember whence each macro’s expansion came, specif-
ically the source position of the form in its pre-expansion state.
This behavior is what we refer to as mnesic macroexpansion, the
opposite of amnesic macroexpansion.

Take the form:
4This was tested in SBCL, Allegro CL, CCL and ECL. There are differences to
the way that some implementations will construct the standard read-table (for ex-
ample, SBCL and Allegro CL represent “constituent” characters differently) and
SUBSTITUTION-TABLE has special provisions for that. The same technique should
in theory work with non-standard read-tables, but this has not been tested.
5As noted, except for the use of gray streams.
6The human programmer is such an agent, but he is precisely the one we are trying to
relieve of these tasks.
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(LET ((BAZ 42))
(COND ((PLUSP BAZ) (FOO)) (T (BAR))))

It may be expanded to something like7:
(LET ((BAZ 42))

(IF (PLUSP BAZ)
(FOO)
(THE T (BAR))))

By this point, the system may finally come to the realization that
only the forms 42, baz, (plusp baz), (foo), (bar), (if ...) and
(let ...) are in positions of evaluation. Regrettably, it may now
have lost track of where each form lives in the source.

To recover this information, it is not enough to naively consult
the hash-table produced in 3.2, since some forms didn’t exist in
our original source-tracked version. Even if they did, the macroex-
panding facilities are not generally obliged to return the same CONS
objects for the forms, regardless of whether they expand them or
not.

In the Eclector library discussed in section 3.2, a RECONSTRUCT
function attempts to solve this very problem by correlating the fully
macro-expanded “raw” tree with the original “concrete syntax tree”,
returning a mirroring of the former that keeps as much from the
latter as possible. After some experimentation with this approach,
we noticed it missed many forms in executable positions and so
decided it wasn’t producing the results we had hoped for. More-
over, the quality of results tended to vary across implementations,
possibly due to the aforementioned CONS-related problems.

To overcome this obstacle we need a different approach. Instead
of trying to recover from a fully macroexpanded tree, we must
hook into macroexpansion as soon as it happens. This shall allow
us to lose as little source-tracking information as possible. Thus, we
conclude that a programmable, portable code-walker is necessary.
Such a system shall let us execute a hook at each macroexpansion
step shortly before and shortly after each expansion.

After surveying open-source alternatives for code-walkers, we
settled on a program called AGNOSTIC-LIZARD[10], which fits ex-
actly these requirements8. AGNOSTIC-LIZARD:WALK-FORM, its main
primitive, produces the desired full macroexpansion and can be
given a set of callback functions as hooks.

Here’s the snippet that illustrates our use of this walker:
(defun mnesic-macroexpand-all (form subform-positions)
(let (stack (expansion-positions (make-hash-table)))

(values
(agnostic-lizard:walk-form
form nil
:on-every-form-pre
(lambda (subform env)

(push (list
:from subform

:at (gethash subform subform-positions))
stack)
subform)

:on-every-form

7This expansion is SBCL’s.
8Furthermore, AGNOSTIC-LIZARD contains useful provisions to shield user code from
certain nonconformities in the macroexpansions of certain built-in macros, such as
DEFUN.

(lambda (expansion env)
(push (pop stack)

(gethash expansion expansion-positions))
expansion))

expansion-positions)))

As we can see, our MNESIC-MACROEXPAND-ALL function uses a
stack to take advantage of the manner in which macroexpansion
traverses the tree: there may be more than one consecutive call to
each of the callbacks :ON-EVERY-FORM-PRE and :ON-EVERY-FORM.
However, in the end, the calls to one and the other perfectly mirror
each other. Each element of the stack holds the result looked up
in the SUBFORM-POSITIONS hash-table for non-expanded forms.
That source information is later saved on the output hash-table
EXPANSION-POSITIONS, whose keys are of expanded forms.

If we give this function the form:
(COND ((FOO) (BAR)) ((BAZ) (QUUX)) (T 42))

We may obtain something9 like:
(IF (FOO) (PROGN (BAR))

(IF (BAZ) (PROGN (QUUX))
(IF T (PROGN 42) NIL)))

The resulting hash-table EXPANSION-POSITIONS, returned as a
second value, has these mappings:
(IF (FOO) ..) => (:from (COND ((FOO)..)) :at (0 . 42))
42 => (:from 42 :at (38 . 40))
(BAR) => (:from (BAR) :at (13 . 18))
(PROGN 42) => (:from (PROGN 42) :at NIL)
(PROGN (BAR)) => (:from (PROGN (BAR)) :at NIL)
T => (:from T :at (36 . 37))
(IF T ...) => (:from (COND (T 42)) :at NIL)
(QUUX) => (:from (QUUX) :at (27 . 33))
NIL => (:from NIL :at NIL)
(IF (BAZ) ..) => (:from (COND ((BAZ) ..)):at NIL)
(BAZ) => (:from (BAZ) :at (21 . 26)))
(FOO) => (:from (FOO) :at (7 . 12)))
(PROGN (QUUX))=> (:from (PROGN (QUUX)) :at NIL)

As can be seen, numerous new forms appeared in the expansion,
but MNESIC-MACROEXPAND-ALL succeeded in keeping the source
information information for all of the relevant ones.

3.3.2 Annotating interesting forms and putting it all together. Afinal
piece of the puzzle is needed. A function named FORMS-OF-INTEREST
is to be given the fully macroexpanded tree and along with the
source-tracking information for that tree. Its task is to traverse the
tree while looking for each of the 25 Common Lisp special com-
pound forms10, considering the evaluation rules of each. Unknown
forms are assumed to be function calls, whose evaluation rules are
equally well known. For each sub-expression in a position of exe-
cution, the source location is looked up and the form is collected,
so that it can later be reported to SLY/Emacs’s sticker system for
annotation. Though its listing is too large to include here, its imple-
mentation is straightforward but for one detail described in section
4.1.
9This is Allegro CL’s expansion. SBCL’s is much simpler, and thus not so good for
illustrative purposes.
10In reality, a few macros like COND and DEFUN are left unexpanded by
AGNOSTIC-LIZARD so they are analysed separately as well
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As we are nearing the end of our journey, we can now start
putting all the pieces together. The following snippet is the final
form of our Common Lisp function. Its results can be handed to
SLY/Emacs for instrumentation through stickers as described in
section 3.1. After compilation, the instrumented code is now step-
pable.
(defun stepper-sticker-locations (string)

(with-input-from-string (stream string)
(let* ((form-positions (make-hash-table))

(form-tree
(read-tracking-source
stream nil nil nil
(lambda (form start end)

(setf (gethash form form-positions)
(cons start end))))))

(multiple-value-bind (expanded-tree
expansion-positions)

(mnesic-macroexpand-all form-tree
form-positions)

(forms-of-interest
expanded-tree expansion-positions)))))

4 RESULTS AND FURTHERWORK
We have released the result of our work on the GitHub platform11.

From an end user’s perspective, to put the new SLY/Emacs step-
per to work means pressing the key chord C-c C-s P (control-c,
control-s, capital P) while the cursor is on a top-level form. This
causes the interesting sub-forms of that top-level form to be auto-
matically decorated with sticker overlays, which by default uses
different shades of the color gray. As described in 3.1, a posterior
compilation of that same top-level form shall arm the stickers and
convert the overlays’ color to shades of blue. From this point on,
the stickers are executed as soon as the user arranges for the in-
strumented code to be run as usual.

Note that the default behavior of the sticker system doesn’t
equate the execution of an instrumented form to a break point,
i.e. the invocation of the Lisp debugger. This is by design. As was
explained in section 3.1, the default behavior is to have sticker
executions merely record the return values (or non-local exits)
for later replay. This which can be achieved with the key chord
C-c C-s C-r or via M-x sly-stickers-replay. Alternatively, the
key chord C-c C-s S (or M-x sly-stickers-fetch) can be used
to fetch the most recent recordings for each sticker and visually
decorate the source code, indicating (1) stickers that have been
executed; (2) those that haven’t yet, and (3) those that have exited
non-locally.

Finally, to enable the classic stepper functionality, the user must
explicitly select “breaking stickers” by affecting the value of the
SLYNK-STICKERS:*BREAK-ON-STICKERS* variable.

We shall see, as we discuss its limitations, that the resulting
SLY/Emacs stepper tool is still in its infancy. It can nevertheless be
said to work reasonably well for a majority of normal circumstances,
succeeding in instrumenting forms effectively and efficiently, while
providing satisfactory methods of navigation among stickers.

11See https://github.com/joaotavora/sly-slepper.git.

4.1 Limitations concerning atoms
In section 3.3.2, we sidestepped a notorious difficulty with atomic
forms, i.e. one-symbol symbolic expressions. This class of difficulties
is already alluded to in [9, I-4.8]. The problem with atoms can be
observed with the simplest of forms:

(lambda (x) x)

In this example, we note that the atom X has two different man-
ifestations in the encompassing form. Naturally one wants only
the latter to be annotated, and not the first. However, that is hard
to determine reliably since both are represented by the very same
object. This is in stark contrast to compound forms represented by
different CONS cells.

We can enhance the form/position pairings table used above
to record the fact that there is more than one manifestation of an
atom, but that’s not enough to know in MNESIC-MACROEXPAND-ALL
which of those is a in a position of execution. The reason is that the
AGNOSTIC-LIZARD macroexpander will only traverse sub-forms of
forms actually returned by a macro’s expansion. In this example,
our hook is only called on the (lambda (x) x) and x forms, not on
the (x) form. The latter form is merely an argument to the macro
itself where we have no power of intervention, and thus there is
no easy way to invalidate the first manifestation.

However, since we do know that x is manifested at (9 . 10)
and (12 . 13) it is possible to devise heuristics to trace back to the
knowledge gathered when first reading the form and traverse the
atom’s parent forms, given only the atom. A very simple heuristic
can proceed like this: if the atom exists inside a compound form
that does not occur in the final expansion, then that atom isn’t
interesting, otherwise, it is. This appears to solve the above situation
but fails miserably in the presence of the LOOP macro since this
macro has all the variable definition “unprotected” by parenthesis.

Hard-wiring exceptions to LOOP and other macros could amelio-
rate the situation, but overall this strategy feels murky and insuffi-
cient. On the other hand, if more aggressive strategies of atomic
annotation are attempted, the SLY/Emacs sticker system has already
shown to be reliable in the sense that if it needs to fail (because of
an incorrect form being annotated), it will mostly do so early. Thus
the potential to mislead users to wrong debugging conclusions is
minimized.

A different approach to solve this problem could revisit Eclector’s
“concrete syntax trees” or a variation thereof and use a portable,
programmable macroexpander that also understands these types
of trees, where different manifestations of the same atomic form
are represented by different objects.

For now, the proposed SLY/Emacs’s stepper works around this
limitation by behaving conservatively and only annotating atoms
in positions that are guaranteed to be safe, such as inside function
call forms. This makes for the majority of situations in practice.
Furthermore, users can always manually add stickers to other atom
manifestations they are interested in and know to also be safe.

4.2 Interface limitations
As seen in section 3.1, SLY/Emacs’s sticker system has no notion of a
stack: all the armed stickers are enumerated serially and thus hierar-
chically equivalent. Therefore, the common “step in/step out/finish”
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functionality of common steppers is unavailable as such. Once step-
ping has been initiated, it is currently not possible to “step over”
arbitrarily large sections of uninteresting code, nor is it yet possible
to designate a sticker to continue to. The nearest thing available is
the possibility to ignore a particular sticker number. Furthermore,
there is as of yet no notion of a stepping “session”: once armed,
stickers take effect immediately and stay armed (even if the corre-
sponding source code is deleted) until the definition they pertain
to is compiled again without stickers.

These features don’t seem hard to realize. E.g., to enable more
sophisticated navigation behavior behavior the RECORDmacro could
use a special variable to be made aware of recursive invocations
to itself or to the currently executing stack frame. Thus we could
keep track of stickers being executed inside each other, i.e. within
the dynamic scope of a previously active sticker annotation.

4.3 Portability
The system as been described as “portable” or “near-portable”. In-
deed, if a completely new conforming implementation of Common
Lisp were to spring into being, support for our stepper system
would have to deal with three potential sources of non-portability:
(1) support of the AGNOSTIC-LIZARD code-walking program, (2) dif-
fering representations of constituent characters in readtables (for
the source-tracking reader described in section 3.2), and (3) support
for “gray streams”. We defer the discussion of (1) to [10], noting
that that system is built with portability as its foremost requisite.
The “shielding” it offers is useful e.g. in dealing with SBCL’s imple-
mentation of CL:DEFMETHOD, which itself produces a complicated
transformation of its body. In (2), we note that the adjustments to
the read-table were needed only for SBCL’s implementation, which
doesn’t use a macro-character function for constituents. If the hy-
pothetical new implementation also did so, it is plausible that the
current code would support it. Otherwise, it would behave as the
remaining implementations, also requiring no extra work. Lastly,
for (3), we think it reasonable to expect support for “gray streams”
in new implementations, since it is a widely adopted extension, and
required by SLY/Emacs to begin with.

5 DISCUSSION
Common Lisp users are concerned about features that facilitate
day-to-day development. TRACE, REPLs, PRINT forms, the interac-
tive debuggers, profilers and stickers are all ways to solve certain
debugging problems: some are more suitable to some situations
than others. Therefore, it’s important to note that program stepping
is just another tool in the toolbox, not a panacea.

By the same token, if one does implement such a tool, it should
be done in a manner that is of actual, practical use. This was the
reasoning behind the SLY/Emacs stepper. We think it especially
fortunate that the annotation-based approach and the manner of
source-code correlation in SLY/Emacs’s stickers don’t make use
of direct references to source files or file positions. As was shown
in 3.1, we merely keep an enumerated list of stickers identifiers
synchronized between Common Lisp and SLY/Emacs, a mechanism
that is simple but effective. It adequately resists some modifications
to the source of the instrumented form or its whereabouts, such as
moving it around in the source file, or even adding white-space and

comments inside it. This detail is crucial in making stickers and
stepping usable for day-to-day programming, since the user isn’t
dragged away from his editor or forced to a special confinement
while stepping. We note that these advantages of annotation-based
steppers were already hinted at back in 1989 by the proponents of
evaluation-based steppers[6, l.41, l.42].

By contrast, a hypothetical evaluation-based visual stepper (such
an as enhanced version of [4]) would find it difficult to maintain
this advantage since the source-code correlation is achieved at
evaluation-time and is harder to mutate effectively afterwards. Per-
haps this fact can explain why the non-portable visual steppers of
the Allegro CL and LispWorks implementations don’t work directly
with the source-editing facilities present in these IDEs. A possible
solution would be to represent source-code correlation in terms of
sub-expression paths in the form tree instead of character positions,
but it would still be hard to resist deletions and insertions at top
level. A more heavy-handed solution would lock the source file
read-only for the duration of the stepping session. However, users
are normally adverse to such confinements.

We also think it fortunate that stepping is implemented as an
increment to the existing stickers functionality. As in [9], we con-
sider it an advantage of the annotation-based systems that users
are allowed to instrument only the definitions they are interested
in. Indeed, it is often the case that steppers become tedious to op-
erate because they step on too much. Yet, in our system, users can
manually adjust the automatically placed stickers, removing the
ones they are not interested in, or adding others.

It may also be noted that the usual stepping paradigm where
the program is stopped at each point is only one of the possibilities
afforded by stickers. As we explained in sections 3.1 and 4, two
further ones constitute innovative means of debugging: the post-
mortem replay of sticker recordings and the visual decoration of
source code with colors indicating the state of the most recent
execution of each sticker.

In formulating the development of the SLY/Emacs stepper, we
have also described (1) a simple, portable technique for constructing
a source-tracking reader in terms of a compliant reader implemen-
tation and (2) a reliable technique to carry over source-tracking
information to macroexpansion. It is conceivable that other debug-
ging tools could be constructed from either of these elements.

The SLY/Emacs stepper described in this essay is an effective
example of a portable, visual stepping facility for the Common
Lisp ecosystem. To the best of our knowledge, it is indeed the only
system combining these characteristics. As such, there is little to
compare it against. The closest match could well lie outside of
Common Lisp, in the aforementioned edebug.el[7] stepper, an
annotation-based approach that is equally well integrated with the
source code editor. That stepper has a more developed interface, but
requires custom declarations for stepping into macro expansions,
something the SLY/Emacs stepper handles automatically. Its current
limitations notwithstanding, we believe that the underpinnings of
the SLY/Emacs stepper – stickers, a simple source-tracking reader,
and mnesic macroexpansion – are solid. We envision enhancements
to its interface, perhaps by incorporating ideas of non-portable
visual steppers, or steppers for other programming languages.
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Demonstrations

Peer-reviewed demonstrations, that is, short papers highlighting features and usage.
The papers appear in the order they appear in the programme.
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ABSTRACT
For decades Lispers have had the power of code cross-references
(jump to definition, list callers, etc.) for any code they’ve loaded into
their Lisp image. But what about cross referencing code that isn’t
(or can’t be) loaded into the image? Wouldn’t it be great if we could
ask “who, in the global Lisp community, calls this function?” The
only option currently available is to download all Lisp code and use
“grep” or similar text-based tools. At Google we use Kythe [4] as a
cross-reference database for all Lisp code, whether loaded into our
local Lisp image or not. We will show how Lisp is cross-referenced
on a static web-page with hyperlinks between definitions. With
this we can also get call graphs and call hierarchies 1.
ACM Reference Format:
Jonathan Godbout. 2020. Indexing Common Lisp with Kythe: A Demonstra-
tion. In Proceedings of the 13th European Lisp Symposium (ELS’20). ACM,
New York, NY, USA, 3 pages. https://doi.org/10.5281/zenodo.3765987

1 INTRODUCTION
Almost every software project will have a large number of files
and functions. As soon as the number of files goes above 1, or
the number of possible on-screen pages goes above 1, users will
get confused about what definitions are used where. SLIME [5]
has jump-to-definition using “M-.”, so when the code has been
loaded into the Lisp image we can jump to function definitions
and call sites. On websites with static code, such as https://www.
github.com, where the code is viewed statically on screen, it would
be nice to get hyperlinks between the definitions and their usage.
Kythe https://kythe.io/ is a service that allows users to implement
language-specific indexers and then to upload graphs describing
the structure of the code. This allows for code display and editing
engines to provide services like jump-to-definition. At Google we
have implemented a Lisp plugin for the Kythe indexer to produce
cross reference data for Google’s Common Lisp code base. We will
start with a brief overview of Kythe, and then discuss indexing Lisp.

2 KYTHE OVERVIEW
Kythe is a database for storing code graphs for large code bases
across multiple languages. Its schema is designed to accommodate
facets of different languages. Part of its schema are nodes which
name functions and variables, define exact locations in a file, or
1some limitations apply
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For all other uses, contact the owner/author(s).
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give other information about the indexed code. It has VNames which
uniquely identify a node in a code base. It has Edges which annotate
how two nodes relate to each other.

For example, take the variable object from threadp in Bordeaux-
threads [7]:
(defun threadp (object)

(typep object 'sb-thread:thread))

The variable object next to threadp would have a node:
{

ticket: "kythe://corpus??lang=lisp?path=PATH
#BORDEAUX-THREADS%3A%3AOBJECT%20%3AVARIABLE
%20loc%3D%2825%3A16-25%3A22%29",

kind: "variable",
language: "lisp",
name: "object",
qualified_name: "object",
location: {

corpus: "corpus",
path: "PATH/TO/bordeaux-threads

/src/impl-sbcl.lisp",
line_number: 25,
line_number_end: 25,
column_number: 16,
column_number_end: 22

},
v_name: {

signature:
"BORDEAUX-THREADS::OBJECT :VARIABLE loc=(25:16-25:22)",

corpus: "corpus",
path:

"PATH/TO/bordeaux-threads/src/impl-sbcl.lisp",
language: "lisp"

}
}

The VName uniquely identifies the node. The slot kind tells which
kind of node this is, so “variable” tells us this is a variable. The slot
location tells us where the source location of the referenced code.
The slot ticket is just a URI encoding of the VName. By location
reference we mean a node containing the location of a form in
the code.

There would be a second node for the instance of the variable
which is the first argument to typep. Finally there would be an
edge

{
source: node1,
target: node2,
edge_kind: ref

}
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Figure 1: Kythe Calling the Lisp Indexer

where node1 and node2 are the first and second nodes discussed
above.

For full details on Kythe’s schema please reference https://kythe.
io/docs/schema/.

3 STRATEGY
In an out-of-band process, we start up a Lisp indexing service,
and have it load all the code required to populate the who-calls
database with the requisite information. This is essentially how
SLIME determines jump-to-definition targets (along with some
heuristics needed for problems discussed later).

You may have:

foo . l i s p use s bar . l i s p

The Lisp indexing plugin loads bar.lisp and foo.lisp into the Lisp
image and the Lisp implementation determines the cross-reference
information locally. If you are trying to create all cross-references
for foo.lisp and bar is a function defined in bar.lisp we can inspect
the who-calls database to get this cross-reference.

In SBCL [3] you get all of the top level defun and defvar forms,
but none of the top level forms that don’t define a data structure
that are needed later. For example, code that is run at start-up
time, such as (setf *foo* ’foo), at the top level may not have a
cross reference in the who-calls database because the compiler can
compile the call away. We will go through some examples:.

Local variable bindings aren’t stored in the who-calls database.
If you have a function

(defun print-a (a)
(print a))

you would like to have a cross-reference from the a in print-
a’s lambda list to its use in the function’s body. This is not stored
in the who-calls database. To solve cases such as this we have a
number of parsers (e.g. “defun” parser) that will get the symbols
to be bound and store their location. Iterating through all of the
code, with the correct set of parsers, will give us all of the local
definitions. Currently our parser is only a decent heuristic, and our
method parser does not correctly cross-reference types.

Next we have hidden parameters that don’t show up in the code
or the who-calls database. Take for example:

(defstruct bear cat)

(defun set-bear-cat-friendly (my-bear-cat)
... lots of code ...

(setf (bear-cat my-bear-cat) 'friendly))

We would like a reference from the bear-cat setter to the cat
slot in the bear structure. In (most) Lisps, this would be fine, we
would just add a call to who-calls for (setf bear-cat), but the Lisp
language specification does not require such a function to exist. In
fact SBCL does not create setf functions for structure-objects,
so we must start by going through the code and creating location
references for all structure-object accessors.

4 INTER-LANGUAGE REFERENCES
We often make calls from one language into another language, for
example Lisp’s foreign functions calls into C. At Google, the most
common format for data interchange between systems is called
Protocol Buffers [2], or protobuf for short. A protobuf is a data
interchange format that a language can implement.

To implement support for protobuf messages languages can use
their native structures but they must serialize the messages into a
standard format before sending them out. Then any other language
that implements the protobuf standard can deserialize and read the
messages. The content of the messages can be deserialized without
knowledge of the protobuf schema used, but a protobuf schema
detailing types and names are required for human readable output.

Here is an example protobuf schema defining one “message” (a
structure) that contains a string:

syntax = "proto2";

package example;

message HelloWorld {
optional string hello_world_string = 1;

}

Below we have lisp code that creates the Lisp standard-object
corresponding to the structure.

(let ((my-proto
(make-instance 'example:hello-world

:hello-world-string ``hello-world'')))
(print (hello-world-string my-proto)))

We would like a reference from “hello-world-string” in the
Lisp code to the “hello_world_string” in the protobuf schema.
As Kythe is just a database service that stores a graph of the code
for contextualization in a language agnostic form, so long as you
know the signature for the “hello_world_string” you can just
create a cross-reference in Kythe.

5 MACROS
The use of a small number of parsers to understand local bindings
is not ideal but it is doable for the built in commands. In contrast
Common Lisp is known for its powerful syntax-extending ability,
namely macros. For a detailed look at macros please consut Let
Over Lambda [6], we will go over a basic examples below.

(defvar *process-data-mutex* (make-mutex))

(defmacro with-data-mutex ((mutex) &body body)
`(let ((,mutex *process-data-mutex*))

(sb-thread:get-mutex ,mutex)
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,@body
(sb-thread:release-mutex ,mutex)))

(defun process-data (data)
(with-data-mutex (data-mutex)

(format t "I have mutex ~a" data-mutex)
(print a)))

The variable “data-mutex” is bound in the macro with-data-
mutex butwewould need to create a new parser for with-data-mutex!
This technique is inherently non-scalable; sadly we do not yet have
a solution.

There have been two possible ways brought up to extend our
indexers support for macros. The first is updating the brief support
for SBCL in the who-calls database, or in a contrib. This would
necessarily be tightly bound to SBCL and any language which
wants decent macro cross-references would have to do the same.

The other idea is to implement a code walker that expands
macros and determines what variables are being bound during
expansion. This would be less robust, but it would be compiler-
independent.

6 DOCUMENTATION
Kythe creates a code graph with nodes representing objects such as
functions and variables, edges connecting those object, and proper-
ties of the objects themselves. For functions this can include their
docstrings and their variables. For globals this also includes their
docstrings. Lisp makes this easy by having the docstrings of a func-
tion or global reference as a slot on the function description during
run time. That way, when you parse a function, you can just send
Kythe its comment as a Kythe graph node.

7 SO WHAT IS IN THIS FOR ME?
The beauty of Kythe is you get a graph of your code sitting in a
database you can use to for code hyperlinking (as with Slime) or
any other kind of code introspection. You can make code graphs
over large projects, or multiple projects, without needing anything
loaded in a REPL; the indexing is completely out-of-band. You could
power Emacs without having to load Slime, though that seems far-
fetched as we already have Slime. You can create a Kythe plugin
for your own favorite inter-operating language, and have cross
references between them. For example a Java-based Lisp (ABCL
[1]) index is well within reason!

8 FUTUREWORK
Sadly, we do not have a great answer to local bindings with macros.
Macros are hard, and syntax is always changing. My current work-
ing idea is to use a code walker and inspect the environment as we
go.

The Kythe Lisp plugin only works for SBCL. It would be nice to
get it to work for every Common Lisp, or at least the major versions
of Common Lisp. Since the code stopped trying to be generic a
while back, this would take a little bit of effort.

Kythe itself is an open source system, as well as several language
plugins such as C++ and Java. We plan to open source the Common
Lisp plugin.
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ABSTRACT
This paper demonstrates JavaScript-Assisted Common Lisp (JACL),
an experimentalWeb-browser based implementation of an extended
subset of Common Lisp. JACL, which is in the early stages of de-
velopment, is an effort to explore new techniques for large-scale
Single-page Web Application (SPA) development in Lisp. JACL in-
cludes an optimizing Lisp-to-JavaScript compiler and interoperates
with JavaScript. JACL promotes interactive, residential development
in the Web browser environment with its asynchronous reader and
Chrome DevTools-based REPL client.

CCS CONCEPTS
• Software and its engineering → Dynamic compilers; Run-
time environments.

KEYWORDS
Common Lisp, JavaScript, web applications
ACM Reference Format:
Alan Dipert. 2020. JACL: A Common Lisp for Developing Single-Page Web
Applications. In Proceedings of ELS ’20: European Lisp Symposium (ELS ’20).
ACM, New York, NY, USA, 4 pages. https://doi.org/10.5281/zenodo.3764494

1 INTRODUCTION
The demand for SPAs in the past decade has only grown, and users
and stakeholders continually expect larger and more sophisticated
applications. Unfortunately, large-scale development on the Web
browser platform presents a particular set of challenges that are not
easily overcome. Developers have responded to these challenges
by creating a widening variety of special-purpose programming
languages that compile to JavaScript [12, 23, 24]. Each new language
promotes one or more paradigms, application architectures, or
development workflows, and claims some advantage relative to the
status quo.

This paper demonstrates one new such language, JavaScript-
Assisted Common Lisp (JACL), an experimental implementation of
an extended subset of Common Lisp. JACL was created to explore
new techniques for applying Common Lisp — a proven[6, 13, 14]
substrate for UI innovation — to SPA development.

Many projects involving compilation of Lisp to JavaScript pre-
cede JACL. Lisps that have either demonstrated industrial utility or
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that implement a significant subset of Common Lisp are surveyed
in appendix A. Like many of these related efforts, JACL includes
an online, optimizing compiler and supports interoperation with
JavaScript. JACL distinguishes itself from these efforts by plac-
ing special emphasis on the value of residential development style,
where both applications and the tools used to create them co-evolve
in a shared environment. JACL provides fundamental support for
residential development with its asynchronous reader.

2 INTEROPERATIONWITH JAVASCRIPT
JACL integrates tightly with JavaScript and depends heavily on the
JavaScript runtime. As a result, JACL enjoys roughly the same appli-
cability and performance characteristics as the JavaScript platform.
However, this high degree of integration is at odds with comfor-
mance to the Common Lisp specification, and so JACL will never
strictly conform.

2.1 Object Types
JACL introduces several of its own object types, currently imple-
mented in JavaScript, including Cons, LispSymbol, and LispString.
Cons and LispSymbol are introduced because JavaScript does not
include direct equivalents. LispString is introduced because the
native JavaScript String is immutable, whereas Lisp strings are
mutable.

JACL includes support for only one numeric type, the JavaScript
Number object. The JavaScript Number is a double-precision 64-bit
IEEE 754 value. The JACL reader interprets integers as Number ob-
jects. In the future, JACL will also interpret floating-point numbers
as Number. This decision trades ANSI conformance for performance.
If either type were boxed, arithmetic performance would suffer in-
tolerably. JSCL[20] and Valtan[11] make the same tradeoff.

JACL functions are JavaScript functions, and may be invoked by
JavaScript callbacks without a special calling convention. JavaScript
functions named as Lisp values may be invoked with FUNCALL
or APPLY. Neither arguments nor return values are automatically
coerced to or from any particular set of object types.

2.2 Operators
The JACL compiler supports a special operator for constructing
fragments of JavaScript code, verbatim, from Lisp. The semantics
of this operator, JACL:%JS, are inspired by a similar feature of
ClojureScript[9], js*. For example, the following JACL code dis-
plays the number 3 in an alert box:

(JACL:%JS "window.alert(~{})" 3)

The character sequence ~{} is distinct from any plausible
JavaScript syntax and so is used as placeholder syntax. There must
be as many placeholders as there are arguments to JACL:%JS.

ELS 2020 97



ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

In addition to JACL:%JS, the JACL compiler currently supports
three more special operators for interacting with the host plat-
form: JACL:%NEW, JACL:%DOT and JACL:%CALL. These operators
perform JavaScript object instantiation, field access, and function
calls, respectively. Since JACL functions are JavaScript functions,
JACL:%CALL is the basis for FUNCALL in JACL, and for function calls
generally.

JACL also supplies a convenience macro, JACL:\. or “the dot
macro” for performing a series of field accesses and method calls1
concisely. The dot macro takes direct inspiration from the ..macro
of Clojure[8]. JACL:\. expands to zero or more nested JACL:%DOT
or JACL:%CALL forms. Here is an example of a JACL:\. form —
equivalent to the JavaScript expression (123).toString().length
— and its corresponding expansion:
(\. 123 (|toString|) |length|)
(%DOT (%CALL 123 |toString|) |length|)

Note that JavaScript identifiers are case sensitive, and so case-
preserving, pipe-delimited Lisp symbols must be used to refer to
JavaScript object field and method names. The readtable case of
the JACL reader cannot currently be modified. The dot macro also
recognizes Lisp or JavaScript strings as JavaScript identifiers.

2.3 Reader Macros
JACL includes two reader macros to support interoperation with
JavaScript. These macros may be added to the *READTABLE* by call-
ing the function (JACL:ENABLE-JS-SYNTAX). @" denotes JavaScript
String objects and @| denotes JavaScript identifiers.

For example, the following two forms, which both evaluate to a
JavaScript String, are equivalent:
@"Hello"
(\. "Hello" (|toString|))

@| may generally be used in place of the JACL:%JS special form to
refer to JavaScript identifiers. (JACL:%JS "alert") and @|alert|
are equivalent.

3 RUNNING JACL PROGRAMS
Currently, JACL programs may be evaluated in the Web browser in
two ways: by adding Lisp <script> tags to the <head> of a Web
page that also includes jacl.js, or by using the jacl tool included
in the JACL distribution[1] to connect to a running Web browser.

3.1 Lisp Scripts
Development of JACL itself is currently driven primarily by mod-
ifying jacl.js and the boot.lisp and jacl-tests.lisp Lisp
scripts. The Lisp scripts are included in the jacl.html file in the
JACL distribution[1]. After each modification, the Web browser is
reloaded, and test results are displayed.

This Lisp script-based workflow is similar to the traditional
JavaScript development workflow and has served JACL develop-
ment so far. However, Lisp scripts require runtime parsing and com-
pilation of JACL source code, among other inefficiencies. Reloading
the Web browser also destroys the entire runtime environment.

1Strictly speaking, JavaScript “method calls” are normal function calls but with a
particular value of this.

The easiest way to create JACL programs in this manner is to
start with the jacl.html Web page provided by JACL and then
modify it by removing or adding new Lisp scripts.

It is imagined that ultimately, Lisp sources will be incorporated
into the Lisp image exclusively by the REPL client tool. An arrange-
ment such as this decouples source code loading from the Web
browser lifecycle. Production executables may then be produced
at any time from the Lisp image using a Lisp function in a manner
similar to the SAVE-LISP-AND-DIE[22] function in SBCL or the
DELIVER[16] function in LispWorks.

3.2 REPL
JACL includes a REPL client program, jacl, that may be used to
execute JACL programs in a Web browser from a terminal on the
host. This process is described in detail in the RUN.md document
included in the JACL distribution[1], but is summarized here.

In order to use the REPL, the user must first start either the
Google Chrome or Chromium browser with the remote debugging
feature enabled. With remote debugging enabled, the Web browser
may be controlled using a client program over a WebSocket con-
nection. Then, the user must navigate to a Web page that includes
at least jacl.js and boot.lisp.

Finally, the user must start the jacl REPL client in a terminal.
jacl leverages the remote debugging feature as a REPL transport,
using it to send and receive characters between the host and the
remote JACL runtime. The jacl tool is currently written in R[21]
and uses the chromote[7] package for interacting with the remote
Chrome or Chromium browser.

The jacl program has no knowledge of JACL syntax or se-
mantics; it merely sends and receives characters. The intentional
simplicity of jacl is part of the larger project goal of promot-
ing residential-style tool and program development in the target
environment. The simplicity of jacl is possible because of the
asynchronous nature of the JACL reader. Incoming characters de-
livered over the WebSocket debugging connection are received by
callback functions in the Web browser. The received characters are
asynchronously and incrementally parsed into Lisp data. When a
complete datum is formed, the compiler is called, and the result-
ing JavaScript is evaluated. Finally, any output is sent back over
the debugger connection and received and printed by the jacl
program.

4 CONCLUSION
We introduced JACL, a new and experimental Common Lisp cre-
ated to explore techniques for building sophisticated SPAs. JACL
integrates tightly with the Web browser platform and interoperates
directly with JavaScript. Compared to other browser-based Lisps,
JACL promotes residential development, and introduces a new tech-
nique for integrating the REPL into the development workflow.

5 FUTUREWORK
JACL currently lacks many basic Common Lisp data types, func-
tions, and operators. Ultimately, JACL should support as much
of Common Lisp as is possible, accounting for the severe limita-
tions imposed by JavaScript and the Web platform. Fortunately,
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the many other existing Common Lisps that compile to JavaScript
demonstrate that a compelling implementation is achievable.

An in-browser REPL and other tools for interacting with the
JACL runtime in the Web browser would be desirable. Such tools
could optionally remain as parts of deployed applications and pro-
vide a degree of introspection and extension capability even after
the application has been deployed.

Other than work related to missing features such as multiple
values, CLOS, and the conditions system, much design work re-
mains with regard to the specific affordances of the jacl tool. For
example, it’s unclear how a large JACL project involving library
dependencies and multiple source files should be managed and
loaded.
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A SURVEY OF RELATED LISPS
A.1 Parenscript
Released in 2005[2], Parenscript[17] was the first Common Lisp
compiler to target JavaScript. Parenscript is not bootstrapped and
its compiler is not written in JavaScript, and so it relies on a hosting
Common Lisp system for compilation. Only JavaScript types are
available to Parenscript programs at runtime, and so Parenscript is
more of a syntax frontend for JavaScript than it is an interactive
Lisp system. While Parenscript is not positioned to facilitate large-
scale SPA development, it remains a popular way to add dynamic
JavaScript-based behaviors to static Web sites.

A.2 SLip
SLip[3, 4] is arguably themost ambitious Common Lisp-on-JavaScript
system created to date, even though it intentionally diverges[5]
from Common Lisp in certain ways. It offers a stunning array of
powerful features including a self-hosting compiler, a full set of con-
trol operators, JavaScript Foreign-Function Interface (FFI), tail-call
optimization, green threads, and perhaps most impressively, a resi-
dent Emacs clone, Ymacs. SLip is based originally on the compiler
and bytecode interpreter presented in Chapter 23 of Paradigms of Ar-
tificial Intelligence Programming: Case studies in Common Lisp[18].

A.3 JSCL
JSCL[19, 20] compiles directly to JavaScript and is self-hosting,
includes the major control operators, and integrates tightly with
JavaScript. JSCL includes a reader, compiler, and printer, and evalua-
tion is performed by the JavaScript eval() function. Between these,
a Read Eval Print Loop (REPL) is possible, and the JSCL distribution
includes an implementation of one.

A.4 ClojureScript
ClojureScript [9, 15] is probably the most successful Lisp dialect
for building SPAs by number of commercial users [10]. Clojure-
Script is a dialect of an earlier language, Clojure[8], which targets
Java Virtual Machine (JVM) bytecode. The ClojureScript reader
and macro systems were both originally hosted in Clojure, in a
manner similar to Parenscript. ClojureScript prioritizes the ability
to produce high-performance deliverables.
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A.5 Valtan
Valtan[11] compiles to JavaScript and includes a suite of FFI op-
erators for interoperating with JavaScript. It is self-hosting and

features a sophisticated, CLOS-based compiler architecture. It also
includes a REPL and several example applications.
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