
Sealable Metaobjects
for

Common Lisp

Marco Heisig

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 2

Motivation
(defgeneric two-arg-+ (a b)
 (:generic-function-class fast-generic-function)
 (:method two-arg-+ ((a float) (b float)
 (declare (method-properties inlineable))
 (+ a b))
 (:method two-arg-+ ((a number) (b number) …))
 (:method two-arg-+ ((a string) (b string) …))

(seal-domain #'two-arg-+ '(number number))

 Inline expansion for arguments that are floats.

 Fast calls for arguments that are numbers.

 Regular generic function call otherwise.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 3

Project History
28.10.2018

 beach: I figured out a few things that interested people could
help me with, if they want to, like astalla or heisig. One thing
would be to finish the implementation of the sequence functions,
[…]

29.01.2019

Idea to implement sequence functions via suitably restricted
generic functions. The yak shave begins!

27.04.2020

Quicklisp library #1: sealable-metaobjects

Quicklisp library #2: fast-generic-functions

Sequence functions are not finished.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 4

Introduction

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 5

The AMOP
Published in 1991

de facto standard for CLOS

Additional Resources

Closer MOP

(ql:quickload :closer-mop)

HTML Reference:

http://metamodular.com/CLOS-MOP

http://metamodular.com/CLOS-MOP

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 6

Metaobjects

 #.#'car42 "foo" #.(make-instance 'foo)

integer string function foo

built-in class standard-class

C
la

ss
 M

et
a

o
bj

ec
ts

Notation: A B "A is an instance of B"

The AMOP defines generic function, method, slot-definition,
method-combination, class, and eql-specializer metaobjects.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 7

A Generic Function Call
1.Call to the discriminating function.

2.Computation of all applicable methods.

3.Computation of the effective method.

4. Invocation of the correct effective method.

Typically, steps 2. and 3. are cached.

This cache is cleared when metaobjects are modified.

We want to perform 2. and 3. statically, and we want to replace
step 1. with step 4. when appropriate.

We can only do so (safely) if all involved metaobjects are
sealed.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 8

Metaobject Sealing

(defclass sealable-metaobject-mixin ()
 ((%sealed-p
 :initform nil
 :reader metaobject-sealed-p)))

(defclass sealable-generic-function
 (sealable-metaobject-mixin generic-function)
 ((%sealed-domains
 :initform '()
 :type list
 :accessor sealed-domains))
 (:default-initargs
 :method-class
 (find-class 'potentially-sealable-method))
 (:metaclass funcallable-standard-class))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 9

Properties of Sealable Metaobjects
A sealable metaobject has two states – sealed and unsealed.

Once a sealable metaobject is sealed, it remains sealed.

Calling reinitialize-instance on a sealed metaobject has no effect.

It is an error to change the class of a sealed metaobject.

It is an error to change the class of any object to a sealed
metaobject.

It is an error to change the class of an instance of a sealed
metaobject.

Each superclass of a sealed metaobject must be a sealed
metaobject.

Note: System classes and structure classes fulfill these criteria.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 10

Domains
 A domain is the cartesian product of the types denoted by
some specializers.

 A sealed domain is a domain whose constituting specializers
are sealed.

 The domain of a method with n required arguments is the n-ary
cartesian product of the types denoted by the method's
specializers.

Example domain designators:

'(integer)

'(string (eql 5))

'(#<built-in-class single-float> #<eql-specializer 5.0>)

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 11

Sealable Generic Functions
 A sealed generic function can have any number of sealed domains.

 New sealed domains can be added by calling seal-domain.

 All sealed domains of a generic function must be disjoint.

 Each method of a generic function must either be fully inside a
sealed domain, or fully outside.

 Each method inside of a sealed domain must be sealed, and all its
specializers must be sealed.

 It is an error to add or remove methods inside of a sealed domain.

 It is an error to create a subclass of a sealed class that would
violate any of the previous rules for any sealed generic function (!).

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 12

Automatic Sealing
 When a sealable metaobject is sealed, all its superclasses are
sealed automatically.

 When a sealable method is sealed, all its specializers are
sealed automatically.

 The function seal-domain automatically seals the supplied
generic function, and all methods inside of the designated
domain.

Result:

 The distinction between sealed and unsealed metaobjects is
mostly irrelevant to the user.

 Everything "just works".

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 13

Summary So Far
 We have presented a library called sealable-metaobjects with the
following properties:

 It provides the infrastructure for reasoning statically about both
built-in, and user-defined objects and metaobjects.

 It defines the classes sealable-class, sealable-generic-
function, and potentially-sealable-method.

 It provides the machinery for reasoning about generic function
domains.

 It is fully portable and has a single dependency – closer-mop.

The second half of the talk is about how we can use these
features to define fast generic functions.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 14

Fast Generic Functions
(defclass fast-generic-function
 (sealable-standard-generic-function)
 (…)
 (:default-initargs
 :method-class (find-class 'fast-method))
 (:metaclass funcallable-standard-class))

(defclass fast-method
 (potentially-sealable-standard-method)
 (…))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 15

Three Challenges
We face three challenges when statically optimizing certain
calls to fast generic functions:

 Telling the compiler if and how to optimize a call to a
sealed generic function.

 Computing the set of methods applicable to those types
at compile time or at load time.

 Computing either an inlineable effective method, or a
directly callable effective method function.

 Bonus challenge:

 100% portable code.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 16

Compile Time Optimization #1
(defun fast-generic-function-compiler-macro (fgf)
 (lambda (form env)
 (block compiler-macro
 (dolist (s-d (sealed-domains fgf))
 (dolist (scs (compute-static-call-signatures fgf s-d))
 (when (loop for argument in (rest form)
 for type in (static-call-signature-types scs)
 always (compiler-typep argument type env))
 (return-from compiler-macro
 `(funcall ,(optimize-function-call fgf scs)
 ,@(rest form))))))
 form)))

(defun compiler-typep (form type env)
 (or (constantp
 `(unless (typep ,form ',type)
 (tagbody label (go label)))
 env)
 (and (constantp form)
 (typep (eval form) type env))))

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 17

Compile Time Optimization #2
Unfortunately, our portable function for hooking into the
compiler has some flaws:

 Slow – three nested loops over constantp and typep.

 Only works reliably for literal constants.

 Depends on compiler macros, which a compiler might
ignore, especially for generic functions.

Instead, in practice, we use whatever mechanism an
implementation provides, e.g., deftransform on SBCL.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 18

Computing Applicable Methods
We use the only sane way of computing all applicable
methods, by calling compute-applicable-methods.

The challenge is that compute-applicable-methods
doesn't accept types or specializers, but arguments.

Our solution is that we introduce static call signatures. A static
call signature consists of a domain, a list of types, and a list of
prototypes, each of the same length. The types denote a
subset of the domain with a fixed set of applicable methods.
Each prototype is of its corresponding type. The prototypes
are chosen such that they unambiguously identify that
particular subset of the domain.

Choosing suitable prototypes is a challenge!

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 19

Computing the Effective Method
Good news:

There is a function called compute-effective-method

Bad news:

 The result is a form containing "magic macros".

Possible Solution:

(defmethod f :around ((arg-1 t) …)

 (if *flag* #'call-next-method (call-next-method))

Actual Solution:

We expand the effective method ourselves, using our own
versions of call-method and make-method.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 20

Optimizations
We currently perform the following optimizations:

 Inlining of effective methods.

 Calling the effective method directly.

 Inlining of keyword parsing only.

Further optimizations are planned.

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 21

Examples
&

Benchmarks

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 22

SICL Sequence
(defclass sequence-function (fast-generic-function)
 ()
 (:metaclass funcallable-standard-class))

(defgeneric elt
 (sequence index)
 (:generic-function-class sequence-function))

(defgeneric length
 (sequence)
 (:generic-function-class sequence-function))

(defgeneric find
 (item sequence &key from-end test test-not start end key)
 (:generic-function-class sequence-function))

...

Interested?
https://github.com/robert-strandh/SICL/tree/master/Code/Sequence

https://github.com/robert-strandh/SICL/tree/master/Code/Sequence

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 23

Generic Find – Methods
(replicate-for-each-relevant-vectoroid #1=#:vectoroid
 (defmethod find (item (vectoroid #1#)
 &key from-end test test-not (start 0) end key)
 (with-test-function (test test test-not)
 (with-key-function (key key)
 (for-each-relevant-element
 (element index vectoroid start end from-end)
 (when (test item (key element))
 (return-from find element)))))))

(seal-domain #'find '(t vector))

Details: "Fast, Maintainable, and Portable Sequence Functions"

 by Irène Durand and Robert Strandh

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 24

Generic Find – Benchmarks

All timings are given in nanoseconds. We used SBCL version 2.0.1

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 25

Conclusions
 The library sealable-metaobjects can be used as a
foundation for any project that attempts static reasoning
about objects or metaobjects.

 The library fast-generic-functions is a drop-in
replacement for any generic function that is used in
performance-critical code.

 Fast generic function almost always outperform
handcrafted solutions.

 Feedback and experience reports are most welcome!

27.04.2020 Marco Heisig - Sealable Metaobjects for Common Lisp 26

Thank you for listening!

Questions or Suggestions?
marco.heisig@fau.de

https://github.com/marcoheisig
heisig on #lisp, #sicl, or #petalisp

mailto:marco.heisig@fau.de
https://github.com/marcoheisig

