
Removing redundant tests by
replicating control paths

Irène Durand & Robert Strandh

LaBRI, University of Bordeaux

April, 2017

European Lisp Symposium, Brussels, Belgium ELS2017



Context: The SICL project

https://github.com/robert-strandh/SICL
Several objectives:

I Create high-quality modules for implementors of Common
Lisp systems.

I Improve existing techniques with respect to algorithms and
data structures where possible.

I Improve readability and maintainability of code.

I Improve documentation.

I Ultimately, create a new implementation based on these
modules.

2/24



Compiler framework

A large part of SICL is a framework (called Cleavir) for creating
Common Lisp compilers.

Cleavir is written so that an implementation can adapt the
framework to the needs of the implementation.

At the same time, Cleavir provides reasonable default behavior that
the implementation can benefit from.

In particular, Cleavir will contain a large number of standard
compiler optimization algorithms, and a few of our own.

3/24



Purpose of current work

When possible, avoid redundant tests.

A test is redundant if a preceding identical test that dominates this
one exists.

We detect redundant tests in intermediate code, and we eliminate
them using local graph rewriting.

4/24



Previous work

Frank Mueller and David Whalley presented a paper at PLDI in
1995, titled “Avoiding Conditional Branches by Code Replication”.

That paper uses ad-hoc techniques to detect redundant tests and
transform the code to avoid them.

We are unaware of any other work in this domain.

5/24



An example

A client implementation might define car and cdr like this (Clasp
and SICL both do):

(defun car (x)

(cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...))))

(defun cdr (x)

(cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...))))

Where cons-car and cons-cdr are primitive operations that
require the argument to be of type cons.

6/24



An example

Now suppose we have the following code to compile:

(let ((a (car x))

(b (some-function)

(c (cdr x)))

...)

7/24



An example

After inlining car and cdr, we get the following code:

(let ((a (cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...)))

(b (some-function)

(c (cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...)))

...)

8/24



Resulting intermediate code

start

consp

cons−car null

setq setq error

cons

cons

cons

(not cons)

null

null

(not list)

t

call

setq

consp

null

setq setq error

cons

cons

null

null
(not list)

list

list

cons−cdr

D

I

9/24



Rewrite rules

1. If s has no predecessors, then remove it from S .

2. If s has an incoming arc labeled true, then change the head of
that arc so that it refers to the successor of s referred to by
the outgoing arc of s labeled true.

3. If s has an incoming arc labeled false, then change the head of
that arc so that it refers to the successor of s referred to by
the outgoing arc of s labeled false.

4. If s has n > 1 predecessors, then replicate s n times; once for
each predecessor. Every replica is inserted into S . Labels of
outgoing control arcs are preserved in the replicas.

5. Let p be the (unique) predecessor of s. Remove p as a
predecessor of s so that existing immediate predecessors of p
instead become immediate predecessors of s. Insert a replica
of p in each outgoing control arc of s, preserving the label of
each arc.

10/24



Initial instruction graph

start

consp

cons−car

setq

true false

call

setq

consp

null

setq error

falsetrue

setq

null

setq error

cons−cdr

rule 5 applies

11/24



Result after one rewrite

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

setq setq

true false

cons−cdr

consp
falsetrue

call rule 5 applies

12/24



Result after two rewrites

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

consp
true

call

setq

true

true

false

false

cons−cdr

rule 4 applies

false

13/24



Result after replicating the test

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

true falsetrue false

cons−cdr

consp consp

rule 5

applies

14/24



Result after replicating setq

setq setq

start

consp

cons−car

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetrue

true false

true false

cons−cdr

consp

consp

rule 5 

applies

15/24



Result after replicating cons-car

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

true false

setq

cons−car cons−car

true false

cons−cdr

consp

consp

rule 2

applies

16/24



Result after short-circuit consp

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

setq

cons−car cons−car

true false

false

cons−cdr

consp

consp

rule 1

applies

17/24



Result after removing unreachable instructions

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue

setq

cons−car

true

cons−cdr

consp

rule 5

applies

18/24



Final result

call

setq

setq

start

consp

false

null

setq error

setq

call

setq

setq

cons−car

cons−cdr

19/24



Advantages to our technique

I It is simple to implement.

I Correctness is obvious, because each rewrite step preserves
the semantics of the program.

I In the paper, we give a proof of termination. It works even
when loops are replicated.

20/24



Disadvantages

I The resulting code is bigger.

I If many, overlapping zones of liveness and redundant tests
exist, then code size may increase exponentially. We
conjecture that this case is very infrequent.

I Local rewriting is probably not the best way in terms of
compile time performance.

21/24



Future work

I The current work discusses only mechanism. We must
establish a policy for when to apply our technique, in
particular to avoid huge increases in code size.

I Our technique must be implemented in Cleavir and tested on
real programs to determine improvements in performance.

22/24



Acknowledgments

We would like to thank Philipp Marek for providing valuable
feedback on early versions of this paper.

23/24



Thank you

Questions?

24/24


