
Proceedings of the

10th European Lisp Symposium
Vrije Universiteit Brussel, Brussels, Belgium

April 3 – 4, 2017

In-cooperation with ACM

Co-located with <Programming 2017>
Alberto Riva (ed.)

ISBN-13: 978-2-9557474-1-4
ISSN: 2677-3465

Contents

Preface v
Message from the Programme Chair . v
Message from the Organizing Chair . vi

Organization vii
Programme Chair . vii
Programme Committee . vii
Sponsors . viii

Invited Contributions 1
Identity in a world of values – Hans Hübner . 1
How the strengths of Lisp-family languages facilitate building complex and flexible

bioinformatics applications – Bohdan B. Khomtchouk 2

Session I: Tools 3
Common Lisp UltraSpec - A Project For Modern Common Lisp Documentation

Michal Herda . 4
Loading Multiple Versions of an ASDF System in the Same Lisp Image

Vsevolod Domkin . 10

Session II: Types 19
A Lisp Way to Type Theory and Formal Proofs

Frederic Peschanski . 20
Programmatic Manipulation of Common Lisp Type Specifiers

Jim E. Newton, Didier Verna and Maximilien Colange 28
Type Inference in Cleavir

Alexander Wood . 36

Session III: Demonstrations 41
Delivering Common Lisp Applications with ASDF 3.3

Robert Goldman, Elias Pipping and Francois-René Rideau 42
Radiance – a Web Application Environment

Nicolas Hafner . 44
Teaching Students of Engineering some Insights of the Internet of Things using Racket

and the RaspberryPi
Daniel Brunner and Stephan Brunner . 49

Interactive Functional Medical Image Analysis
Benjamin Seppke and Leonie Dreschler-Fischer . 51

Session IV: Applications 53
Parallelizing Femlisp

Marco Heisig and Nicolas Neuss . 54

iii

Tutorials 57
General Game Playing in Common Lisp

Steve Losh . 58

Session V: Languages and meta-languages (1) 63
Fast, Maintainable, and Portable Sequence Functions

Irène Anne Durand and Robert Strandh . 64
DIY Meta Languages with Common Lisp

Alexander Lier, Kai Selgrad and Marc Stamminger . 72
Static Taint Analysis of Event-driven Scheme Programs

Jonas De Bleser, Quentin Stiévenart, Jens Nicolay and Coen De Roover 80

Session VI: Languages and meta-languages (2) 89
on the {lambda way}

Alain Marty . 90
Writing a portable code walker in Common Lisp

Mikhail Raskin . 98
Removing redundant tests by replicating control paths

Irène Anne Durand and Robert Strandh . 106

iv ELS 2017

Preface

Message from the Programme Chair

Welcome to the 10thth edition of the European Lisp Symposium!

The selection of papers for this year’s edition of the European Lisp Symposium shows, once
again, that the Lisp family of languages is vibrant and evolving, and that at the same time it
maintains its historical role as a “programming languages laboratory”. This is demonstrated by
the wide variety of topics in the program, and is perfectly exemplified by the two invited talks,
one of them dealing with the application of Common Lisp to bioinformatics, and the other one
discussing persistence in the functional programming world.

I was personally impressed with the number and quality of submissions received, which al-
lowed us to put together a strong and varied program. As in previous editions, the symposium
will include a tutorial, demonstrations, and lightning talks in addition to regular papers. This
year ELS is co-located with the new <Programming> conference, something that will surely
increase its audience, and is further proof of Lisp’s place in the programming languages world.

I would like to thank the ELS Steering Committee for offering me the opportunity to help bring
this symposium to life, and all the members of the Program Committee for their timely and in-
sightful reviews. Special thanks go to Didier Verna and Irène Durand: their assistance through-
out the whole process was invaluable, and contributed to making this endeavor a pleasure.
I would also like to acknowledge all our sponsors, and the organizers of the <Programming
2017> conference for handling all local organizational aspects.

Finally, thanks to all authors and symposium participants for their role in keeping the Lisp
community alive.

I wish you all a great time in Brussels!

Alberto Riva, April 2017

ELS 2017 v

Message from the Organizing Chair

Dear fellow Lispers,

2017 is a special year. Although technically, the name of Lisp first appeared academically in 58,
Lisp itself is turning 60 this year, and as it happens, ELS is turning 10. I’m having a hard time
realizing that we have be running the symposium for 10 years already, and I remember the first
occurrence, in Bordeaux, France (my native town, by the way) like it was yesterday. . .
ELS has come a long way since then. We now have an average of 70 to 90 people attending
every year (from all over the world), we have had the ACM In-Cooperation-With status for two
years in a row, and we literally blew the number of submissions this time. That is why a lot of
thanks are in order.
First of all, a big thank you to Alberto Riva for chairing the 2017 edition. Thanks to Irène Durand
for helping with the ACM process. We also owe a debt of gratitude to our sponsors, both old-
time regulars and new; without them, ELS would simply not be happening. Finally, a big thank
you to you, the ELS crowd. It seems that no matter how hard we try, there is no way to make
you stop from attending! And this is a good thing because without you, there would not be a
symposium either. Seeing you coming every year is as gratifying as it gets.

So let’s just continue with Lisp, and on for a new decade!

Didier Verna, Brussels, April 3 2017

Organization

Programme Chair

• Alberto Riva, University of Florida, USA

Programme Committee

• Marco Antoniotti – Università Milano Bicocca, Milano, Italy

• Marc Battyani – FractalConcept

• Theo D’Hondt – Vrije Universiteit Brussel Belgium

• Marc Feeley – Université de Montreal, Canada

• Erick Gallesio, Université de Nice Sophia-Antipolis, France

• Rainer Joswig – Independent Consultant, Germany

• António Menezes Leitão – Technical University of Lisbon, Portugal

• Nick Levine – RavenPack, Spain

• Henry Lieberman – MIT, USA

• Mark Tarver – Shen Programming Group

• Jay McCarthy – University of Massachusetts, Lowell, USA

• Christian Queinnec – Université Pierre et Marie Curie, France

• François-René Rideau – Bridgewater Associates, USA

• Nikodemus Siivola – ZenRobotics, Ltd

• Chris Stacy – CS Consulting, USA

• Alessio Stalla – ManyDesigns s.r.l, Italy

ELS 2017 vii

Sponsors

We gratefully acknowledge the support given to the 10thth European Lisp Symposium by the
following sponsors:

Brunner Systemhaus
Schulstraße 8
35216 Biedenkopf
Germany
www.systemhaus-brunner.de

Franz, Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
USA
www.franz.com

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge, CB4 0WS
England
www.lispworks.com

Interdisciplinary Center
for Biotechnology Research
2033 Mowry Road
University of Florida
Gainesville, FL, 32610
USA
biotech.ufl.edu

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

Common Lisp Foundation
Van Zuylen van Nijeveltstraat 161
2242LD Wassenaar
The Netherlands
cl-foundation.org

viii ELS 2017

www.systemhaus-brunner.de
www.franz.com
www.lispworks.com
biotech.ufl.edu
www.epita.fr
cl-foundation.org

Invited Contributions

Identity in a world of values

Hans Hübner, LambdaWerk GmbH, Germany
Data persistence can add a great deal of complexity to application software, and making the gap
between application and storage has been a constant field of research, experiments and prod-
ucts. In the object oriented programming paradigm, persistence seems to be a natural extension
to object behavior, and even though one could argue that many persistent object systems have
flaws and leak their abstractions, there is a large body of prior art and research in that area.
In the functional programming world, persistence does not find as natural a partnering abstrac-
tion, and it is often either conceptionally pushed to the boundaries of the application, or treated
in an ad-hoc fashion interleaved with the beauty and conceptional rigor of pure functions.
The presentation discusses these forces and explores how Clojure’s Software Transactional Mem-
ory system can be used to implement application data persistence.

Hans Hübner has three decades of experience as a programmer. Start-
ing his career with Basic, Forth and Pascal, he followed the rise of object
oriented software with C++. After ten years as a professional Common
Lisp programmer, he is now heading a software company in Berlin, spe-
cializing in Clojure based communication systems for the healthcare
industry.

ELS 2017 1

How the strengths of Lisp-family languages facilitate building
complex and flexible bioinformatics applications

Bohdan B. Khomtchouk, University of Miami Miller School of Medicine
We present a rationale for expanding the presence of the Lisp family of programming languages
in bioinformatics and computational biology research. Put simply, Lisp-family languages en-
able programmers to more quickly write programs that run faster than in other languages.
Languages such as Common Lisp, Scheme and Clojure facilitate the creation of powerful and
flexible software that is required for complex and rapidly evolving domains like biology. We
will point out several important key features that distinguish languages of the Lisp family from
other programming languages, and we will explain how these features can aid researchers in
becoming more productive and creating better code. We will also show how these features
make these languages ideal tools for artificial intelligence and machine learning applications.
We will specifically stress the advantages of domain-specific languages (DSLs): languages that
are specialized to a particular area, and thus not only facilitate easier research problem formula-
tion, but also aid in the establishment of standards and best programming practices as applied
to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the
most comprehensive Lisp dialect, which is commonly referred to as the “programmable pro-
gramming language”.
We are convinced that Lisp grants programmers unprecedented power to build increasingly
sophisticated artificial intelligence systems that may ultimately transform machine learning and
artificial intelligence research in bioinformatics and computational biology.

Bohdan B. Khomtchouk is an NDSEG Fellow in the Human Genetics
and Genomics Graduate Program at the University of Miami Miller
School of Medicine. His research interests include bioinformatics and
computational biology applications in HPC, integrative multi-omics,
artificial intelligence, machine learning, mathematical genetics, bio-
statistics, epigenetics, visualization, search engines and databases. He
will be starting his postdoctoral research work at Stanford University
this year.

Session I: Tools

Common Lisp UltraSpec - A Project For
Modern Common Lisp Documentation

Michał Herda
Faculty of Mathematics and Computer Science

Jagiellonian University
ul. Łojasiewicza 6
Kraków, Poland

phoe@openmailbox.org

ABSTRACT
The Common Lisp programming language has many bod-
ies of documentation—the language specification [2] itself,
language extensions, and multiple libraries. I outline issues
with the current state of Common Lisp documentation and
propose an improvement in form of the Common Lisp Ultra-
Spec. It is a project of modernizing the LATEXsources of the
draft standard [1] of Common Lisp and ultimately unifying
it with other bodies of Common Lisp documentation.

This is achieved through semi-automatic parsing and for-
matting of the sources using a text editor, regular expres-
sions, and other text processing tools. The processed text is
then displayed in a web browser by means of a wiki engine.

The project is currently in its late phase with the greater
part of the specification parsed and edited. A demo of the
project is available at http://phoe.tymoon.eu/clus/.

CCS Concepts
•Software and its engineering → Documentation;

Keywords
Common Lisp, Documentation, Specification

1. INTRODUCTION
The current state of Common Lisp documentation in gen-

eral is not satisfactory to me and many other people I have
talked with throughout my relatively short experience as a
Lisp programmer.

The bodies of documentation are often incomplete and
out-of-sync—they do not reflect the current state of a partic-
ular library. They tend to be outdated and in need of mod-
ernization. They contain errors and mistakes and are either
unmaintained or non-editable. They are non-hyperlinked
and do not refer to each other in a way that makes it easy to
navigate between them. They are scattered across the web
and depend on multiple separated web hostings, increasing

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

the risk of losing access to them if a particular server con-
taining their data fails.

I see multiple issues this state of matters causes to Com-
mon Lisp programmers, newbies and seasoned Lispers alike.
The experienced programmers are most likely used to these
pieces of documentation and that fact might minimize the
losses they suffer, but, from my personal experience, new-
comers are often lost and disoriented because of general frag-
mentation of the documentation, lack of maintenance, poor
visual appeal, and lack of an obvious way to fix this state of
things for those willing to do so.

For the sake of justice, I must remark that the things I
have mentioned above do not disqualify said documentation
from being useful and invaluable for many Common Lisp
programmers. The manuals specifying the language, its ex-
tensions and many libraries are good enough as a building
material and the multitude of Common Lisp applications
proves this point. But I consider this state of matters to be
improvable.

This paper contains an idea and requirements for an im-
provement of the state of Common Lisp documentation. It
also contains a description of an implementation of this idea,
the sources I have used, the full technological stack I have
utilized so far, the problems and issues I have encountered,
the benefits and disadvantages of my approach, a mention of
a notable mistake I have made and the plans I have for the
future extension and expansion of the aforementioned work.

2. PREVIOUS WORK

2.1 ANSI CL Standard

2.1.1 Published standard
The ANSI Common Lisp standard[2] is the specification

of the Common Lisp language, published in 1994.
The specification itself is a written document of over one

thousand pages of formatted text. Such a large amount of
technical data was a natural candidate to be turned into a
digital database browsable by humans.

2.1.2 Derived work

2.1.2.1 Common Lisp HyperSpec.
The most famous work derived from the ANSI CL stan-

dard is the Common Lisp HyperSpec1 (henceforth abbre-

1http://www.lispworks.com/documentation/common-lisp.
html

4 ELS 2017

viated as CLHS). It is a hyperlinked Web version of the
original standard, which allows for easy navigation of the
standard. Its HTML form also allows searching and quick
access using external search engines, such as Google or IRC2

bots.
The CLHS was itself created by an automated tool which

converted TeX into HTML.
The CLHS is released under an essentially non-free license

which allows verbatim copying of CLHS as a whole, but
prohibits any changes to it or creating any derivative works
based on it. It is therefore not possible to build a unified
piece of Common Lisp documentation based on the CLHS.

Further information about the history of creation of the
standard and the CLHS is available in the work by Kent M.
Pitman, Common Lisp: The Untold Story [4].

2.1.2.2 Franz Online ANS.
Another notable work is the Franz Online ANS3, created

by Franz Inc. and also being “a semi-mechanical translation
of the original TeX into HTML”. The presentation of the
language standard is copyrighted by Franz. I have not at-
tempted to contact the owners of that presentation—I only
learned of its existence very recently, at which point I had
already done most of the parsing work.

2.2 Lisp content aggregators
The Common Lisp documentation spans far and wide be-

yond the Common Lisp standard. Even during the time of
Common Lisp standardization, many extensions to the lan-
guage existed, with their respective pieces of documentation.

From this arose the obvious need of aggregating Lisp con-
tent, both with respect to code and documentation. Below, I
will outline three contemporary services which provide Lisp
users with content.

2.2.1 l1sp.org
The l1sp.org4 service is a content aggregation tool cre-

ated by Zach Beane. Its main purpose is to enable lookup
of symbols inside various pieces of documentation scattered
around the web. It currently contains links to over 20 pieces
of documentation, including the CLHS, documentation for
various CL implementations and many commonly used lan-
guage extensions and libraries, such as the Metaobject Pro-
tocol5, ASDF6 and Alexandria7.

This redirection service is very useful and allows for easy
lookup, but such an approach depends on the presence of
all the pieces of documentation in their respective places
all around the Web. Also, the pieces of documentation are
not linked to each other; for example, it is impossible to
reach the Common Lisp reference from within the Metaob-
ject Protocol reference and vice versa. The individual pieces
of documentation also greatly vary in style: both the type-
setting and graphical layout and the textual form in which
the information is presented to the reader.

2.2.2 Quicklisp
2Internet Relay Chat.
3http://franz.com/search/search-ansi-about.lhtml
4http://l1sp.org
5http://metamodular.com/CLOS-MOP/
6Another System Definition Facility, https://common-lisp.
net/project/asdf/
7https://common-lisp.net/project/alexandria/

Quicklisp8, created by Zach Beane, provides a centralized
repository of Lisp libraries through a piece of Lisp code,
which in turn allows the programmer to automatically re-
solve dependencies, download and compile a particular li-
brary on their Lisp system.

While Quicklisp is invaluable as a library repository, it
does not provide any sort of documentation service—it is
outside the scope of the Quicklisp project. Therefore it can-
not be a direct aid in creating a Lisp documentation project.

2.2.3 Quickdocs
The Quickdocs service9 is a content aggregation tool cre-

ated by Eitaro Fukamachi expressly for automated collec-
tion and generation of documentation for Common Lisp li-
braries; therefore, it aids the issue outlined in the paragraph
above by expanding Quicklisp with documentation capabili-
ties. The documentation itself is generated automatically
from the source code of libraries found in the Quicklisp
repositories. It consists of the description of a Quicklisp
system and a list of exported symbols along with the type
of objects they refer to and any documentation strings they
may contain.

Such automation provides a very good and aesthetically
pleasing means of reading about the protocol of a given sys-
tem. The issue with such automatic generation is that it
forces the authors of libraries to follow a convention of doc-
umenting their libraries in a particular way, which must be
recognizable by the tool parsing the Quicklisp systems. Oth-
erwise, the documentation will not be visible in Quickdocs.
Additionally, Quicklisp descriptions often contain little more
than links to external websites documenting the code, which
deprives Quickdocs of the ability to automatically generate
documentation for it.

3. MY WORK

3.1 Idea
The idea of creating a unified, hyperlinked Common Lisp

documentation that would additionally span over multiple
language extensions and libraries has been growing in me
since I began my journey with Common Lisp back in 2015.
I have been irritated by the separation of particular bodies
of Lisp knowledge and lack of connection between them. In
the beginning of 2016, I started looking for means to improve
this situation.

During my research, it became obvious to me that—no
matter which particular way would be chosen in this case—
the project of creating and maintaining a modern, unified
repository of Common Lisp documentation would require
substantial work. It would be necessary to choose the ap-
propriate pieces of work the repository would consist of, find
most recent versions of their documentation, solve any legal
issues of creating derivative works of them, parse the exist-
ing documents, and keep the repository maintained in the
face of the changing versions of Common Lisp libraries.

3.2 Requirements
The idea for building such a piece of documentation was

presented at the European Lisp Symposium 2016 during a

8https://www.quicklisp.org/
9http://quickdocs.org/

ELS 2017 5

lightning talk[3] that I gave. I would like to expand on a par-
ticular slide of that presentation, which outlines the qualities
I expect of a Common Lisp documentation project.

1. Editable: It needs to be modifiable and extensible by
anyone willing to expand it.

2. Complete: It should aim for completeness and max-
imum coverage of the Common Lisp universe.

3. Downloadable: It should be usable locally, without
an Internet connection.

4. Mirrorable/Clonable: It should be easy to create
mirrors and copies of it on the Internet and on hard
drives.

5. Versioned: It should use version control.

6. Modular: It should be splittable into separate mod-
ules with cross-module hyperlinks breaking as the only
side effect.

7. Updatable: It should be easy to update it to its
newest version.

8. Portable: It should be exportable as a static HTML
website.

9. Unified: It should be consistent in style.

10. Community-based: It should belong to the Lisp
community and be further developed and extended
there.

The implementation of this idea is a project that I have
named the Common Lisp UltraSpec, henceforth abbreviated
CLUS.

The dpANS10 source[1] makes it editable.
Git11 as version control makes it downloadable, mir-

rorable/clonable, versioned and updatable.
Hosting it on GitHub12 allows it to be community-based.
DokuWiki13 allows it to be modular and portable.
The goals are to make it complete and unified.

3.3 Source
The whole process was made possible by the availability

of the TEX source code for “draft preview Americal National
Standard”, abbreviated as dpANS, for Common Lisp. These
sources were put into public domain by Kent M. Pitman and
other members of the X3J13 committee.

While not being the actual standard itself, the dpANS
is close enough to it to be usable as a proper reference of
Common Lisp while also being in the public domain, which
allows me to create derivative works of it. It turned out to
be a feasible source upon which I could begin implementing
the first part of the UltraSpec.

10Draft preview American National Standard.
11https://git-scm.com/
12https://github.com
13https://www.dokuwiki.org/

3.4 Work done so far
At the moment of writing these words, I have translated

all dictionary entries and the glossary from the dpANS sour-
ces into pages in DokuWiki markup syntax, corrected the
pages, and hyperlinked the code examples found there.

Additionally, I have created a customized version of Doku-
Wiki meant for displaying the CLUS content. While I have
not yet published the source code of this modified DokuWiki
instance, it was successfully deployed14 with the specifica-
tion data translated so far.

3.5 Used methods and tools
The presence of a feasible source for creating a unified

and modernized piece of Common Lisp documentation al-
lowed me to download the draft and start looking for means
of parsing and processing it. The following subchapters de-
scribe the tools I have been using and explain the reasons
for them being chosen.

3.5.1 Main method
My method of editing the original sources involves cut-

ting the original TEXfiles into pieces, one per page, which is
especially important for the dictionaries.

Then, I utilize regular expressions to remove comments,
replace parts of TEXmarkup with their corresponding Doku-
Wiki markup and remove the TEXmacros that do not make
sense in the new context. I also automatically create hyper-
links to other pages.

After this semi-automatic process is done, I manually clean
and realign the text wherever necessary, manually edit more
complicated markup such as mathematical symbols, rein-
dent the tables, and fix broken hyperlinks. I also do all
required fixes in the specification text. I take care to ask
other people for advice whenever I edit the original text,
especially whenever I change the parts that construct the
formal specification (and not e.g. notes, or examples.)

Once the files are parsed and cleaned, I create the proper
file structure by renaming and moving the files into the
DokuWiki directory tree. Simply moving a file into its proper
location immediately allows DokuWiki to be able to ren-
der it, so creating or updating files is enough to update the
CLUS version visible in the browser.

As noted elsewhere, I have not written any automated
tool to do the required work for me; the ability to execute
a series of regular expressions on multiple files works well
enough for me.

This method was developed on the source files of the
dpANS3 and might work to some extent on other TEXfiles
without modification, as the choice of used TEXmacros varies
between documents. Other pieces of documentation, which
use other formats, such as HTML15, will require further
modifications to this method.

3.5.2 Notepad++—the text editor
When it came to the main editor for doing most of the

parsing work, I could choose between Emacs16 and Note-
pad++17, a pair of GPL-licensed18 programmer’s editors.

14http://phoe.tymoon.eu/clus/
15HyperText Markup Language
16https://www.gnu.org/software/emacs/
17https://notepad-plus-plus.org/
18https://www.gnu.org/licenses/gpl-3.0.en.html

6 ELS 2017

Emacs is a keyboard-oriented editor, available for all major
operating systems; Notepad++ is a WYSIWYG, keyboard-
and-mouse-oriented editor written for Windows that I was
able to run on my Linux setup using the Wine19 toolkit.

I ended up doing most of the actual processing of the
sources in Notepad++. I found its bulk-editing RegEx fea-
tures very handy and easy to learn and use. This paper was
written in Emacs using its TeX modes.

3.5.3 DokuWiki—the engine for displaying HTML
DokuWiki is a GPL-licensed wiki software written in PHP20.

In my experience, it was able to fulfill all the requirements
I had for a displaying engine. It simply works and allows
me to deliver the contents in a readable and aesthetically
pleasing way. It does not need database access and instead
relies on flat files, which allows for easy versioning of the
data with Git. It has a simple markup syntax that I con-
sider sane. It is extensible and hackable, which so far proves
very useful. Also, I have had some previous experience in
using and configuring it.

The displaying engine is also a part that can be replaced
later for another solution - in this case, I am not bound to
DokuWiki as the only displaying engine.

3.5.4 Regular expressions, GNU coreutils—tools for
parsing the sources

The most important choice that I had to make in the be-
ginning was how to parse the source files of dpANS. The
source code is a large body of LATEX code, created by mul-
tiple people over a large span of time. It contains highly
customized TEX macros, used irregularly among the source
code.

The initial research led me towards TEX parsers written
in various languages, such as Parsec21 written in Haskell22.
My initial attempts of feeding the dpANS sources to the
parsers I found were failures though; the individual bodies
of code were too complex and my knowledge about these
parsers was too little for me to succeed. I realized that, in
order to properly parse the TEX source code of the draft,
I would need to create a substantially large set of parsing
rules; even afterwards, I would need to spend a lot of time
doing manual polishing and fixing of the corner cases, such
as TEX macros used only in a few places within the source
files or actual mistakes within formatting, such as utilizing
function markup for macros and vice versa.

Because of this, I decided to abandon the approach of
parsing the standard with a parser capable of processing
TEX directly and instead go for a simpler choice: utilizing
a set of regular expressions to parse a subset of the used
TEX. It would mean later polishing the preprocessed data
by hand, though I would like to note that this last step—
manual processing and fixing—would be necessary anyway
regardless of the technique used.

My editor of choice, Notepad++, contained a powerful
enough RegEx engine that was capable of guiding me through
the process. Various bulk edits were also made through as-
sorted Unix utilities: grep, sed, awk, rename.

19https://www.winehq.org/
20https://php.net/
21https://wiki.haskell.org/Parsec
22https://wiki.haskell.org/

3.5.5 Git—versioning system, GitHub—project
hosting

The data for the whole project is kept in a Git reposi-
tory, stored at GitHub23 and publicly available. Because
DokuWiki keeps all data as flat text files, I can easily mod-
ify and deploy new versions of data to upstream websites.

3.6 Problems encountered
Most of the problems I have encountered are connected

with the dpANS sources being a big and complicated piece
of documentation, and using regular expressions to parse the
TEX sources.

As I have mentioned before, the source code had been
created over a lengthy period of time with multiple people
contributing to it. Because of that, many parts of the speci-
fication are formatted differently: they utilize different TEX
macros, specific to the people creating the source and the
part of the language that was worked upon. Despite the
irregularities, I was able to employ the regular expressions
and capabilities of my editor to fix most of the cases globally
and fix the corner cases manually.

A significant part of the required work was hyperlinking.
Although I was able to parse the code for TEX glossary en-
tries, I also needed to take the English grammar into ac-
count, such as plural and past forms of glossary entries.

I have had some minor problems with DokuWiki’s ren-
dering and markup capabilities, though none of them have
been significant enough to be mentioned in detail here.

3.7 Differences to source materials
I do not claim that my markup is better than the original

TEX markup of dpANS—if anything, it is different, allow-
ing me to directly display the contents inside the DokuWiki
engine. Most of the work I have done does not regard the
markup itself, but rather making tens of minor corrections
within the specification regarding to spelling, linking and
obvious mistakes24.

If I may make such a bold claim here - as I worked through
and with the text of the specification, I got a growing impres-
sion that the third draft of the specification, subsequently
accepted by the X3J13 committee, lacked a final, global re-
view from an external source that would catch all the minor
mistakes and errors in the specification. If I, a person with-
out much experience in Lisp and untrained in creating spec-
ifications, am able to catch and fix tens of them inside the
TEX sources, then it was also possible twenty three years
ago, when the test of the specification was turned into a
standard.

A major part of my work consists of doing such a “final
review”, which puts me in the position of being one more
editor to the Common Lisp specification.

4. CONCLUSIONS AND FUTURE WORK

4.1 Benefits and Disadvantages
The benefits of my approach come as logical continuations

of the slogans used in section 3.2.
The most obvious one, which is also the goal of the project,

is the construction of a contemporary source of Common

23https://github.com/phoe/clus-data
24Such as, quoting the specification page for PROG2: prog2
[returns] the primary value yielded by first-form.

ELS 2017 7

Lisp documentation and a single resource capable of con-
taining most of the knowledge a Common Lisp programmer
might need, under a license permitting its free modification,
expansion and reuse.

Another upside is modernization of the specification by
fixing its issues and bugs, expanding its examples sections,
clarifying any inconsistencies and questions that have emerged
since the creation of the standard and giving it a more aes-
thetically pleasing look. I consider it important for Lisp
to have a modern, browsable documentation, especially in
light of various comments that I have gathered throughout
the Internet, which emphasize such a need.

A beneficial side effect of my approach is the generation of
a version of the Common Lisp specification in a markup for-
mat. Such a format can then be easily parsed by automated
tools to produce a document of any required typesetting
qualities.

The disadvantages of my current approach occur on dif-
ferent layers.

First of all, it is easy to keep a single static website on
the Web for years without any changes, but CLUS is far
from static because of its design. The body of code that
CLUS will turn into, as the time progresses, will require
maintenance in order to remain clear and readable; it will
require reviewers to check the input from anyone wanting to
contribute to the CLUS repositories.

Second, although it does apply specifically to the dpANS
sources, parsing and hyperlinking the chapters of the speci-
fication takes significant time. Additionally, because of the
variety of forms other bodies of Lisp documentation have,
it will be non-trivial to import them into CLUS. It will re-
quire a separate effort to have them parsed and prepared for
inclusion.

Third, the legal status and licensing issues of the vari-
ous pieces of documentation will require separate thought.
Creating a compilation work of all these elements will be es-
sentially creating a derivative of them all and legal caution
will need to be taken in case of documents with unknown or
confusing legal status. It might be required to negotiate the
terms of inclusion of particular pieces of work into CLUS
with the respective holders of rights to them.

4.2 Thoughts

4.2.1 dpANS as humanistic material
Among all the literature available for studying Common

Lisp, I would like to mention the dpANS source files as a
valuable reading matreial from a non-technical point of view.

The standard was created before the era of ubiquitous ver-
sioning systems. Because of this, the draft source contains
many comments, some of them timestamped. They show
the technical problems and decisions the langauge specifiers
faced and solved in the process of creating a formal stan-
dard for a programming language. They also outline the
features which were deprecated and removed—or, on the
contrary, created and added along the way, some of which
I personally find quite enlightening. What I want to em-
phasize here, though, is that they show X3J13 as a group of
human beings working on a common goal. The comments
there show various aspects of their work: from communicat-
ing messages between particular people, through decision-
making and commented-out pieces of specification itself, to

the in-jokes and humor of the people25.
In my opinion, studying the original sources for all three

draft previews (all of which are available online) might be
valuable for any person who wants to research specification
development or software development in general from a more
human point of view as well as Lisp programmers who are
interested in extending their background and the process
through which Common Lisp came to life.

4.2.2 Translator or editor?
Another thought that I would like to mention here is the

fact that, in the beginning, I had imagined my work as sim-
ple translation of the sources from their TEX format into wiki
markup in order to let the DokuWiki engine format them
into HTML. Reality has superseded these ideas—I quickly
realized that the standard itself has its share of inconsis-
tencies, bugs and other issues. It is of course expected for
such a huge body of documentation to have issues and these
issues do not undermine the value of the specification as a
whole, but I have unexpectedly found myself to be able to
fix them as I progress through the sources.

Suddenly, from a simple translator, I had become an edi-
tor of the Common Lisp standard itself. What I am creat-
ing right now is not the draft sources being translated into
DokuWiki markup—it is an edited version which contains
many improvements and fixes to many issues that were im-
possible to fix in the previous CL specifications based on the
work of X3J13.

It is a very responsible role that has emerged—but also
one that I consider very satisfying.

4.3 Mistakes
I have made a mistake that is important enough for me

to want to point it out here. Here is where my lack of ex-
perience as an editor of formal documents shows—I have
not done any formal editing work before. When I began
parsing the specification, I decided to fix all obvious errors
and mistakes on the fly, as I progress through the text. Be-
cause of this, I have not separated the stages of converting
the specification to the new markup and editing its text;
changes in the text appear because one person—me, as an
editor—decides that they should be changed.

This is contrary to the experience of Kent M. Pitman—
“the primary qualification for Editorship was trustworthi-
ness—particularly, the ability to resist the urge to ‘meddle’
in technical matters while acting in the role of ‘neutral ed-
itor”’.[4] Additionally, KMP noted that “it was necessary
that the community have complete trust that the only reason
a change might be made to the meaning of the language was
if there was a corresponding technical change voted by the
committee”.[4]

My situation is different from Kent’s. The X3J13 had fin-
ished its work; the specification is done; there is no formal
committee that an editor might need to obey or serve. I do
not (yet) work on editing the specification with other people
directly. Nonetheless, the Lisp community is whom that I
attempt to serve here, trying to create a basis for an ex-
tensible Lisp documentation that might in turn accomodate
various needs of the community itself. It is a responsible
role that I do not want to do loosely.

25Such as: %This list conjured by KMP, Barrett, and
Loosemore. -kmp 14-Feb-92

8 ELS 2017

As I progressed through the text of the specification, I
have made changes to its formal and informal parts as I saw
fit and proper, asking the community every time I had any
doubt about the original meaning or wanted to ask for sup-
port for a particular change. While my intention was to pro-
duce text that is clearer and better, it is obvious that such
a frivolous and undocumented process applied to a strictly
formal document produces text that is perhaps a better doc-
umentation - but I, from my own point of view, cannot call
it a formal specification anymore.

This mistake that I have made has generated more work
for me to do later. Once I finish converting the whole spec-
ification, I will need to make a review of the whole CLUS
with the standard in one hand and the UltraSpec text in
the other, pointing out the differences and collecting them
out into a separate document listing the changes and differ-
ences between the two texts, so that such a list may later
be reviewed by the Lisp community and the purpose of each
change may be discussed. Only after such a document ex-
ists, I will consider the specification part of the UltraSpec
to be formally complete.

4.4 Plans
It is impossible to speak of future plans without mention-

ing the Lisp community here.
The Common Lisp UltraSpec was meant from the start

to be a community-based project, meaning that it belongs
to the Lisp community and is meant to be utilized and ex-
panded within it. I hope that other people will aid me in my
process by suggesting changes, submitting patches, possibly
integrating the documentation for respective Common Lisp
libraries into the code and maintaining them later on.

There is an interesting project to convert the markup I
have used into S-expressions26 that can then be parsed and
understood by Lisp—as data—and text editors—as editable,
formatted text. I hope that it will make it possible one day
to freely edit the CLUS source code in “lispy” editors, such
as Emacs or Climacs27.

Once the specification is completely integrated, I intend
to extend its scope to include common facilities and ex-
tensions included and/or used in most contemporary Com-
mon Lisp implementations, such as the Metaobject Protocol,
ASDF, Quicklisp and the compatibility libraries which pro-
vide cross-platform functionalities not included in the stan-
dard such as concurrency or networking.

There are collections of issues regarding the specifications,
found throughout the years by the community. Some are
organized, such as the collection on CLiki28; some, I hope,
are in on the hard drives of the Lisp community. Previously,
it was impossible to integrate them into proprietary texts of
former editions of the specification, but with the creation of
CLUS, this will no longer be the case.

I want to create quality standards for the respective types
of pages and enforce them, in order to keep the quality of
the documentation high and its style consistent across pages
and modules.

In the far future, it might be possible that the CLUS
might become a basis for a revised Common Lisp specifi-

26https://www.reddit.com/r/lisp/comments/5xcafp/c/
deje13k/

27https://github.com/robert-strandh/Second-Climacs
28http://www.cliki.net/proposed\%20ansi\%20revisions\
%20and\%20clarifications

cation that might include changes like the CDRs29 or the
CL21 project30. I do not directly plan this far ahead, but
I keep such a possibility in mind; I consider the kind of or-
ganic work that I am doing a required basis for any further
attempts to improve the specification of Common Lisp.

4.5 Acknowledgements
I would like to thank Professor Robert Strandh, doctors

W lodzimierz and Ma lgorzata Moczurad, and Philipp Marek
for general support during the creation of this work, includ-
ing, but not limited to, proofreading, advice, and moral sup-
port; one more thank you to Robert Strandh for allowing me
to use his TEX layout for papers.

I would additionally like to thank the people from the
#lisp and #lisp-pl IRC channel for a lot of support on this
paper and the Common Lisp UltraSpec project in general.

5. REFERENCES
[1] Draft proposed INCITS 226-1994 Information

Technology, Programming Language, Common Lisp
X3.226:199x. Draft 15.17, X3J13/94-101. American
National Standards Institute, 1994.

[2] INCITS 226-1994[S2008] Information Technology,
Programming Language, Common Lisp. American
National Standards Institute, 1994.

[3] M. Herda. Common Lisp UltraSpec. Presentation slides
for Lightning Talks of the European Lisp Symposium
2016, day 2.

[4] K. M. Pitman. Common Lisp: The Untold Story. Web
version.

29https://common-lisp.net/project/cdr/
30http://cl21.org/

ELS 2017 9

Loading Multiple Versions of an ASDF System in the Same Lisp Image

Vsevolod Domkin

vseloved@gmail.com

Abstract
In this paper, we present a proof-of-concept solution
that implements consecutive loading of several
versions of the same ASDF system in a single Lisp
image. It uses package renaming to dynamically
adjust the names of the packages loaded by a
particular version of a system to avoid name
conflicts on the package level. The paper describes
the implementation, possible usage, and limitations
of this approach. We also discuss the deficiencies of
ASDF that impede its use as a basis for developing
such alternative system manipulation strategies and
potential ways to address them.

CCS Concepts: • Software and its
engineering~Software configuration management
and version control systems • Software and its
engineering~Software libraries and repositories
• Software and its engineering~Software evolution

1. Introduction
The problem of supporting simultaneous access to
multiple versions of the same library in the same
software artifact is relevant to the software projects
that rely on many third-party components and/or
have a long development time span. Due to the
separate evolution of third-party libraries, the
situations may arise when they may depend on
different incompatible versions of software that
share the same name. Besides, even the software
project under direct control of the user itself may
necessitate dependency of several versions of the
same library that support different behaviors and
functionality. This problem is often called
dependency hell[1] (and, in different programming
language environments, is known as "DLL hell," "jar
hell" etc.) It manifests either in the inability to build
the target software as a result of name conflicts or in
the unsolicited redefinition of parts or whole
functionality by the conflicting packages, which may
happen silently or vocally, depending on the
particular environment.

In Common Lisp, packages[2] provide namespacing

capabilities to reduce the risk of name conflicts
between symbols. The packages are first-class
globally-accessible dynamic objects. Due to the
existence of a centralized “registry” of known
packages in the running Lisp image, name
conflicts may arise when two independent
software artifacts that include the definitions of
the packages with the same names or nicknames
are loaded into the same image. The conflict will
manifest in the redefinition of the previously
loaded package by the one loaded later, which
will result in an extension of the package's
external API and, possibly, an unexpected
redefinition of parts of its functionality that have
the same names (be it functions, classes or
variables). This risk grows with the development
of the library ecosystem, and such cases have
been already reported[3] for the Quicklisp[4]
distribution, which is the largest repository of
Common Lisp open source libraries. An even
higher risk of conflict exists not between
independent pieces of software, but between
different versions of the same software. In this
case, a redefinition of the previous version of the
package with a newer one may be intended (in
case of upgrade), but if non-backward
compatible changes are introduced, this will,
potentially, mandate the upgrade of all of the
package's dependents. Such situation may be
undesired, especially in the case of third-party
dependents that are not under the control of the
user. Moreover, it may be beneficial to utilize
both old and new versions of the upgraded
package's functionality. The described risks are
most critical for production software that is
usually dependent on many external libraries and
is produced via a process of automatic build
(often using Continuous Integration[5] systems),
not allowing for manual intervention in case of
unexpected conflict.
The ways to approach dependency conflicts
include administrative measures (adherence to a
particular versioning or naming policy - see
Semantic Versioning[6] or package renaming on
incompatible changes proposal[7]) and

10 ELS 2017

programmatic solutions. Not questioning the value
of proper software development practices, it should
still be noted that administrative measures have a
crucial limitation of impossibility to fully regulate
the activity of third-party developers, especially for
the software that already exists and may not even be
maintained at the moment. That is why a
programmatic solution is essential, but, currently,
there is no library or feature of an existing tool that
allows dealing with them.

Most programming language environments do not
provide a comprehensive user-friendly way of
automating version conflict resolution due to the
limitations of their namespacing capabilities (see, for
example, the situation in Python[8]). One notable
exception is the JVM, which allows to extend the
standard classlloader[9] to dynamically load several
classes that have the same name — the capability
used by OSGi[10] to systematically handle version
conflicts. Furthermore, the upcoming Java 9 will
include the project Jigsaw[11] that introduces a new
module system also capable of handling version
conflicts by default. JavaScript is another interesting
case as it initially lacked the concept of a package or
module, and when it was later introduced via the
Module pattern[12] and its derivatives, the standard
objects were used to host modules with
incapsulation of dependencies within the object's
private scope that allows to not register the loaded
dependency's name in the global public scope, when
it is not necessary, thus preventing the version
conflict altogether.

In Common Lisp, the low-level solution to conflicts
of package name clashes is the standard rename-
package[13] function. Using it allows possible to
avoid name conflicts by changing the reference to
the first of the conflicting artifacts before the second
one is initialized. If the primarily loaded version of
the package is renamed, a new one may be loaded
without name conflicts. Such renaming, however,
requires careful orchestration as the process of
loading different packages is usually complex and
not fully transparent, and the renaming should take
place after the other packages, which are the users of
the one being renamed, are loaded. This may not be
possible in the general use case because of the
potential redefinition and additions to the packages
at program runtime. However, in the common case
of loading the source code and then working with
the image without any subsequent modifications to
the dependencies, the renaming can be performed
reliably.

Packages are a source code level concept, while
for the purpose of automation of the compilation
and loading of the source code itself, a de facto
standard abstraction provided in Common Lisp
is a “system”[14]. It provides a way to group
relevant source code files and other file-based
resources and to specify the order of their
compilation/loading. The currently adopted
implementation of the system concept and
related APIs is ASDF[15]. ASDF performs the
similar role to make[16] and Ant[17] in other
programming environments, and it allows for
reproducible programmatic bundling,
distribution, and initialization of both software
libraries and applications. The system in ASDF
supports the notion of version, which allows to
logically distinguish different versions of the
same software packages. It also allows
specifying dependencies between systems
(including versioned ones). Putting different
packages (even with the same names) in
different ASDF systems or putting different
versions of the same-named package in different
versions of an ASDF system allows to approach
the problem of name conflicts, provided there is
a way to control the loading of those systems and
perform package renaming at the necessary
points of the process. Currently, ASDF doesn't
implement such functionality. Moreover, it has a
number of key limitations preventing the
implementation. First of all, at any moment in
the running Lisp image, only a single version of
a system may be accessible to ASDF. In case of
an attempt to load another version (that may be
discovered by ASDF even accidentally), several
conflict resolution strategies may be utilized, the
default being to load the system with the latest
sysdef file access timestamp. This constraint is
conditioned on the ASDF reliance on a central
in-memory registry of known systems (similar to
the package registry) that is a key-value store
keyed by system names only, without the version
information. Secondly, the ASDF approach to
version conflict resolution is restricted to a single
pre-defined strategy for determining the
acceptable versions given a certain
constraint[18].

To sum up, there is no end-to-end solution to
potential system-level name and version
conflicts in the Common Lisp environment, but
it is desirable in order to support future growth
of the Lisp library ecosystem and large-scale

ELS 2017 11

projects. The approach should support ASDF
systems. Consequently, the proposed solution is
based on the standard rename-package and low-
level ASDF APIs.

2. Possible conflict scenarios
In order to validate the correctness of a version
conflict resolution approach, the following conflict
scenarios should be analyzed. More complex
possible configurations will be a combination of
these primitive cases.

1. "Zero" scenario. No name conflicts. A
fallback to asdf:load-system is
expected.

2. "Basic" scenario. There is a single name
conflict between prem v.1
(required by foo) and v.2 (required by

bar).

3. "Subroot" scenario. There is a single conflict
(in system foo), and one of the conflicting
packages is a direct dependency of the root
system.

4. "Cross" scenario. There are 2 conflicting
systems at the same level in the
dependency tree: prem and baz.

5. "Inter" scenario. There are 3 conflicting
systems with one of them (quux) being
the dependent on the two others: baz
and prem.

6. "Subinter" scenario. There are 3
conflicting systems with one of them
(foo) being the dependent on the two
others (baz and prem), and one of the
conflicting systems (foo) a direct
dependency of the root system.

3. Implementation
We propose an ASDF-compatible algorithm for
conflict-free loading of a particular system's
dependencies with on-demand renaming of their
packages in case of discovered name/version
conflicts happening at the right moment in the
program loading sequence. The algorithm
comprises of the following steps:

1. Assemble a dependency tree for the
system to be loaded based on ASDF
systems' dependency information and,
using it, discover the dependencies,

12 ELS 2017

which produce name conflicts.
2. In case of no conflicts, fallback to regular

ASDF load sequence.
3. In case of conflicts, for each conflicting

system determine the topmost possible user
of the system in the dependency hierarchy
that doesn't have two conflicting
dependencies (the one, below the lowest
common ancestor of the conflicting
systems).

4. Determine the load order of systems using
topological sort with an additional constraint
that, among the children of the current node
of the dependency tree, the ones that require
conflict resolution will be loaded last.

5. Load the systems' components (plain load
without loading the dependencies) in the
selected order caching the fact of visiting a
particular system to avoid multiple reloading
of the same dependencies that are referenced
from various systems in the dependency
tree.

6. During the load process, record all package

additions and associate them with the
system being loaded.

7. After a particular system has been
loaded, check whether it was determined
as a point of renaming for one or more
of its dependencies, and perform the
renaming.

In step 4, load-last strategy is necessary for the
renaming of the alternative system to happen
before the load of the current one: in case of the
opposite order, the current system will be loaded
but not renamed, as the renaming will happen
only after load of the parent node, which will
result in a name conflict. This is relevant to the
Subroot (4) and Subinter (6) text scenarios.

The algorithm is implemented in the function
load-system-with-renamings[19] that
is summarized in Figure 1. It operates on the
instances of a sys structure that is used as a
simple named tuple: (defstruct sys name
version parent).

(defun load-system-with-renamings (sys)
 (multiple-value-bind (deps reverse-load-order renamings)
 (traverse-dep-tree sys)
 (when (zerop (hash-table-count renamings))
 (return-from load-system-with-renamings (asdf:load-system sys)))
 (let ((already-loaded (make-hash-table :test 'equal))
 (dep-packages (make-hash-table)))
 ;; load dependencies one by one in topological sort order
 ;; renaming packages when necessary and caching the results
 (dolist (dep (reverse reverse-load-order))
 (let ((conflict (detect-conflict)))
 (when (or conflict
 (not (gethash (sys-name dep) already-loaded)))
 (renaming-packages
 (if conflict
 (load-system dep)
 (load-components (asdf:find-system (sys-name dep)))))
 (unless conflict (setf (gethash name already-loaded) t)))))))))
Figure 1. Source code for the load-system-with-renamings procedure

In the actual function, the renaming-
packages and detect-conflict macros are
implemented in-place, but, here, for the sake of
clarity, they are extracted. detect-conflict
is omitted as it is trivial to implement, and
renaming-packages is listed separately (see
Figure 2). That's why it references the
seemingly free (but, in fact, the parent's) dep

and dep-packages variables.

The traverse-dep-tree[19] function
implements the first stage of the algorithm:
building a dependency tree, discovering
conflicts and arranging the dependencies in
proper order for loading. It recurses on the
current system's dependencies and keeps a

ELS 2017 13

set of the encountered systems and their
versions to spot version conflicts via set
intersection with a specialized :key function
that takes into account different system
versions.

We also provide an alternative to the ASDF's
implementation of system loading facility in
load-system and load-components
functions.

(defmacro renaming-packages (&body body)
 `(let ((known-packages (list-all-packages)))
 ,@body
 ;; record newly added packages
 (setf (gethash dep dep-packages)
 (set-difference (list-all-packages) known-packages))
 ;; it's safe to rename pending packages now
 (dolist (d (gethash dep renamings)))
 (let ((suff (format nil "~:@(~A-~A-~A~)"
 (sys-version d) (sys-name dep) (gensym))))
 (dolist (pkg (gethash d dep-packages))
 (rename-package pkg (format nil "~A-~A"
 (package-name package) suff)
 (mapcar (lambda (nickname)
 (format nil "~A-~A" nickname suff))
 (package-nicknames pkg)))))))
Figure 2. Source code for the renaming-packages macro

3. Working around ASDF
The initial assumption for the development of
this algorithm was to build it on top of the
public ASDF API as an alternative system
loading strategy. However, during its
implementation, several obstacles were
encountered in ASDF, which forced us to
develop alternative procedures to the existing
ASDF public counterparts, using the low-level
internal ASDF utilities.

The main blocker was an ASDF's core choice to
have a central registry of known systems that
uses unversioned system names as keys.

In a lot of ways, ASDF is very tightly-coupled
and not transparent:

 The source code, in general, is rather
extensive and abstraction-heavy, but not
well-documented.

 Most of the ASDF actions, even the
ones that could be implemented in a
purely functional manner (for instance,
find-system), trigger internal state
changes.

 The ASDF operations class hierarchy is

based on a number of abstract
classes, such as downward-,
upward- or sideway-
operations, which form implicit
interdependencies between concrete
operations, but this is not
documented in a clear manner.

 The ASDF operations are performed
not directly, but according to an order
specified in a plan[20] object. The
plan API is also not documented.

 ASDF caching behavior is
undocumented.

This makes ASDF a monolithic tool tuned
towards implementing a particular strategy
of handling systems, which is substantially
hard to repurpose in order to support
alternative strategies, using the existing
machinery for system discovery,
orchestration of compilation, and loading of
single files. Consequently, there are many
unexpected omissions from the ASDF public
API. Here are a few that were encountered in
the process of this work:

 There is no direct way to load a
system from a specific filesystem

14 ELS 2017

location: only a system that is previously
found using the ASDF algorithm can be
loaded.

 There is no direct way to enumerate all
potential candidate locations for loading
a system: each ASDF system search
function should terminate the discovery
process as soon as it finds a candidate.

 There is no direct way to find a system
with a specified version: the version
argument to ASDF operations may only
be used as a constraint that the current
candidate system should satisfy, not as a
guide for selecting the candidate.

 There is no direct way to load just the
source files for the system's components
without checking and, possibly,
reloading its dependencies: calling
load-op on a source file invokes
implicit operation planning machinery
that is specified partly in the operations
hierarchy and partly in the associated
generic functions, and it will cause the
call to prepare-op on the same file,
which triggers prepare-op on the
whole system, which, in turn, checks the
system's dependencies and may invoke
their full reload. Overall, a simple call to
(operate 'load-op
<component>) may produce a call
stack of 10 or more levels of just ASDF
operations.

 It is impossible to read the contents of an
ASDF system definition without

changing the global state, although
this is often needed to determine
some property of the candidate ASDF
system, like its version or set of
dependencies.

As a result, we had to define a number of
utility functions to patch the missing parts of
ASDF, which, definitely, are not well-
integrated with the current vision of how
ASDF parts should play together, and which
use a number of private ASDF utilities that
might be changed or removed in the next
versions. Such approach is, obviously, not
scalable and, ideally, the implementation
should be performed based solely on the
ASDF public API. But, to allow that, the API
has to be expanded significantly, which will
require some major changes to ASDF core:
adding deeper support for versions,
decoupling some of the functions, and
making others less dependent on side effects.

Below is an example of some of the
alternatives to ASDF operations that we have
developed. The sysdef-exhaustive-
central-registry-search (see Figure
3) is a version of asdf::sysdef-
central-registry-search that doesn't
stop as soon as the first candidate ASD-file
is found. It is used instead of
asdf:search-for-system-
definition, and has a drawback of
limiting the search to only the legacy
central-registry locations.

(defun sysdef-exhaustive-central-registry-search (system)
 (let ((name (asdf:primary-system-name system))
 rez)
 (dolist (dir asdf:*central-registry*)
 (let ((defaults (eval dir)))
 (when (and defaults (uiop:directory-pathname-p defaults))
 (let ((file (asdf::probe-asd name defaults
 :truename asdf:*resolve-symlinks*)))
 (when file (push file rez))))))
 (reverse rez)))
Figure 3. Source code for the sysdef-exhaustive-central-registry-search function

We, also, had to resort to an interesting way of
getting a record for a specific system by its

ASD-file (see Figure 4) as a part of an
alternative implementation of find-

ELS 2017 15

system. Unfortunately, there is no ASDF
function that will load an ASD file and return a

list of ASDF system objects for the systems
defined in it.

(asdf:load-asd asd)
(cdr (asdf:system-registered-p system))
Figure 4. Source code for the sysdef-exhaustive-central-registry-search function

Finally, in Figure 5 you may find a workaround
to shortcircuit the ASDF operations'
interdependency mechanism and prevent it from
performing any other actions except directly

loading the components of a current system. In
general, it is a sign of excessive code coupling
when a simpler operation requires more code
than a more complex one, which includes it.

(defparameter *loading-with-renamings* nil)
(defmethod asdf:component-depends-on :around ((o asdf:prepare-op)
 (s asdf:system))
 (unless *loading-with-renamings*
 (call-next-method)))
(defun load-components (sys)
 (let ((*loading-with-renamings* t))
 (dolist (c (asdf:module-components sys))
 (asdf:operate 'asdf:load-op c)))
 t)
Figure 5. Source code for the simplified mechanism of ASDF components loading

To sum up, the current version of ASDF is
tightly-coupled and lacks referential
transparency at core, while at the middle level
it's not well-documented and lacks a
comprehensive API that could be used for the
development of alternative top-level system
management utilities based on a solid
foundation of ASDF's system discovery and
individual component manipulation machinery.

4. Limitations of the Solution
The proposed solution is, primarily, intended for
the use case of loading the whole target system
at once without future modifications of its
dependencies in-memory, which is necessitated
by production build environments. The
alternative system load scenarios, that are,
mostly, interactive and allow for the
programmer to remain in control of the
environment, resorting, in case of conflicts, to
manual intervention ranging from explicit
renaming to changing the source code of the
conflicting dependencies and "vendoring" them
as part of the project, are not in such desperate
need of an automatic solution.

Our approach has a number of limitations
that should be listed to avoid unexpected and
unexplainable edge cases. The risk of their
manifestation in the intended environment is
low, but, nevertheless, the users should be
aware of the possible shortcomings.

The first limitation is the passive mechanism
of capturing package changes after-the-fact,
which is not transactional. Parallel
invocation of load-system-with-
renamings has a race condition. The
critical section is the process of recording the
changes to the global package table in
renaming-packages. To remove the
limitation, this part may be protected by a
mutex. This is not done in the presented code
to avoid additional complexity. Ideally, the
sequential and parallel versions of this
procedure should be provided with the
sequential one being the default. An
alternative solution would be to perform full
source code analysis of the system to be
loaded in order to determine, which
packages will be defined in it. Such
complexity is definitely an overkill.

16 ELS 2017

Our approach also relies on the assumption that
all the packages from the currently loaded
systems where not defined previously. It is a
reasonable constraint for the vanilla production
environment, which may, however, be violated
during an interactive session. Unfortunately, the
only measure that may be taken here is a
disciplined approach to package loading. At
least, the Lisp compiler will issue a warning on
package redefinition, which will alert the
programmer that the name conflict has occurred.
It is possible to expand the loading function to
intercept this warning and terminate its
operation, if necessary.

Elaborating on this point, it should be also
obvious that this procedure will not be able to
catch changes to existing packages (that may be
regarded as monkey-patching, in this context). It
is debatable, whether such changes should be
prevented by our system, as their purpose is
usually contradictory to the idea of immutable
dependencies that our solution upholds.

Next potential issue is associated with implicit
transitive dependencies: if a system foo depends
on bar and quux, and bar also depends on quux,
in ASDF system definition, it is sufficient to list
only bar as foo's direct dependency. This
implicit dependency may break if quux's
packages are renamed during the loading
process: according to the algorithm, the
renaming will happen directly after loading of
bar. In such situation, all the references to
quux's packages in foo's code will be
invalidated, as they will be read when the
packages will not be accessible by the old
canonical names. However, such situation is
relevant only to the newly defined systems that
are under full control of the developer, as for the
deeper dependencies there should be no version
conflicts, as they would not have allowed the
system to be built by the normal ASDF
procedure, and conflicts introduced when
combining multiple dependencies are resolved
at the topmost level by the algorithm, thus not
effecting the dependency subtrees of the
combined systems. Adding an explicit

dependency on quux in foo allows solving
the problem in a straightforward way.

Also, our approach doesn't address the
possibility of two independent packages
having the same name and version, but it,
probably, should be handled not at the code-
base level, but rather the social one.
Additionally, our conflict-finding mechanism
may be extended to catch such case.

Finally, the additional minor inconvenience
is that the conflicting packages will be
available under altered names, which can be
discovered from the environment but are not
apparent. This may impede interactive
redefinition, monkey-patching, hot-patching
and other interactive programming practices
that might occasionally be of interest to the
user. It will surely break the code relying on
runtime manipulations using intern or
eval: the references to the renamed
packages in the code not yet evaled will be
invalidated after the renaming, unlike the
references in the code that was read and
loaded, which will be associated with new
names automatically.

5. Conclusions and Future Work
Our name conflict resolution algorithm and
its proof-of-concept implementation provide
a feasible solution to potential dependency
hell problems for Common Lisp software,
specifically targeted to production
environments. The paper also explores its
corner cases, which require special handling.
Although this solution may not be final, it is
already usable in the environments that are
faced with dependency conflicts.

The proposed approach has several
directions of improvement:

 It should be expanded to cover other
non-load-based scenarios of system
manipulation. In particular, for the
compilation use case, the
implementation should be almost
identical.

 It should be made more compatible

ELS 2017 17

with ASDF (provided ASDF is also
changed to be less hostile to such
solutions).

Exploration of the possible implementation
strategies for this program also helped uncover
the deficiencies in the current implementation of
ASDF and showed one of the directions for its
future development. ASDF is underutilizing its
position as a de facto standard toolkit for
dependency management in Common Lisp by
not providing a comprehensive API for
manipulation of both systems and system
definition files. In order to allow for this
algorithm and other possible non-default build
strategies to be implemented on top of ASDF
public API, a number of changes are necessary.
In general, those should include decoupling of
the ASDF code base (specifically from the
assumptions of a 1-to-1 mapping of a system
record in the ASDF registry to a system
currently loaded), comprehensive
documentation of the plan and action APIs,
development of utility wrapper functions for
common middle-level actions, and a general
review of the public API according to the
scenarios we'd like it to support.

References
[1] “Dependency Hell” definition -
https://en.wikipedia.org/wiki/Dependency_hell
[2] Pitman, K. M., Common Lisp HyperSpec, 1996.
Chapter 11. Packages -
http://www.lispworks.com/documentation/lw50/CL
HS/Body/11_.htm
[3] Nickname collision: bordeaux-threads and
binary-types -
https://github.com/quicklisp/quicklisp-
projects/issues/296
[4] Beane, Z., Quicklisp - http://quicklisp.org
[5] “Continuous Integration” definition -
https://en.wikipedia.org/wiki/Continuous_integration
[6] Semantic Versioning - http://semver.org/
[7] Vodonosov, A., Backward compatibility of
libraries (case study in Common Lisp) -
https://www.european-lisp-
symposium.org/editions/2016/lightning-talks-1.pdf
[8] Kernfeld, P., The Nine Circles of Python
Dependency Hell -
https://tech.knewton.com/blog/2015/09/the-nine-
circles-of-python-dependency-hell/

[9] Liang, S., Bracha, G., Dynamic class loading
in the Java virtual machine - Proceedings of the
13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, OOPSLA ’98, pages 36–44, 1998 -
http://www.humbertocervantes.net/coursdea/Dyn
amicClassLoadingInTheJavaVirtualMachine.pdf
[10] OSGi service platform core specification -
http://www.osgi.org/
[11] Project Jigsaw. Project Jigsaw website -
http://openjdk.java.net/projects/jigsaw/
[12] Herman, D., Tobin-Hochstadt, S., Modules
for JavaScript Simple, Compilable, and Dynamic
Libraries on the Web -
homes.soic.indiana.edu/samth/js-modules.pdf
[13] Pitman, K. M., Common Lisp HyperSpec,
1996. Function RENAME-PACKAGE -
http://www.lispworks.com/documentation/Hyper
Spec/Body/f_rn_pkg.htm
[14] ASDF System -
http://www.cliki.net/ASDF+System
[15] ASDF - https://common-
lisp.net/project/asdf/
[16] make. Gnu make website -
https://www.gnu.org/software/make/
[17] ant. Apache ant website -
http://ant.apache.org/
[18] Rideau, F.-R., Goldman, R.P., ASDF
Manual. Chapter 7.4 Functions, Function:
version-satisfies - https://common-
lisp.net/project/asdf/asdf/Functions.html
[19] Domkin, V., ASDFx -
https://github.com/vseloved/asdfx/blob/master/as
dfx.lisp
[20] Rideau, F.-R., Goldman, R.P., ASDF
Manual. Chapter 7. The Object model of
ASDF - https://common-
lisp.net/project/asdf/asdf/The-object-model-of-
ASDF.html

18 ELS 2017

Session II: Types

A Lisp Way to Type Theory and Formal Proofs

Frederic Peschanski
UPMC Sorbonne Universités – LIP6

4 place Jussieu
Paris, France

frederic.peschanski@lip6.fr

ABSTRACT
In this paper we describe the LaTTe proof assistant, a soft-
ware that promotes the Lisp notation for the formalization
of and reasoning about mathematical contents. LaTTe is
based on type theory and implemented as a Clojure library
with top-level forms for specifying axioms, definitions, the-
orems and proofs. As a pure library, LaTTe can exploit the
advanced interactive coding experience provided by mod-
ern development environments. Moreover, LaTTe enables a
form of proving in the large by leveraging the Clojar/Maven
ecosystem. It also introduces a very simple and concise
domain-specific proof language that is deeply rooted in nat-
ural deduction proof theory. And when pure logic is not
enough, the system allows to take advantage of the host
language: a Lisp way to proof automation.

CCS Concepts
•Theory of computation → Logic; Type theory;

Keywords
Logic; Type Theory; Proof Assistant; Clojure

1. INTRODUCTION
Proof assistants realize an ancient logician’s dream of

(re)constructing mathematics based on purely mechanical
principles. Most proof assistants (perhaps with the excep-
tion of [6]) are complex pieces of software.

One important factor of this complexity is that proof as-
sistants generally try to mimic the common mathematical
notation, which is a complex parsing problem that very of-
ten get in the way of the user. LaTTe, in comparison, totally
surrenders to the simplicity (and sheer beauty) of a Lisp no-
tation. This is also the case of the ACL2 theorem prover [7].
One immediate gain is that the complex issue of parsing
vanishes. It also makes the definitions more explicit and less
ambiguous than if written with more traditional (and highly
informal) computerized variants of mathematical notations.

ELS ’16 April AA–BB, 2017, Brussels, Beldium

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Another important characteristic is that LaTTe is imple-
mented as a library. The activity of doing mathematics is
here considered as a form of (rather than an alternative to)
programming. We see this as a clear advantage if compared
to proof assistants designed as standalone tools such as Is-
abelle [11] or Coq [14]. First, this gives a better separation
of concerns, only a small library is to be maintained, rather
than a complex tool-chain. Moreover, modern Lisp imple-
mentations often come with very advanced tools for interac-
tive programming that enables live-coding mathematics1.

Another important factor of complexity in proof assis-
tants, both for the developers and the users, is the language
in which proofs are written. The LaTTe proof language is
from this respect extremely small and simple. It only in-
troduces two constructs: assume and have with obvious
semantics. The language is also arguably less ad-hoc than
most other proof languages in that it is deeply rooted in
natural deduction proof theory [12]. As a summary, LaTTe
aims at minimalism. It has less features than most other
proof assistants and each implemented feature strives for
simplicity and concision. We argue, however, that this set
of features is already plenty enough for the purpose of for-
malizing mathematics on a computer.

The outline of the paper is as follows. First, in section 2
LaTTe is introduced from a user perspective. The general
principles underlying the LaTTe kernel are then discussed
in section 3. In particular, we provide a bidirectional type
systems that is used in LaTTe to perform both proof/type-
checking and type inference. Perhaps the most significant
feature of LaTTe is the introduction of a domain-specific
language (DSL) for proof scripts. This is presented and il-
lustrated with examples in section 4. In section 5 we discuss
the way parts of proofs can be automated, the Lisp-way. In
section 6 we discuss some (non-)features of LaTTe in com-
parison with other proof assistants.

2. A LOGICIAN’S DREAM
Quoting [5], the main functionality of a proof assistant is

to:

• formalize mathematical contents on a computer

• assist in proving theorems about such contents

Mathematical contents, as can be found in textbooks and
proof assistants, is mostly based on definitions, and state-
ment of axioms and theorems. Consider for example the

1cf. https://www.youtube.com/watch?v=5YTCY7wm0Nw

20 ELS 2017

(proof compose-injective
:script
;; Our hypothesis is that f and g are injective.
(assume [Hf (injective U V f)

Hg (injective T U g)]
;; We now have to prove that the composition is injective.
;; For this we consider two arbitrary elements x and y
;; such that f ◦ g(x) = f ◦ g(y)
(assume [x T

y T
Hinj (equal V (f (g x)) (f (g y)))]

;; Since f is injective we have: g(x) = g(y).
(have 〈a〉 (equal U (g x) (g y))

:by (Hf (g x) (g y) Hinj))
;; And since g is also injective we obtain: x = y.
(have 〈b〉 (equal T x y) :by (Hg x y 〈a〉))
;; Since x and y are arbitrary, f ◦ g is thus injective.
(have 〈c〉 (injective T V (λ [x T] (f (g x))))

:discharge [x y Hinj 〈b〉]))
;; Which is enough to conclude the proof.
(qed 〈c〉)))

Table 1: A declarative proof script in LaTTe.

notion of an injective function for which every element of
the codomain is the image of at most one element of the
domain. This can be formalized as follows in LaTTe:

(definition injective
"An injective function."
[[T ?] [U ?] [F (=⇒ T U)]]
(forall [x y T]

(=⇒ (equal U (F x) (F y))
(equal T x y))))

Similarly to the ACL2 theorem prover [7], LaTTe uses a
Lisp notation (with Clojure extensions and Unicode charac-
ters) for the definition of mathematical contents. With a bit
of practice and a good editor, this notation should become
a Mathematician’s best friend.

After defining some mathematical concepts as definitions,
the next step is the statement of theorems. An important
property of injective functions is stated below.

(defthm compose-injective
"The composition of two injective functions
is injective."
[[T ?] [U ?] [V ?] [f (=⇒ U V)] [g [=⇒ T U]]]
(=⇒ (injective U V f)

(injective T U g)
(injective T V (λ [x T] (f (g x))))))

The defthm form only declares a theorem. In the next
step, we must provide a formal proof so that the theorem
can be used in further developments.

There are two main families of proof languages. First
there is the LCF-style tactic languages2 as found in e.g.
Coq [14] or HOL light [6]. This is an imperative formal-
ism that works on a goal-state to conduct the proofs. The
main drawback of such an approach is that the proofs are
then very remote from the mathematical practice. More-
over, they cannot be understood without interacting with

2As a historical remark, the first tactic languages for LCF
were developed in Lisp. However this lead to the creation of
the ML programming language. Modern variants of ML are
often used nowadays to implement theorem provers.

(definition D "〈doc〉"
[[x1 t1] . . . [xn tn]]
〈term〉)

〈term〉 t, u ::= � (kind)
| ? (type)
| x (variable)
| [t u] (application)
| (λ [x t] u) (abstraction)
| (Π [x t] u) (product)
| (D t1 t2 . . . tn) (instantiation)

Table 2: The syntax of the LaTTe calculus

the tool. Proofs do not have a life on their own in such en-
vironments. The declarative proof languages, such as Isar3

in Isabelle [11], on the contrary, are designed to be closer to
standard “pencil and paper” proofs. In LaTTe a proof can
be written in two ways: either by supplying a lambda-term
(as explained in the next section), or more interestingly us-
ing a declarative proof script. The language for proof scripts
is probably the most distinctive feature of LaTTe. It is de-
scribed more thoroughly in section 4, but we illustrate its
use by the proof of the theorem compose-injective, given in Ta-
ble 1. One important characteristic of this proof is that the
formal arguments (in Lisp forms) are in close correspondence
with the informal proof steps (in comments). An important
difference with a proof language such as Isar is of simplic-
ity: only two constructs are introduced: assume and have.
And the underlying proof theory is just standard natural
deduction [12].

3. LAMBDA THE ULTIMATE
The kernel of the LaTTe library is a computerized version

of a simple, although very expressive lambda-calculus. It is a
variant of λD as described in the book [9], which corresponds
to the calculus of constructions [4] (without the prop/type
distinction) enriched with definitional features.

3.1 Syntax
The basic syntax of the LaTTe calculus is given in Ta-

ble 2. There are various syntactic sugars that will for some
of them be introduced later on, and there is also a defno-
tation mechanism to introduce new notations when needed
(e.g. for the existential quantifier, which is a derived prin-
ciple in type theory). Perhaps the most notable feature of
the calculus is that it is compatible with the extended data
notation4, i.e. it is a subset of the Clojure language5. As
a dependently-typed lambda-calculus, there is no syntac-
tic distinction between terms and types. A type is sim-
ply a term whose type is ?, called the sort of types. The
type of ? itself is a sort called a kind and denoted by �6.
The kernel of any lambda-calculus is formed by the triptych:
variable occurrences x, y, . . ., function applications [t u] and
abstractions (λ [x t] u). The latter expresses a function
with an argument x of type t (hence a term of type ?) and

3Isar stands for “Intelligible semi-automated reasoning”.
4cf. https://github.com/edn-format/edn
5This means that the lambda-terms in LaTTe can be quoted
in Clojure, and thus used to feed macros.
6For the sake of logical consistency, the kind � has no type,
which makes LaTTe an impredicative type theory.

ELS 2017 21

with term u as body. The type of a lambda-abstraction
is called a product and is denoted by (Π [x t] u). The in-
tended meaning is that of universal quantification: “for all
x of type t, it is the case that u”. As an example, the term
(λ [A ?] (λ [x A] x)) corresponds to a type-generic identity
function. Its type is (Π [A ?] (Π [x A] A)). An impor-
tant syntactic sugar that we will largely exploit is that if in
(Π [x t] u) the variable x has no free occurrence in the body
u, then we can rewrite the product as (=⇒ t u). This can be
interpreted ass an arrow type of functions that from inputs
of type t yield values of type u. Alternatively, and in fact
equivalently this is the logical proposition that “t implies u”.
When such a logical point of view is adopted, the universal
quantified symbol ∀ can be used instead of the more esoteric
Π. For the type-generic identity function, this finally gives
(∀ [A ?] (=⇒ A A)), i.e. for any type (proposition) A, it
is the case that A implies A. This gives a first glimpse of
the tight connection between computation and logic in such
a typed lambda-calculus, namely the Curry-Howard corre-
spondence [13].

Because LaTTe is aimed at practice and not only theory,
the basic lambda-calculus must be enriched by definitional
principles. First, parameterized definitions can be intro-
duced using the definition form. Then, such definitions
can be instantiated to produce unfolded terms. In LaTTe,
parenthesized (and desugared) expressions that do not begin
with λ or Π are considered as instantiations of definitions.

For example, we can introduce a definition of the type-
generic identity function as follows:

(definition identity
"the identity function"
[[A ?][x A]]
x)

Then, an expression such as (identity nat 42) would be in-
stantiated to 42 (through δ-reduction, as discussed below).
In theory, explicit definitions and instantiations are not re-
quired since they can be simulated by lambda-abstractions
and applications, but in practice it is very important to give
names to mathematical concepts (as it is important to give
names to computations using function definitions).

3.2 Semantics
The semantics of lambda-calculus generally rely on a rewrit-

ing rule named β-reduction and its application under a con-
text:

• (conversion) [(λ[x t]u) v]
β−→ u{v/x}

• (context) if t
β−→ t′ then C[t]

β−→ C[t′], for any single-
hole context C.

The notation u{v/x} means that in the term u all the free
occurrences of the variable x must be substituted by the

term v. For example, we have [a [(λ [x] [bx]) [c d]]]
β−→

[a [b [c d]]]. This is because if we let t = [(λ [x] [bx]) [c d]] and

t′ = [b [c d]] then t
β−→ t′ by the conversion rule. And if we

define the context C[X] = [a X] with hole X, then C[t]
β−→

C[t′] by the context rule. While β-reduction seems trivial, it
is in fact not the case, at least at the implementation level.
One difficulty is that lambda-terms must be considered up
to α-equivalence. For example, (λ [x t] u) ≡α (λ [y t] u)
because we do not want to distinguish the lambda-terms

based on their bound variables. Reasoning about such issues
is in fact not trivial, cf. e.g. [3]. A lambda-calculus aimed at
logical reasoning has to fulfill two important requirements:

• strong normalization: no lambda-term t yields an in-
finite sequence of β-reductions

• confluence: if t
β∗
−−→ t1 and t

β∗
−−→ t2 then there exist

a term u such that t1
β∗
−−→ u and t2

β∗
−−→ u (up-to α-

equivalence)7

As a consequence, each lambda-term t possesses a unique
normal form t̃ (up-to α-equivalence). Thus, two terms t1
and t2 are β-equivalent, denoted by t1 =β t2, iff t̃1 ≡α t̃2.
In a proof assistant based on type theory, the α-equivalence
and β-reduction relations are not enough, for example to
implement the definitional features. The LaTTe kernel uses
a δ-reduction relation, similar to that of [9], to allow the
instantiation of definitions.

If we consider a definition D of the form given in Table 2
then the rules are as follows:

• (instantiation) (D t1 . . . tn)
δ−→ u{t1/x1, . . . , tn/xn}

• (context) if t
δ−→ t′ then C[t]

δ−→ C[t′], for any single-
hole context C.

At the theoretical level, the overlap between β and δ-reductions
is relatively unsettling but in practice, β-reduction works by
copying terms while δ-reduction uses names and references,
and is thus much more economical. Moreover, in mathe-
matics giving names to definitions and theorems is of pri-
mary importance so the issue must be addressed with rigour.
LaTTe here still roughly follows [9].

LaTTe introduces a further σ-reduction relation for def-
special’s. This is discussed in section 5.

3.3 Type inference
There are three interesting algorithmic problems related

to the typing of lambda-terms. First, there is the type check-
ing problem. Given a term t and a term u, check that u is
the type of t. In LaTTe this problem occurs given:

• a definitional environment Γ containing an unorded
map of definition names to definitions. For exam-
ple, if D is a definition then Γ[D(t1, . . . , tn)] gives the
lambda-term corresponding to the definition contents.

• a context ∆ containing an ordered list of associations
from (bound) variable names to types. If x is a variable
in the context, then ∆[x] is its type.

A term t that has type u in environment Γ and context ∆
is denoted by: Γ; ∆ ` t :: u. It is not very difficult to show
that type checking in LaTTe is decidable. This would be a
relatively straightforward elaboration for λD in [9]. Suppose
that we know only the type part. Thus, we have to find a
term to replace the question mark in Γ; ∆ `? :: u. This
term synthesis problem is not decidable in LaTTe and the
intuition is that we would then have an algorithmic way to
automatically find a proof for an arbitrary theorem. Term
synthesis can still be partially solved in some occasions, and

7The notation t
β∗
−−→ t′ means zero or more β-reductions from

t to t′, it is the reflexive and transitive closure of the relation
of β-reduction under context.

22 ELS 2017

Γ; ∆ ` ? :> � (type)
Γ; ∆ ` Ã :: s s ∈ {?,�}

Γ; ∆, x :: A ` x :> A
(var)

Γ; ∆ ` A :> s1 Γ; ∆, x :: A ` B :> s2 s̃1, s̃2 ∈ {?,�}
Γ; ∆ ` (Π [x A] B) :> s2

(prod)

Γ; ∆, x :: A ` t :> B Γ; ∆ ` (Π [x A] B) :> s s̃ ∈ {?,�}
Γ; ∆ ` (λ [x A] t) :> (Π [x A] B)

(abs)
Γ; ∆ ` t :> (Π [x A] B) Γ; ∆ ` u :: A

Γ; ∆ ` [t u] :> B{u/x} (app)

Γ[D] :: [x1 t1] [x2 t2] · · · [xn tn]→ t
Γ; ∆ ` e1 :: t1 Γ; ∆, x1 :: t1 ` e2 :: t2 · · · Γ; ∆, x1 :: t1, x2 :: t2, . . . , xm−1 :: tm−1 ` em :: tm

Γ; ∆ ` (D u1 u2 . . . um) :> (Π [xm+1 tm+1] . . . (Π [xn tn] t{u1/x1, u2/x2, . . . , um/xm}) · · ·)
(ref)

Table 3: Type inference rules

(defn type-of-var [def-env ctx x]
(if-let [ty (ctx-fetch ctx x)]

(let [[status sort] (let [ty’ (norm/normalize def-env ctx ty)]
(if (stx/kind? ty’)

[:ok ty’]
(type-of-term def-env ctx ty)))]

(if (= status :ko)
[:ko {:msg "Cannot calculate type of variable." :term x :from sort}]
(if (stx/sort? sort)

[:ok ty]
[:ko {:msg "Not a correct type (super-type is not a sort)" :term x :type ty :sort sort}])))

[:ko {:msg "No such variable in type context" :term x}]))

(example
(type-of-var {} ’[[bool ?] [x bool]] ’x) ⇒ ’[:ok bool])

(example
(type-of-var {} ’[[x bool]] ’x)
⇒ ’[:ko {:msg "Cannot calculate type of variable.",

:term x :from {:msg "No such variable in type context", :term bool}}])

Table 4: The Clojure source for the (var) inference rule.

it is an interesting approach for proof automation. On the
other hand, one may want to replace the question mark in
the following problem: Γ; ∆ ` t ::?. Now we are looking for
the type of a given term, which is called the type inference
problem. LaTTe has been designed so that this problem is
decidable and can be solved efficiently. If the inferred type
of term t is A, then we write: Γ; ∆ ` t :> A.

Table 3 summarizes the type inference rules used in LaTTe.
Each rule corresponds to a Clojure function, we will take the
(var) rule as an example. Its implementation is a function
named type-of-var, whose complete definition is given in Ta-
ble 4. For a variable x present in the context ∆ (parameter
ctx in the source code) with type A, the (var) rule first nor-
malizes A (using the norm/normalize function) and compares
its type with a sort ? or �. This checks that A is effectively
a type. In the conclusion of the rule, the notation x :> A
is to be interpreted as “the inferred type for x is A”. In
the source code, this corresponds to the value of the vari-
able ty. Note that only the denormalized version of the type
is inferred, which is an important memory saving measure.
The other rules are connected similarly to a rather straight-
forward Clojure function. One subtlety in the (app) rule
for application is that the operand term u must be checked
against an inferred type A. It is possible to implement a
separate type-checker. For one thing, type-checking can be
done more efficiently than type inference. Moreover, it is

a simpler algorithm and is useful for separate proof check-
ing. However, there is a large overlap between the two algo-
rithms and it is not really worth the duplication. Indeed, a
type-checking algorithm can be obtained “for free” using the
following fact:

Γ; ∆ ` t :: u iff Γ; ∆ ` t :> v and v =β u

The complete implementation of the type inference algo-
rithm is less than 400 lines of commented code, and is avail-
able on the github repository8.

4. A DSL FOR PROOF SCRIPTS
The language of mathematical proofs is very literary and

remote from the formal requirements of a computer system.
As discussed in [5], a proof should be not just a certificate of
truthiness but also, and perhaps most importantly, an ex-
planation about the theorem under study. Proof assistants
that use a tactic language (such as Coq or HOL) do not pro-
duce readable proofs. To understand the proof, one gener-
ally has to replay it step-by-step on a computer. A language
such Isabelle/Isar allows for declarative proof scripts, that
with some practice can be read and understood like classi-
cal proofs on papers. However Isar is arguably a complex

8cf.https://github.com/latte-central/LaTTe/blob/master/
src/latte/kernel/typing.clj

ELS 2017 23

〈proof〉 P ::= (proof thm :term t) (direct proof)
| (proof thm :script ρ) (proof script)

〈script〉 ρ ::= σ ρ (proof step σ)
| (assume [H t] ρ) (global assumption)
| (qed t) (proof term t)

〈step〉 σ ::=
(assume [H t] ρ) (local assumption)
| (have 〈a〉 A :by t) (proof of A with term t)
| (have 〈a〉 A :discharge [x1 · · ·xn t]) (discharge assumptions)

Table 5: The proof language of LaTTe

an rather ad hoc language, with only informal semantics.
The domain specific language (DSL) for declarative proof
scripts in LaTTe is in comparison very simple. It is an im-
plementation, in the context of type theory and LaTTe, of
fitch-style natural deduction proofs [12], and is thus deeply
rooted in logic and proof theory. The syntax of the proof
language is very concise (cf. Table 5) and with simple and
formal semantics (cf. Table 6).

As an illustration, we consider the following proposition:

φ ≡ ((P =⇒ Q) ∧ (¬R =⇒ ¬Q)) =⇒ (P =⇒ R)

A natural deduction proof of φ, said in Fitch-style and adapted
from [12], is given in Table 7. We will now see how to
translate such a proof to the LaTTe proof language. Ini-
tially, the environment Γ contains at least the theorem to
prove, but without a type, i.e. something of the form:
thm(P :: ?,Q :: ?,R :: ?)/? : φ. The context ∆ contains
the three bindings: P :: ?,Q :: ?,R :: ?

The beginning of our LaTTe proof is as follows:

(proof thm :script
(assume(H (and (=⇒ P Q)

(=⇒ (not P) (not Q))))
...

According to rule (glob) of Table 6, the hypothesis H and
its type (the stated proposition) is introduced in the context
∆. The term u generated by the body of the assume block
will be propagated. The first step is as follows:

... continuing
(have 〈a〉 (=⇒ P Q) :by (p/and-elim-left% H))
...

The justification (and-elim-left% H) is a defspecial that
will be discussed more precisely in the next section. But it
is simply a function that takes the proof of a conjunction and
generates the proof of the left operand of the conjunction.
The result of a have step, handled by the rule named (by),
is to add a new definition to the environment Γ of the form:

〈a〉 / t :: (=⇒ P Q)

with t the left-elimination of assumption H. Of course,
this only works if the type-checker agrees: each have step
is checked for correctness.

Ultimately, each accepted step is recorded as a local the-
orem recorded in Γ.

The hypothesis x of type P is assumed and in the next
steps we have:

... continuing
(assume [x P]

(have 〈b〉 Q :by (〈a〉 x))
(have 〈c〉 (=⇒ (not R) (not Q))

:by (p/and-elim-right% H))
...

Now, still through rule (by) the environment Γ is extended
with definitions 〈b〉, obtained by applying x on 〈a〉, and 〈c〉,
obtained by right-elimination of H. For the moment we
remain very close to the original Fitch-style proof. In the
next step, the objective is to perform a reductio ab absurdum.
We first state ¬R and derive a contradiction from it. This
gives:

... continuing
(assume [Hr (not R)]

(have 〈d〉 (not Q) :by (〈c〉 Hr))
(have 〈e〉 absurd :by (〈d〉 〈b〉))
(have 〈f1〉 (not (not R))

:discharge [Hr 〈e〉]))
...

In the type theory of LaTTe, the proposition (not P) corre-
sponds to (=⇒ P absurd) with absurd an type without inhab-
itant, classically: (∀ [A ?] A). Hence after having obtained
(not Q) through step 〈c〉 we obtain step 〈e〉. The :discharge

step 〈f1〉 corresponds to the generation of a lambda term of
the form: (λ [Hr (not R)] 〈e〉) hence a term of type (==> (not

R) absurd), thus (not (not R)). Since we discharged the hy-
pothesis Hr we can close the corresponding assume scope9.

In the Fitch-style proof at step 〈f〉 we deduce R by con-
tradiction. This reasoning step can only be performed in
classical logic. In fact the proposition (=⇒ (not (not R)) R) is
equivalent to the axiom of the excluded middle, and is thus
classical in essence. In LaTTe, we must rely on the classic

namespace to perform the corresponding step, as follows.

... continuing
(have 〈f2〉 R

:by ((classic/not-not-impl R) 〈f1〉)
...

At this point we are able to assert the conclusion of the
rule, and finish the proof.

... continuing
(have <g> (==> P R) :discharge [x 〈f2〉]))

(qed 〈g〉)))

The term synthetized at step 〈g〉 is propagated to the
(script) rule using the rule (qed). Finally, the type-checking
problem 〈g〉 :: φ is decided, which leads to the acceptation
or refutal of the proof. Hence, the natural deduction proof
script is only to elaborate, step-by-step, a proof candidate.
Ultimately, the type-checker will decide if the proof is correct
or not.

5. PROOF AUTOMATION, THE LISP WAY
Proof automation is an important part of the proof assis-

tant experience. In a semi-automated theorem prover such
as ACL2 [7], the objective is to minimize the need for inter-
action with the tool. This requires strong restrictions on the

9In the current version of LaTTe the :discharge steps are per-
formed automatically when closing the assume blocks. Thus,
they do not have to (and in fact cannot) be written by the
user.

24 ELS 2017

Γ;x1 :: t1, . . . , xn :: tn ` t :: P

Γ, thm(x1 :: t1, . . . , xn :: tn)/? :: P
` (proof thm :term t) a Γ, thm / t :: P

(term)

Γ;x1 :: t1, . . . , xn :: tn ` ρV t a Γ′

Γ;x1 :: t1, . . . , xn :: tn ` t :: P

Γ, thm(x1 :: t1, . . . , xn :: tn)/? :: P
` (proof thm :script ρ) a Γ, thm / t :: P

(script)

Γ; ∆ ` σ V t a Γ′ Γ′; ∆ ` ρV u a Γ′′

Γ; ∆ ` σ ρV u a Γ′′
(step)

Γ; ∆, H :: t ` ρV u

Γ; ∆ ` (assume [H t] ρ)V u
(glob)

Γ; ∆ ` (qed t)V t
(qed)

Γ; ∆, H :: t ` ρV u a Γ′

Γ; ∆ ` (assume [H t] ρ) a Γ′
(loc)

Γ; ∆ ` t :: A

Γ; ∆ ` (have 〈a〉 A :by t) a Γ, 〈a〉 / t :: A
(by)

Γ; ∆ ` t′ :: A t′ ≡ (λ [x1 :: t1] · · · (λ [xn :: tn] t) · · ·)
Γ; ∆, x1 :: t1, . . . , xn :: tn ` (have 〈a〉 A :discharge [x1 · · · xn t]) a Γ, 〈a〉 / t′ :: A

(hyp)

Table 6: The semantics of LaTTe proof scripts

H. (P =⇒ Q) ∧ (¬R =⇒ ¬Q)

〈a〉 P =⇒ Q ∧Elim:H

x. P

〈b〉 Q =⇒ Elim:〈a〉, x
〈c〉 ¬R =⇒ ¬Q ∧Elim:H

Hr. ¬R

〈d〉 ¬Q =⇒ Elim:〈c〉,Hr
〈e〉 Q Repeat:〈b〉
〈f〉 R Absurd:Hr

〈g〉 P =⇒ R =⇒ Intro:x, 〈f〉

Table 7: A Fitch-style proof (from [12])

logic manipulated by the tool. Tactic-based proof assistants
often provide complex decision procedures implemented as
dedicated tactics. In LaTTe, proof automation relies on a
less imperative notion of special that we discuss in this sec-
tion.

In LaTTe proof scripts, each have step of the form (have

〈a〉 A :by t) involves the following chain of events:

1. stating a proposition as a type A

2. finding a candidate term t

3. checking that the term t effectively has type A

In the normal usage, the user needs to perform steps 1
and 2, and LaTTe automatically performs step 3. In some
situations, the user can benefit from the LaTTe implemen-
tation to either state the proposition, or even receive help
in finding a candidate term.

Given the term t, the type inference algorithm of Table 3
may be used to obtain proposition A automatically. The
syntax of such a proof state is: (have 〈a〉 :by t). In many sit-
uations, it is not recommended because it may make a proof
unintelligible, however sometimes this is useful to avoid re-
dundancies in the proofs.

The most interesting situation is the converse: when the
proposition A is known but it remains to find the candi-
date term t. The term synthesis problem is not decidable

in general, but it is of course possible to help in the finding
process.

The LaTTe proof assistant follows the Lisp tradition of
allowing users to write extensions of the system in the host
language itself (namely Clojure). This is the purpose of the
defspecial form that we introduce on a simple example.

The left-elimination rule for conjunction is declared as fol-
lows in LaTTe:

(defthm and-elim-left "..."
[[A :type] [B :type]]
(==> (and A B)

A))

When using this theorem in a have step, one needs to
provide the types A and B as well as a proof of (and A B),
i.e. something of the form:

(have 〈a〉 A :by ((and-elim-left A B) p))

with p a term of type (and A B). But if p has a conjunction
type, then it seems redundant having to state propositions
A and B explicitely. This is where we introduce a special
rule and-elim-left% as follows.

(defspecial and-elim-left% "..."
[def-env ctx and-term]
(let [[status ty]

(type-of-term def-env ctx and-term)]
(if (= status :ko)

(throw (ex-info "Cannot type term." ...))
(let [[status A B]

(decompose-and-type def-env ctx ty)]
(if (= status :ko)

(throw (ex-info "Not an ‘and‘-type." ...))
[(list #’and-elim-left A B) and-term])))))

A defspecial is similar to a regular Clojure function, ex-
cept that it may only be called during a have proof step. It
receives as arguments the current environment and context
as well as the argument calls. In the case of the left elimi-
nation rule, only one supplementary argument is passed to
the special: the term whose type must be a conjunction (pa-
rameter and-term in the code above). In the first step, the
type of the term is calculated using the inference algorithm.
If a type has been successfully derived, an auxiliary function

ELS 2017 25

named decompose-and-type analyzes the type to check if it is
a conjunction type. If it is the case then the two conjuncts
A and B are returned. Ultimately, a defspecial form must
either throw an exception or return a synthesized term. In
our case, the non-special term ((and-elim-left A B) and-term) is
returned.

In a proof, the have step for left-elimination is now sim-
pler:

(have 〈a〉 A :by (and-elim-left% p))

This is only a small example, there are many other use of
specials in the LaTTe library.

The defspecial form is quite expressive since the com-
putational content of a special can exploit the full power
of the host language. We might wonder if allowing such
computations within proofs is safe. Thanks to the ultimate
type-checking step, there is no risk of introducing any in-
consistency using specials. In fact the only “real” danger is
to introduce an infinite loop (or a too costly computation)
in the proof process. But then the proof cannot be finished
so we are still on the safe side of things. For the moment,
there is no complex decision procedure implemented using
specials so it is difficult to compare the approach with the
common tactic-based one.

6. DISCUSSIONS
In this section we discuss a few common features of proof

assistants, and the way they are supported (or not) in LaTTe.

Implicit arguments
Proof assistants such as Coq [14] and Agda [2] allow to make
some arguments of definitions implicit. The idea is that
such arguments may be filled automatically using a unifi-
cation algorithm. The advantage is that the notations can
thus be simplified, which removes some burden on the user.
A first drawback is that because higher-order unification is
not decidable, it is sometimes required to fill the arguments
manually. Moreover the implicit arguments may hide some
important information: it is not because an argument can be
synthesized automatically that it is not useful in its explicit
form. In LaTTe all arguments must be explicit. However, it
is possible to refine definitions by partial applications. For
example, the general equality predicate in LaTTe is of the
form (equal T x y), which states that x and y of the same
type T are equal. In the arithmetic library10, the equality
on integer is defined as follows:

(definition =
"The equality on integers."
[[n int] [m int]]
(equal int n m))

Hence, we can write (= n m) instead of (equal int n m)

when comparing integers. In the next (upcoming) version
of LaTTe a more general form of implicit arguments will be
supported. Instead of relying on a somewhat unpredictable
unification algorithm, we will simply allow the user to spec-
ify the synthesis of arguments as a Clojure function. The
following is a definition of an implicit :

(defimplicit equal [[x tx] [y _]]
(list ’equal tx x y))

10cf. https://github.com/latte-central/latte-integers

When an expression (equal e1 e2) is encountered (at typ-
ing time), the implicit is called with x (resp. y) bound to
e1 (resp. e2) and tx (resp. ty) to its type. The body of
the implicit form simply produces the correct term of arity
3. At the technical level, this feature is very close to the
implementation of specials.

Holes in proofs
The proof assistant Agda [2] allows to put holes (i.e. unifi-
cation variables) in proof terms, which gives an alternative
way to perform proofs in a step-wise way. Such a partial
proof can be type-checked (assuming the holes have the cor-
rect type), and suggestions (or even completions) for holes
can be provided by a synthesis algorithm. For the moment,
LaTTe does not integrate such a feature but it is planned
for the next version of the proof engine. The idea is to reject
a proof but return possible mappings for the holes.

Inductives and Σ-terms
In Coq [14] and Agda [2] the term languages is much more
complex than that of LaTTe. In particular inductives and
Σ-terms are proposed. It is then much easier to introduce
inductive types and recursive functions in the assistants.
Moreover, this gives a way of performing proofs by (recur-
sive) computation. The main disadvantage is that the unique-
ness of typing is lost, and of course the underlying implemen-
tation becomes much more complex. Moreover, universe
levels must be introduced because inductives do not seem
to deal well with impredicativity. In LaTTe we adopt the
approach of Isabelle [10] and HOL-light [6] (among others)
of introducing inductive sets and recursion as mathemati-
cal libraries. Proof automation is then needed to recover a
form of proof by computation. In LaTTe we just started to
implement inductive sets and recursion theorems 11. The
next step will be to automate recursive computations using
specials. The Σ-types are much easier to implement than
inductives. They offer a way to encode subsets, i.e. a term
Σx : T.P (x) is the subset of the elements of type T that
satisfies the predicate P . This is not needed in type the-
ory and LaTTe since such a subset can simply be coded by
a predicate (λ [x T] (Px)). We haven’t found any strong
argument in favor of Σ-types in the literature.

User interfaces
Most proof assistants are provided with dedicated user in-
terfaces, in general based on an extensible editor such as
Emacs. An example of such an environment is Proof gen-
eral [1] that is working with Coq and was also working with
Isabelle until version 2014. Proof general was also working
with other proof assistants, but support has been dropped.
The major weak points are maintainability and evolvabil-
ity. There is in general much more motivation to work on
the kernel of a proof assistant rather than its user inter-
face. The user interfaces for proof assistants can be seen as
live-coding environments. In most Lisps, and of course Clo-
jure, development environments are designed for a thorough
live-coding experience. This observation is one of the two
reasons why LaTTe was designed as a library and not as a
standalone tool. Our experience is that the Clojure coding
environments (Emacs/cider, Cursive, Gorilla Repl, etc.) are

11cf. https://github.com/latte-central/fixed-points

26 ELS 2017

perfectly suited for proof assistance. In a way LaTTe has a
very powerful interactive environment, maintained by rather
large communities, and all this for free!

Proving in the large
The second reason of the design of LaTTe as library is
to leverage the Clojure ecosystem for proving in the large.
Mathematical content can be developed as Clojure libraries,
using namespaces for modularization. The mathematical li-
braries can be very easily deployed using Clojars (and Maven)
and then used as dependencies in further development. Since
all proof forms are macros, the proof checking is performed
at compile-time and thus the deployed libraries are already
checked for correctness. In this way, although LaTTe is not
(yet) a very popular proof assistant, its features for proving
in the large are already much more advanced if compared
to all the proof assistants we know of. This is of course ob-
tained for free thanks to the way Clojure and its ecosystem
is (very thoroughly) designed.

7. CONCLUSION AND FUTURE WORK
In this paper we described the LaTTe proof assistant in

much details. The ways a dependent type theory might be
implemented in practice is not very often described in the
literature, a notable exception being [8]. In this paper, we
provide all the key concepts to understand the actual im-
plementation of the LaTTe kernel. LaTTe is a minimalist
implementation of a proof assistant based on type theory.
It is not, however, just a toy implementation for demonstra-
tion purpose. It has been used, and is used, to formalize
various theories such as a part of typed set-theory, the foun-
dations of integer arithmetic and some developments about
fixed points and inductive sets. These are available on the
project page12.

Beyond the formalization of important parts of mathe-
matics (especially the real numbers), we have a few plans
concerning the implementation itself. The terms manipu-
lated in type theory can become quite large in the case of
long proofs. This is a rather sparsely studied aspect of type
theory, as most of the implementation aspects. We already
experimented a more efficient term representation, but the
performance gains were limited and the price to pay – giv-
ing up the internal Lisp representation – much too high. We
also introduced a memoization scheme for the type inference
algorithm (which is a known bottleneck) but the ratio mem-
ory increase vs. CPU gains is not very good. The best way
to circumvent this performance issues is to split the proof
in separately-compiled subproofs. An automatic proof split-
ting algorithm was recently experimented with much higher
performance gains. Note, however, that these performance
issues only occur at compile-time because this is when the
proofs are checked for correctness. This has no impact when
using the mathematical libraries because they are deployed
in compiled form. Most of the other planned features re-
volve around higher-order pattern matching and (inherently
partial) unification. One functionality that would then be
possible is the notion of proof refinement using holes. This
would also enable the development of search algorithms for
theorems.

12https://github.com/latte-central

8. REFERENCES
[1] D. Aspinall. Proof general: A generic tool for proof

development. In TACAS 2000, volume 1785 of LNCS,
pages 38–42. Springer, 2000.

[2] A. Bove, P. Dybjer, and U. Norell. A brief overview of
agda - A functional language with dependent types. In
TPHOLs 2009, volume 5674 of LNCS, pages 73–78.
Springer, 2009.

[3] A. Charguéraud. The locally nameless representation.
J. Autom. Reasoning, 49(3):363–408, 2012.

[4] T. Coquand and G. Huet. The calculus of
constructions. Information and Computation, 76(2):95
– 120, 1988.

[5] H. Geuvers. Proof assistants: History, ideas and
future. Sadhana, 34(1):3–25, 2009.

[6] J. Harrison. HOL Light: An overview. In TPHOLs
2009, volume 5674 of LNCS, pages 60–66, Munich,
Germany, 2009. Springer-Verlag.

[7] M. Kaufmann, J. S. Moore, and P. Manolios.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[8] A. Löh, C. McBride, and W. Swierstra. A tutorial
implementation of a dependently typed lambda
calculus. Fundam. Inform., 102(2):177–207, 2010.

[9] R. Nederpeldt and H. Geuvers. Type Theory and
Formal Proof: An Introduction. Cambridge University
Press, 2014.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL - A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[12] F. J. Pelletier and A. P. Hazen. A history of natural
deduction. In Logic: A History of its Central
Concepts, volume 11 of Handbook of the History of
Logic, pages 341–414. Elsevier, 2012.

[13] M. H. Sørensen and P. Urzyczyn. Lectures on the
Curry-Howard Isomorphism,. Elsevier, 2006.

[14] The Coq development team. The coq proof assistant.
https://coq.inria.fr/.

ELS 2017 27

Programmatic Manipulation of Common Lisp Type
Specifiers

Jim E. Newton
jnewton@lrde.epita.fr

Didier Verna
didier@lrde.epita.fr

Maximilien Colange
maximilien.colange@lrde.epita.fr

EPITA/LRDE
14-16 rue Voltaire

F-94270 Le Kremlin-Bicêtre
France

ABSTRACT
In this article we contrast the use of the s-expression with the
BDD (Binary Decision Diagram) as a data structure for pro-
grammatically manipulating Common Lisp type specifiers.
The s-expression is the de facto standard surface syntax and
also programmatic representation of the type specifier, but
the BDD data structure offers advantages: most notably,
type equivalence checks using s-expressions can be computa-
tionally intensive, whereas the type equivalence check using
BDDs is a check for object identity. As an implementation
and performance experiment, we define the notion of max-
imal disjoint type decomposition, and discuss implementa-
tions of algorithms to compute it: a brute force iteration,
and as a tree reduction. The experimental implementations
represent type specifiers by both aforementioned data struc-
tures, and we compare the performance observed in each
approach.

CCS Concepts
•Theory of computation Ñ Data structures design
and analysis; Type theory; •Computing methodologies
ÑRepresentation of Boolean functions; •Mathematics
of computing Ñ Graph algorithms;

1. INTRODUCTION
Common Lisp programs which manipulate type specifiers

have traditionally used s-expressions as the programmatic
representations of types, as described in the Common Lisp
specification [4, Section 4.2.3]. Such choice of internal data
structure offers advantages such as homoiconicity, making
the internal representation human readable in simple cases,
and making programmatic manipulation intuitive, as well
as enabling the direct use of built-in Common Lisp func-
tions such as typep and subtypep. However, this approach
does present some challenges. Such programs often make
use of ad-hoc logic reducers—attempting to convert types

ELS ’10 April 3–4, 2016, Brussels, Belgium

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

to canonical form. These reducers can be complicated and
difficult to debug. In addition run-time decisions about type
equivalence and subtyping can suffer performance problems.
In this article we present an alternative internal represen-

tation for Common Lisp types: the Binary Decision Dia-
gram (BDD) [6, 2]. BDDs have interesting characteristics
such as representational equality; i.e. it can be arranged
that equivalent expressions or equivalent sub-expressions are
represented by the same object (eq). While techniques to
implement BDDs with these properties are well documented,
an attempt apply the techniques directly to the Common
Lisp type system encounters obstacles which we analyze and
document in this article.
In order to compare performance characteristics of the two

data structure approaches, we have constructed a problem
called Maximal Disjoint Type Decomposition (MDTD): de-
composing a given set of potentially overlapping types into
a set of disjoint types. Although MDTD is interesting in its
own right, we do not attempt, in this paper, to motivate in
detail the applications or implications of the problem. We
consider such development and motivation a matter of fu-
ture research. Our use of the MDTD problem in this article
is primarily a performance comparison vehicle.
We present two algorithms to compute the MDTD, and

separately implement the algorithms with both data struc-
tures s-expressions and BDDs (4 implementations in total).
Finally, we report performance characteristics of the four
algorithms implemented in Common Lisp.
Key contributions of this article are:

‚ A description of how to extended known BDD related
implementation techniques to represent Common Lisp
types and facility type based calculations.

‚ Performance comparison of algorithms using traditional
s-expression based type specifiers vs. using the BDD
data structure.

‚ A graph based algorithm for reducing the computa-
tional complexity of MDTD.

2. DISJOINT TYPE DECOMPOSITION
In presenting the problem of decomposing a set of over-

lapping types into non-overlapping subtypes, we start with
an example intended to convey an intuition of the problem.
We continue by defining precisely what we intend to calcu-
late. Then in sections 2.1 and 2.2 we present two different
algorithms for performing that calculation.

28 ELS 2017

A1

1

A2
2

A33
4

5
6 7

A4

8 A5

9

A6

10
A7
11

A8
12

13

Figure 1: Example Venn Diagram

Disjoint Set Derived Expression
X1 A1 XA2 XA3 XA4 XA6 XA8
X2 A2 XA3 XA4
X3 A2 XA3 XA4
X4 A3 XA2 XA4
X5 A2 XA3 XA4
X6 A2 XA4 XA3
X7 A3 XA4 XA2
X8 A4 XA2 XA3 XA8
X9 A5
X10 A6
X11 A7
X12 A8 XA4
X13 A4 XA8 XA5

Figure 2: Disjoint Decomposition of Sets from Fig-
ure 1

In the Venn diagram in Figure 1, V “ tA1, A2, ..., A8u. We
wish to construct logical combinations of those sets to form
as many mutually disjoint subsets as possible. The result-
ing decomposition should have the same union as the original
set. The maximal disjoint decompositionD “ tX1, X2, ..., X13u
of V is shown in Figure 2.

Notation 1. We use the symbol, K, to indicate the dis-
joint relation between sets. I.e., we take A K B to mean
AXB “ H. We also say A M B to mean AXB ‰ H.

Notation 2. We use the notation, A Ă B, (A Ą B) to
indicate that A is either a strict subset (superset) of B or is
equal to B.

Definition 1. Let U be a set and V be a set of subsets of
U . The Boolean closure of V , denoted pV , is the (smallest)
super-set of V such that α, β P pV ùñ tαX β, αX βu Ă pV .

Definition 2. Let U be a set, and let V and D be finite
sets of non-empty subsets of U . D is said to be a disjoint
decomposition of V , if the elements of D are mutually dis-
joint, D Ă pV , and

Ť
XPD

X “ Ť
APV

A. If no larger set ful-

fills those properties, D is said to be the maximal disjoint
decomposition of V .

We claim without proof that there exists a unique maxi-
mal disjoint decomposition of a given V . A more complete
discussion and formal proof are available [14].
The MDTD problem: Given a set U and a set of sub-

sets thereof, V “ tA1, A2, ..., AMu, suppose that for each
pair pAi, Ajq, we know which of the relations hold: Ai Ă Aj ,
Ai Ą Aj , Ai K Aj . We would like to compute the maximal
disjoint decomposition of V .
In Common Lisp, a type is a set of (potential) values [4,

Section Type], so it makes sense to consider the maximal
disjoint decomposition of a set of types.

2.1 The RTE Algorithm
We first encountered the MDTD problem in our previous

work on regular type expressions (RTE) [15]. The following
algorithm was the one presented in that paper, where we
pointed that the algorithm suffers from significant perfor-
mance issues. Performance issues aside, a notable feature of
the RTE version of the MDTD algorithm is that it easily fits
in 40 lines of Common Lisp code, so it is easy to implement
and easy to understand.

1. Let U be the set of sets. Let V denote the set of
disjoint sets, initially D “ H.

2. Identify all the sets which are disjoint from each other
and from all the other sets. (Opn2q search) Remove
these sets from U and collect them in D.

3. If possible, choose X and Y , for which X M Y .

4. Remove X and Y from U , and add any of XXY , XzY ,
and Y zX which are non-empty. I.e.,
U Ð pUztX,Y uq Y ptX X Y,XzY, Y zXuztHuq

5. Repeat steps 2 through 4 until U “ H, at which point
we have collected all the disjoint sets in D.

2.2 The graph based algorithm
One of the sources of inefficiency of the algorithm ex-

plained in Section 2.1 is at each iteration of the loop, an
Opn2q search is made to find sets which are disjoint from
all remaining sets. This search can be partially obviated
if we employ a little extra book-keeping. The fact to real-
ize is that if X K A and X K B, then we know a priori
that X K A X B, X K AzB, X K BzA. This knowledge
eliminates some of useless operations.
This algorithm is semantically similar to the algorithm

shown in Section 2.1, but rather than relying on Common
Lisp primitives to make decisions about connectivity of types,
it initializes a graph representing the initial relationships,
and thereafter manipulates the graph maintaining connec-
tivity information. This algorithm is more complicated in
terms of lines of code, 250 lines of Common Lisp code as
opposed to 40 lines for the algorithm in Section 2.1.
Figure 3 shows a graph representing the topology (con-

nectedness) of the diagram shown in Figure 1. Nodes 1 , 2 ,
... 8 in Figure 3 correspond respective to A1, A2, ... A8 in
Figure 1. Blue arrows correspond to subset relations, point-
ing from subset to superset, and green lines correspond to
other non-disjoint relations.
To construct this graph first eliminate duplicate sets. I.e.,

if X Ă Y and X Ą Y , then discard either X or Y . It is
necessary to consider each pair pX,Y q of sets, Opn2q loop.

ELS 2017 29

7 2

3

4

1

8

5

6

Figure 3: Topology graph

‚ If X Ă Y , draw a blue arrow X Ñ Y

‚ Else if X Ą Y , draw a blue arrow X Ð Y

‚ Else if X M Y , draw green line between X and Y .

‚ If it cannot be determined whether X Ă Y , assume
the worst case, that they are non-disjoint, and draw
green line between X and Y .

The algorithm proceeds by breaking the green and blue
connections, in explicit ways until all the nodes become iso-
lated. There are two cases to consider. Repeat alternatively
applying both tests until all the nodes become isolated.

2.2.1 Subset relation

Before

5 0 Y 1

2

4 X 3

After

5 0 Y 1

2

4 X 3

Node Re-labeled Boolean expression
X X

Y Y XX

Figure 4: Subset before and after mutation

A blue arrow from X to Y may be eliminated if X has no
blue arrow pointing to it, in which case Y must be relabeled
as Y XX as indicated in Figure 4.
Figure 4 illustrates this mutation. Node Y may have

other connections, including blue arrows pointing to it or

from it, and green lines connected to it. However node X

has no blue arrows pointing to it; although it may have other
blue arrows pointing away from it.
If X touches (via a green line) any sibling nodes, i.e. any

other node that shares Y as super-class, then the blue arrow
is converted to a green line. In the before image of Figure 4
there is a blue arrow from 3 to Y and in the after image
this arrow has been converted to a green line.

Before

0 X Y

3

1

2

4

After

0 X

3

Y 1

2

Z

4

Node Re-labeled Boolean expression
X X X Y
Y X X Y
Z X X Y

Figure 5: Touching connections before and after mu-
tation

2.2.2 Touching connections
A green line connecting X and Y may be eliminated if

neither X nor Y has a blue arrow pointing to it. Conse-
quently, X and Y must be relabeled and a new node must
be added to the graph as indicated in Figure 5. The figure
illustrates the step of breaking such a connection between
nodes X and Y by introducing the node Z .
Construct blue arrows from this node, Z, to all the nodes

which either X or Y points to (union). Construct green
lines from Z to all nodes which both X and Y connect to
(intersection). If this process results in two nodes connected
both by green and blue, omit the green line.

3. TYPE SPECIFIER MANIPULATION
To correctly implement the MDTD by either strategy de-

scribed above, we need operators to test for type-equality,
type disjoint-ness, subtype-ness, and type-emptiness. Given
a subtype predicate, the other predicates can be constructed.

30 ELS 2017

The emptiness check: A “ H ðñ A Ă H. The dis-
joint check: A K B ðñ A X B Ă H. Type equivalence
A “ B ðñ A Ă B and B Ă A.
Common Lisp has a flexible type calculus making type

specifiers human readable and also related computation pos-
sible. Even with certain limitations, s-expressions are an
intuitive data structure for programmatic manipulation of
type specifiers in analyzing and reasoning about types.
If T1 and T2 are Common Lisp type specifiers, the type

specifier (and T1 T2) designates the intersection of the types.
Likewise (and T1 (not T2)) is the type difference. The empty
type and the universal type are designated by nil and t re-
spectively. The subtypep function serves as the subtype
predicate. Consequently (subtypep ’(and T1 T2) nil) com-
putes whether T1 and T2 are disjoint.
There is an important caveat however. The subtypep

function is not always able to determine whether the named
types have a subtype relationship [5]. In such a case, subtypep
returns nil as its second value. This situation occurs most
notably in the cases involving the satisfies type specifier.
For example, to determine whether the (satisfies F) type
is empty, it would be necessary to solve the halting problem,
finding values for which the function F returns true.
As a simple example of how the Common Lisp program-

mer might manipulate s-expression based type specifiers,
consider the following problem. In SBCL 1.3.0, the expres-
sion (subtypep ’(member :x :y) ’keyword) returns nil,nil,
rather than t,t. Although this is compliant behavior, the
result is unsatisfying, because clearly both :x and :y are
elements of the keyword type. By manipulating the type
specifier s-expressions, the user can implement a smarter
version of subtypep to better handle this particular case.
Regrettably, the user cannot force the system to use this
smarter version internally.
(defun smarter-subtypep (t1 t2)

(multiple-value-bind (T1 <= T2 OK) (subtypep t1 t2)
(cond

(OK
(values T1 <= T2 t))

;; (eql obj) or (member obj1 ...)
((typep t1 ’(cons (member eql member)))

(values (every #’(lambda (obj)
(typep obj t2))

(cdr t1))
t))

(t
(values nil nil)))))

As mentioned above, programs manipulating s-expression
based type specifiers can easily compose type intersections,
unions, and relative complements as part of reasoning algo-
rithms. Consequently, the resulting programmatically com-
puted type specifiers may become deeply nested, resulting
in type specifiers which may be confusing in terms of hu-
man readability and debuggability. The following program-
matically generated type specifier is perfectly reasonable for
programmatic use, but confusing if it appears in an error
message, or if the developer encounters it while debugging.
(or

(or (and (and number (not bignum))
(not (or fixnum (or bit (eql -1)))))

(and (and (and number (not bignum))
(not (or fixnum (or bit (eql -1)))))

(not (or fixnum (or bit (eql -1))))))
(and (and (and number (not bignum))

(not (or fixnum (or bit (eql -1)))))
(not (or fixnum (or bit (eql -1))))))

This somewhat obfuscated type specifier is semantically
equivalent to the more humanly readable form (and number
(not bignum) (not fixnum)). Moreover, it is possible to write
a Common Lisp function to simplify many complex type
specifiers to simpler form.
There is a second reason apart from human readability

which motivates reduction of type specifiers to canonical
form. The problem arises when we wish to programmati-
cally determine whether two s-expressions specify the same
type, or in particular when a given type specifier specifies
the nil type. Sometimes this question can be answered by
calls to subtypep as in (and (subtypep T1 T2) (subtypep
T2 T1)). However, as mentioned earlier, subtypep is al-
lowed to return nil,nil in some situations, rendering this
approach futile in many cases. If, on the other hand, two
type specifiers can be reduced to the same canonical form,
we can conclude that the specified types are equal.
We have implemented such a function, reduce-lisp-type.

It does a good job of reducing the given type specifier toward
a canonical form, by repeatedly recursively descending the
expression, re-writing sub-expressions, incrementally mov-
ing the expression toward a fixed point. We choose to con-
vert the expression to a disjunctive normal form, e.g., (or
(and (not a) b) (and a b (not c))). The reduction proce-
dure follows the models presented by Sussman and Abel-
son [1, p. 108] and Norvig [16, ch. 8].

4. BINARY DECISION DIAGRAMS
A challenge using s-expressions for programmatic repre-

sentation of type specifiers is the need to after-the-fact re-
duce complex type specifiers to a canonical form. This re-
duction can be computationally intense, and difficult to im-
plement correctly. We present here a data structure called
the Binary Decision Diagram (BDD) [6, 2], which obviates
much of the need to reduce to canonical form because it
maintains a canonical form by design. Before looking at
how the BDD can be used to represent Common Lisp type
specifiers, we first look at how BDDs are used tradition-
ally to represent Boolean equations. Thereafter, we explain
how this traditional treatment can be enhanced to represent
Common Lisp types.

4.1 Representing Boolean expressions
Andersen [3] summarized many of the algorithms for ef-

ficiently manipulating BDDs. Not least important in An-
dersen’s discussion is how to use a hash table and dedicated
constructor function to eliminate redundancy within a single
BDD and within an interrelated set of BDDs. The result of
Andersen’s approach is that if you attempt to construct two
BDDs to represent two semantically equivalent but syntac-
tically different Boolean expressions, then the two resulting
BDDs are pointers to the same object.

A1

A2

1 A3

1 0

A3

0 1

Figure 6: BDD for pA1^A2q_pA1^ A2^A3q_p A1^ A3q

Figure 6 shows an example BDD illustrating a function of
three Boolean variables: A1, A2, and A3. To reconstruct the
DNF (disjunctive normal form), collect the paths from the

ELS 2017 31

root node, A1, to a leaf node of 1, ignoring paths terminated
by 0. When the right child is traversed, the Boolean com-
plement () of the label on the node is collected (e.g. A3),
and when the left child is traversed the non-inverted parent
is collected. Interpret each path as a conjunctive clause, and
form a disjunction of the conjunctive clauses. In the figure
the three paths from A1 to 1 identify the three conjunctive
clauses pA1 ^A2q, pA1 ^ A2 ^A3q, and p A1 ^ A3q.
4.2 Representing types
Castagna [8] explains the connection of BDDs to type

theoretical calculations, and provides straightforward algo-
rithms for implementing set operations (intersection, union,
relative complement) of types using BDDs. The general re-
cursive algorithms for computing the BDDs which represent
the common Boolean algebra operators are straightforward.
Let B, B1, and B2 denote BDDs, B1 “ pif a1 C1 D1q and

B2 “ pif a2 C2 D2q.
C1, C2, D1, and D2 represent BDDs. The a1 and a2 are

intended to represent type names, but for the definition to
work it is only necessary that they represent labels which
are order-able. We would eventually like the labels to ac-
commodate Common Lisp type type names, but this is not
immediately possible.
The formulas for pB1_B2q, pB1^B2q, and pB1 z B2q are

similar to each other. If ˝ P t_,^, zu, then

B1 ˝ B2 “

$
’&
’%

pif a1 pC1 ˝ C2q pD1 ˝ D2qq for a1 “ a2
pif a1 pC1 ˝ B2q pD1 ˝ B2qq for a1 ă a2
pif a2 pB1 ˝ C2q pB1 ˝ D2qq for a1 ą a2

There are several special cases, the first three of which
serve as termination conditions for the recursive algorithms.

‚ pt_Bq and pB _ tq reduce to t.

‚ pnil ^Bq, pB ^ nilq, and pBztq reduce to nil.

‚ pt^Bq, pB^ tq, pnil_Bq, and pB_nilq reduce to B.

‚ pt z pif a B1 B2qq reduces to pif a ptzB1q ptzB2qq.
4.3 Representing Common Lisp types
We have implemented the BDD data structure as a set of

Clos classes. In particular, there is one leaf-level Clos class
for an internal tree node, and one singleton class/instance
for each of the two possible leaf nodes, true and false.
The label of the BDD contains a Common Lisp type name,

and the logical combinators (and, or, and not) are repre-
sented implicitly in the structure of the BDD.
A disadvantage BDDs present when compared to s-expressions

as presented in Section 3 is the loss of homoiconicity. Whereas,
s-expression based type-specifiers may appear in-line in the
Common Lisp code, BDDs may not.
A remarkable fact about this representation is that any

two logically equivalent Boolean expressions have exactly
the same BDD structural representation, provided the node
labels are consistently, totally ordered. Andersen[3] provides
a proof for this claim. For example, the expression from Fig-
ure 6, pA1^A2q_pA1^ A2^A3q_p A1^ A3q is equivalent
to pp A1_ A2q^p A1_A2_ A3q^pA1_A3qq. So they
both have the same shape as shown in the Figure 6. How-
ever, if we naïvely substitute Common Lisp type names for
Boolean variables in the BDD representation as suggested
by Castagna, we find that this equivalence relation does not
hold in many cases related to subtype relations in the Com-
mon Lisp type system.

An example is that the Common Lisp two types (and
(not arithmetic-error) array (not base-string)) vs.
(and array (not base-string)) are equivalent, but the

naïvely constructed BDDs are different:

arithmetic-error

nil array

base-string

nil t

nil

vs.
array

base-string

nil t

nil.

In order to assure the minimum number of BDD alloca-
tions possible, and thus ensure that BDDs which represent
equivalent types are actually represented by the same BDD,
the suggestion by Andersen [3] is to intercept the BDD con-
structor function. This constructor should assure that it
never returns two BDD which are semantically equivalent
but not eq.

4.4 Canonicalization
Several checks are in place to reduce the total number

of BDDs allocated, and to help assure that two equivalent
Common Lisp types result in the same BDD. The following
sections, 4.4.1 through 4.4.5 detail the operations which we
found necessary to handle in the BDD construction function
in order to assure that equivalent Common Lisp type spec-
ifiers result in identical BDDs. The first two come directly
from Andersen’s work. The remaining are our contribution,
and are the cases we found necessary to implement in order
to enhance BDDs to be compatible with the Common Lisp
type system.

4.4.1 Equal right and left children
An optimization noted by Andersen is that if the left and

right children are identical then simply return one of them,
without allocating a new BDD [3].

4.4.2 Caching BDDs
Another optimization noted by Andersen is that whenever

a new BDD is allocated, an entry is made into a hash table so
that the next time a request is made with the exactly same
label, left child, and right child, the already allocated BDD is
returned. We associate each new BDD with a unique integer,
and create a hash key which is a list (a triple) of the type
specifier (the label) followed by two integers corresponding
to the left and right children. We use a Common Lisp equal
hash table for this storage, although we’d like to investigate
whether creating a more specific hash function specific to
our key might be more efficient.

4.4.3 Reduction in the presence of subtypes
Since the nodes of the BDD represent Common Lisp types,

other specific optimizations are made. The cases include sit-
uations where types are related to each other in certain ways:
subtype, supertype, and disjoint types. In particular there
are 12 optimization cases, detailed in Table 1. Each of these
optimizations follows a similar pattern: when constructing
a BDD with label X, search in either the left or right child
to find a BDD, Y

L R
. If X and Y have a particular rela-

tion, different for each of the 12 cases, then the Y

L R
BDD

reduces either to L or R. Two cases, 5 and 7, are further
illustrated below.

32 ELS 2017

Case Child to search Relation Reduction

1 X.left X K Y Y Ñ Y.right

2 X.left X K Y Y Ñ Y.left

3 X.right X K Y Y Ñ Y.right

4 X.right X K Y Y Ñ Y.left

5 X.right X Ą Y Y Ñ Y.right

6 X.right X Ą Y Y Ñ Y.left

7 X.left X Ą Y Y Ñ Y.right

8 X.left X Ą Y Y Ñ Y.left

9 X.left X Ă Y Y Ñ Y.left

10 X.left X Ă Y Y Ñ Y.right

11 X.right X Ă Y Y Ñ Y.left

12 X.right X Ă Y Y Ñ Y.right

Table 1: BDD optimizations

Case 5: If X Ą Y and Y

L R
appears in X.right, then

Y

L R
reduces to R. E.g., integer Ă number; if X “ number

and Y “ integer; thus

number

A B

integer

L R

C
Ñ

number

A B

R C
.

Case 7: If X Ą Y and Y

L R
appears in X.left, then

Y

L R
reduces to R. E.g., integer Ă string; if X “ string

and Y “ integer; thus

string

A

C integer

L R

B Ñ
string

A

C R

B.

4.4.4 Reduction to child
The list of reductions described in Section 4.4.3 fails to

apply in cases where the root node itself needs to be elimi-
nated. For example, since vector Ă array we would like the

following reductions:
array

vector

t nil

nil Ñ vector

t nil
.

The solution which we have implemented is that before
constructing a new BDD, we first ask whether the resulting
BDD is type-equivalent to either the left or right children
using the subtypep function. If so, we simply return the
appropriate child without allocating the parent BDD. The
expense of this type-equivalence is mitigated by the mem-
oization. Thereafter, the result is in the hash table, and it
will be discovered as discussed in Section 4.4.2.

4.4.5 More complex type relations
There are a few more cases which are not covered by the

above optimizations. Consider the following BDD:
integer

nil ratio

nil rational

t nil

This represents the type (and (not integer) (not ratio)
rational), but in Common Lisp rational is identical to
(or integer ratio), which means (and (not integer) (not

ratio) rational) is the empty type. For this reason, as a
last resort before allocating a new BDD, we check, using the
Common Lisp function subtypep, whether the type specifier
specifies the nil or t type. Again this check is expensive,
but the expense is mitigated in that the result is cached.

5. MDTD IN COMMON LISP
When attempting to implement the algorithms discussed

in Sections 2.1 and 2.2 the developer finds it necessary to
choose a data structure to represent type specifiers. Which
ever data structure is chosen, the program must calculate
type intersections, unions, and relative complements and
type equivalence checks and checks for the empty type. As
discussed in Section 3, s-expressions (i.e. lists and symbols)
is a valid choice of data structure and the aforementioned
operations may be implemented as list constructions and
calls to the subtypep predicate.

array

vector

nil t

number

t nil

Figure 7: BDD representing (or number (and array
(not vector))

As introduced in Section 4, another choice of data struc-
ture is the BDD. Using the BDD data structure along with
the algorithms described in Section 4 we can efficiently rep-
resent and manipulate Common Lisp type specifiers. We
may programmatically represent Common Lisp types largely
independent of the actual type specifier representation. For
example the following two type specifiers denote the same set
of values: (or number (and array (not vector))) and (not
(and (not number) (or (not array) vector))), and are both
represented by the BDD shown in Figure 5. Moreover,
unions, intersections, and relative complements of Common
Lisp type specifiers can be calculated using the reduction
BDD manipulation rules also explained in Section 4.
We have made comparisons of the two algorithms de-

scribed in Sections 2.1, 2.2. One implementation of each
uses s-expressions, one implementation of each uses BDDs.
Some results of the analysis can be seen in Section 6.
Using BDDs in these algorithms allows certain checks to

be made more easily than with the s-expression approach.
For example, two types are equal if they are the same object
(pointer comparison, eq). A type is empty if it is identi-
cally the empty type (pointer comparison). Finally, given
two types (represented by BDDs), the subtype check can be
made using the following function:
(defun bdd-subtypep (bdd-sub bdd-super)

(eq * bdd-false *
(bdd-and-not bdd-sub bdd-super)))

This implementation of bdd-subtype should not be in-
terpreted to mean that we have obviated the need for the
Common Lisp subtypep function. In fact, subtypep, is still
useful in constructing the BDD itself. However, once the
BDDs have been constructed, and cached, subtype checks
may at that point avoid calls to subtypep, which in some
cases might otherwise be more compute intensive.

6. PERFORMANCE OF MDTD
Sections 2.1 and 2.2 explained two different algorithms

for calculating type decomposition. We look here at some

ELS 2017 33

performance characteristics of the two algorithms. The al-
gorithms from Section 2.1 and Section 2.2 were tested us-
ing both the Common Lisp type specifier s-expression as
data structure and also using the BDD data structure as
described in Section 5. Figures 9 and 8 contrast the four
effective algorithms in terms of execution time vs sample
size.
We attempted to plot the results many different ways:

time as a function of input size, number of disjoint sets in the
input, number of new types generated in the output. Some
of these plots are available in the technical report [14]. The
plot which we found heuristically to show the strongest vi-
sual correlation was calculation time vs the integer product
of the number of given input types multiplied by the num-
ber of calculated output types. E.g., if the algorithm takes a
list of 5 type specifiers and computes 3 disjoint types in 0.1
seconds, the graph contains a point at (15,0.1). Although
we don’t claim to completely understand why this particular
plotting strategy shows better correlation than the others we
tried, it does seem that all the algorithms begin aOpn2q loop
by iterating over the given set of types which is incremen-
tally converted to the output types, so the algorithms in
some sense finish by iterating over the output types. More
research is needed to better understand the correlation.

6.1 Performance Test Setup
The type specifiers used in Figure 9 are those designating

all the subtypes of fixnum such as. (member 2 6 7 9) and
(member 1 2 8 10). The type specifiers used in Figure 8
are those designating a randomly selected set of subtypes of
cl:number and cl:condition together with programmati-
cally generated logical combinations thereof such as (and
number (not bit)) and (or real type-error).

100 101 102 103 104

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES
DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES
DECOMPOSE-TYPES-BDD-GRAPH

Figure 8: Combinations of number and condition

The performance tests comprise starting with a list of ran-
domly selected type specifiers from a pool, calling each of
the four functions to calculate the disjoint decomposition,
and recording the time of each calculation. We have plot-

101 102

10´3

10´2

10´1

100

101

Size

T
im

e

Figure 9: Subtypes of fixnum

ted in Figures 9 and 8 the results of the runs which took
less than 30 seconds to complete. This omission does not
in any way effect the presentation of which algorithms were
the fastest on each test.
The tests were performed on a MacBook 2 GHz Intel Core

i7 processor with 16GB 1600 MHz DDR3 memory, and using
SBCL 1.3.0 ANSI Common Lisp.

6.2 Analysis of Performance Tests
There is no clear winner for small sample sizes. But it

seems the tree based algorithms do very well on large sample
sizes. This is not surprising, as the graph based algorithm
was designed with the intent to reduce the number of passes,
and take advantage of subtype and disjointness information.
Often the better performing of the graph based algorithms

is the BDD based one as shown in Figure 8. However there
is a notable exception shown in Figures 9 where graph algo-
rithm using s-expressions performs best.

7. RELATED WORK
Computing a disjoint decomposition when permitted to

look into the sets has been referred to as union find [17, 11].
MDTD differs in that we decompose the set without knowl-
edge of the specific elements; i.e. we are not permitted to
iterate over or visit the individual elements. The correspon-
dence of types to sets and subtypes to subsets thereof is also
treated extensively in the theory of semantic subtyping [9].
BDDs have been used in electronic circuit generation[10],

verification, symbolic model checking[7], and type system
models such as in XDuce [12]. None of these sources dis-
cusses how to extend the BDD representation to support
subtypes.
Decision tree techniques are useful in the efficient com-

pilation of pattern matching constructs in functional lan-
guages[13]. An important concern in pattern matching com-
pilation is finding the best ordering of the variables which is
known to be NP-hard. However, when using BDDs to repre-
sent Common Lisp type specifiers, we obtain representation
(pointer) equality, simply by using a consistent ordering;
finding the best ordering is not necessary for our applica-
tion.

34 ELS 2017

8. CONCLUSION AND FUTURE WORK
The results of the performance testing in Section 6 lead us

to believe that the BDD as data structure for representing
Common Lisp type specifiers is promising, but there is still
work to do, especially in identifying heuristics to predict its
performance relative to more traditional approaches.
It is known that algorithms using BDD data structure

tend to trade space for speed. Castagna [8] suggests a lazy
version of the BDD data structure which may reduce the
memory footprint, which would have a positive effect on the
BDD based algorithms. We have spent only a few weeks
optimizing our BDD implementation based on the Ander-
sen’s description [3], whereas the CUDD [18] developers have
spent many years of research optimizing their algorithms.
Certainly our BDD algorithm can be made more efficient
using techniques of CUDD or others.
Although, we do not attempt, in this paper, to motivate

in detail the applications or implications of MDTD, we sus-
pect there may be a connection between the problem, and
efficient compilation of type-case and its use in improving
pattern matching capabilities of Common Lisp. We con-
sider such development and motivation a matter of future
research.
An immediate priority in our research is to formally prove

the correctness of our algorithms, most notably the graph
decomposition algorithm from Section 2.2. Experimentation
leads us to believe that the graph algorithm always termi-
nates with the correct answer, nevertheless we admit there
may be exotic cases which cause deadlock or other errors.
It has also been observed that in the algorithm explained

in section 2.2 that the convergence rate varies depending on
the order the reduction operations are performed. We do not
yet have enough data to characterize this dependence. Fur-
thermore, the order to break connections in the algorithm
in Section 2.2. It is clear that many different strategies are
possible, (1) break busiest connections first, (2) break con-
nections with the fewest dependencies, (3) random order,
(4) closest to top of tree, etc. These are all areas of ongoing
research.
We plan to investigate whether there are other applica-

tions MDTD outside the Common Lisp type system. We
hope the user of Castagna’s techniques [8] on type systems
with semantic subtyping may benefit from the optimizations
we have discussed.
A potential application with Common Lisp is improving

the subtypep implementation itself, which is known to be
slow in some cases. Section 5 gave a BDD specific implemen-
tation of bdd-subtypep. We intend to investigate whether
existing Common Lisp implementations could use our tech-
nique to represent type specifiers in their inferencing en-
gines, and thereby make some subtype checks more efficient.

9. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, USA, 2nd edition, 1996.

[2] S. B. Akers. Binary decision diagrams. IEEE Trans.
Comput., 27(6):509–516, June 1978.

[3] H. R. Andersen. An introduction to binary decision
diagrams. Technical report, Course Notes on the
WWW, 1999.

[4] Ansi. American National Standard: Programming

Language – Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[5] H. G. Baker. A decision procedure for Common Lisp’s
SUBTYPEP predicate. Lisp and Symbolic
Computation, 5(3):157–190, 1992.

[6] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, 35:677–691, August 1986.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020
states and beyond. Inf. Comput., 98(2):142–170, June
1992.

[8] G. Castagna. Covariance and contravariance: a fresh
look at an old issue. Technical report, CNRS, 2016.

[9] G. Castagna and A. Frisch. A gentle introduction to
semantic subtyping. In Proceedings of the 7th ACM
SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’05,
pages 198–199, New York, NY, USA, 2005. ACM.

[10] O. Coudert, C. Berthet, and J. C. Madre. Verification
of synchronous sequential machines based on symbolic
execution. In Proceedings of the International
Workshop on Automatic Verification Methods for
Finite State Systems, pages 365–373, London, UK,
UK, 1990. Springer-Verlag.

[11] B. A. Galler and M. J. Fisher. An improved
equivalence algorithm. Commununication of the ACM,
7(5):301–303, may 1964.

[12] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. ACM Trans. Program.
Lang. Syst., 27(1):46–90, Jan. 2005.

[13] L. Maranget. Compiling pattern matching to good
decision trees. In Proceedings of the 2008 ACM
SIGPLAN Workshop on ML, ML ’08, pages 35–46,
New York, NY, USA, 2008. ACM.

[14] J. Newton. Analysis of algorithms calculating the
maximal disjoint decomposition of a set. Technical
report, EPITA/LRDE, 2017.

[15] J. Newton, A. Demaille, and D. Verna. Type-Checking
of Heterogeneous Sequences in Common Lisp. In
European Lisp Symposium, Kraków, Poland, May
2016.

[16] P. Norvig. Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Morgan
Kaufmann, 1992.

[17] M. M. A. Patwary, J. R. S. Blair, and F. Manne.
Experiments on union-find algorithms for the
disjoint-set data structure. In P. Festa, editor,
Proceedings of 9th International Symposium on
Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science, pages 411–423.
Springer, 2010.

[18] F. Somenzi. CUDD: BDD package, University of
Colorado, Boulder.

ELS 2017 35

Type Inference in Cleavir

Alex Wood

ABSTRACT
Type inference is an essential technique for obtaining good
runtime performance if code is written in a dynamically
typed language such as Common Lisp.

We describe a type-inference technique that works on an
intermediate representation of the code in the form of an
instruction graph. Unlike more traditional, but similar, in-
termediate representations, ours manipulates only Common
Lisp objects. In other words, low-level computations such
as address calculations are not exposed, making it possible
for the compiler to determine type information for all lexical
variables.

Our technique is expressed as a traditional forward dataflow
computation, making it possible to use existing algorithms
for such analysis.

The technique described in this paper is part of the Cleavir
compiler framework, and it is used in the compiler of the
Clasp Common Lisp system.

CCS Concepts
•Software and its engineering → Compilers;

Keywords
Common Lisp, compiler optimization, type inference

1. INTRODUCTION
Type inference is an essential technique for implementing

high-level languages. In modern statically-typed program-
ming languages such as ML [7] or Haskell [5], type inference
is a requirement for a program to be possible to compile. The
most common technique for type inference in such languages
is known as “Hindley-Milner” [4]. The Hindley-Milner sys-
tem is efficient and correct, but imposes serious constraints
on the form of the language and its type system that make
it unsuitable for Common Lisp.

In a dynamically typed language such as Common Lisp
[1], type inference is optional, and is used to avoid unneces-

sary runtime type checks when the compiler can prove the
outcome of such type checks at compile time, rather than
for semantic effect.

2. PREVIOUS WORK

2.1 The Nimble type inferencer
Henry Baker describes the Nimble type inferencer 1. His

technique works for the pre-standard Common Lisp lan-
guage, and works by annotating source code with type in-
formation in the form of type declarations.

Nimble tracks control flow in both directions and main-
tains both upper and lower bounds on inferred type infor-
mation, and could take exponential time. This was compen-
sated for by Baker’s team by reducing type computations to
specialized linear bit-vector arithmetic, but the algorithm
was still noticeably slow (on the computers of the time). A
comparison of efficiency with our technique has not been
made.

The advantage of Baker’s technique is that it can be used
with any conforming Common Lisp implementation, except
that it would need some minor work in order to be applicable
to code in the standardized language.

2.2 SBCL
The SBCL implementation of Common Lisp is known to

have excellent type-inference capabilities. Its “constraint
propagation”algorithm is similar to that described here, but
instead operates at control-flow level of basic blocks, and can
propagate constraints other than types. Rather than inlin-
ing, SBCL relies on type derivation functions associated with
higher-level built-in operators. These are necessarily more
complex, but removing the necessity of inlining may decrease
code size.

3. HIR
Type inference in Cleavir is done after the program has

been reduced to a “high-level intermediate representation”,
or HIR. The HIR consists of nodes called instructions con-
nected to each other by arcs to form a graph of the program
control flow. Each instruction has zero or more variable or
constant inputs, zero or more variable outputs, and repre-
sents some small operation that reads only from the inputs
and writes only to the outputs.

1Unpublished technical report. See for instance
http://www.pipeline.com/ hbaker1/TInference.html.

36 ELS 2017

typeq

(cons)

typeq

(null)cdr

x

y

nil

setq

error

Figure 1: Implementation of cdr in HIR. Rectangles
represent instructions, ellipses represent variables,
and rounded rectangles represent constants. Solid
line arrows represent control flow, while dashed lines
are data input and output.

This representation is called “high-level” because almost
all values for variables are Common Lisp objects, and low-
level computations such as address calculations are not in-
volved. Further stages of compilation, including optimiza-
tions from type inference, can refine the intermediate repre-
sentation to a lower-level form.

Most HIR instructions have undefined behavior on values
not of certain types. For example, the cdr instruction has
one input, which must be a cons. To represent the Common
Lisp cdr function, which can also be validly called on nil,
type descrimination is necessary.

HIR includes type declaration information with the the

instruction, which corresponds to the Common Lisp special
operator of the same name. A the instruction has one input
and no outputs, and an associated type. It has no opera-
tional effect, but informs the type inferencer that the input
is of that type at that control point. After type inference,
all the instructions can be removed.

Explicit type checks are represented in HIR by the typeq

instruction. Each typeq instruction has a type associated
with it when the HIR graph is produced. When run, typeq
branches to one instruction if its one input is of the given
type, and to the other if it is not.

For example, cdr might be represented as shown in Fig-
ure 1. The first typeq’s left branch continues to the behavior
for cons operands, and the second typeq’s left branch contin-
ues to the behavior on null operands. The remaining branch
is reached only if the operand is neither a cons nor null, and
therefore signals a type error.

4. TYPE INFERENCE METHOD
Because Common Lisp types are arbitrary sets, perfect

inference of Common Lisp types would be equivalent to the

halting problem2; additionally, only some type information
is useful for an optimizing compiler. Therefore, a small finite
lattice is used for type inference.

Elements of the lattice are called type descriptors, or just
“descriptors”. Every Common Lisp type can be conserva-
tively approximated by a descriptor. That is, the type will
not contain any elements not also contained in the descrip-
tor. There is a descriptor for the top type, bottom type, and
any type that is useful for optimization.

Descriptors are collected into bags, which are associative
maps from variables to descriptors. Bags are equipped with
equality and union operations, which are both only defined
for bags with the same set of variables, and consist of the
equivalent operation on descriptors mapped over the vari-
ables.

Type inference begins by associating each arc with a bag.
Initially, every descriptor in every bag is the top type de-
scriptor. As an optimization, only those variables which are
live (used as inputs in some instruction later in control flow)
during the arc are included in each bag.

This map of arcs to bags represents all useful type infor-
mation, and an altered map is the ultimate result of the type
inference procedure. Type inference consists of successively
shrinking the descriptors of variables in the bags from the
top descriptor.

To proceed with type inference, all instructions with pre-
decessors are iterated over in arbitrary order. For each in-
struction, a specialized transfer function is executed. The
transfer function receives as arguments the instruction and
a bag. The bag is the union of bags in arcs directly preced-
ing the instruction. The transfer function then computes a
bag for each succeeding arc of the instruction based on these
arguments.

If the bags so computed are distinct from the bags already
associated with those arcs, new information is available. The
succeeding instructions are then marked to be iterated over
again. This continues until no instructions are left to iterate
over, and at this point the current association of arcs with
bags is the result of type inference.

For example, a Common Lisp programmer may annotate
their program with type information by using the the spe-
cial operator: (the fixnum foo) indicates that whenever
this form is evaluated, the variable foo is of type fixnum.
the is represented in HIR by a the-instruction, which has
one predecessor, one successor, and one input, the variable
foo. During type inference, the transfer function for the
the-instruction returns the information that in the suc-
cessor arc, foo must fit the type descriptor most closely ap-
proximating the Common Lisp type fixnum, and transfer
functions for instructions farther along in the control flow
can propagate this information.

5. OPTIMIZATIONS
Inferred type information can be used to remove runtime

type discrimination (typeq instructions, as described in Sec-
tion 3) from the code. If the type of an input to typeq is
inferred, it could be that only one branch of the typeq is
ever taken, and thus the typeq itself can be removed.

For example, consider the code:

2The type of the return value of a pure function could be
inferred to be a singleton set (an EQL type) or the empty
set (NIL), depending on whether the function halts.

ELS 2017 37

typeq (cons)

error

item

key

nil

setq

nil
typeq (null)

error

setq

typeq (null)

...

typeq (cons)

typeq (cons)

car

value ...

cdr

Figure 2: Unoptimized HIR fragment.

typeq (cons)

item

key

value

cdr

car ...

...

Figure 3: HIR fragment after removing redundant
typeqs.

(if (consp item)

(let ((key (car item))

(value (cdr item)))

...)

...)

This would initially appear in HIR as Figure 2, with the
consp being inlined as a typeq. The car and cdr calls in-
volve two additional typeqs each, though they are obviously
redundant.

The inferencer can determine from the earliest typeq that
“item” must be a cons in the first if branch. The other four
typeqs can then be eliminated, resulting in the HIR in Fig-
ure 3. The semantics of the original program are preserved,
but it is implemented without unnecessary branching.

In the Clasp implementation of Common Lisp, this opti-
mization has been tested to reduce the execution time (over
ten million iterations) of a Fibonacci function by 56%.

6. CONCLUSIONS AND FUTURE WORK
We have described a technique for type inference of in-

termediate code resulting from the translation of Common

Lisp code to an intermediate representation that manipu-
lates only objects of the source language. Our technique
uses a straightforward dataflow algorithm, which is also the
most natural way of thinking about the evolution of type
information in a Common Lisp program.

Type inference can be much more effective if the interme-
diate code is first converted to SSA form [2, 3] or some other
notation that preserves values of lexical variables across as-
signments. Assigning to a lexical variable may lose existing
type information associated with that variable, so that the
type of the new value must be tested again at some later
point in the program. Our technique works whether the
intermediate code is transformed this way or not, but we
have not yet tested the effect of such transformations on the
effectiveness of our technique.

At present, the type inference only operates within func-
tion, and does not use any information about other functions
that isn’t explicitly declared. The algorithm can be extended
to incorporate type information from local functions with-
out much change, but using inferred types of global functions
will require more work due to the semantics of redefinition.

Determining precise dataflow in a Common Lisp program
is complicated when a lexical variable is shared between
nested closures, and arbitrary dataflow may invalidate es-
sential type information, thereby limiting the effectiveness of
type inference. Currently, Cleavir only contains a very rudi-
mentary escape analysis phase, forcing our type-inference
technique to be very conservative by treating all shared vari-
ables as being of unknown type. We intend to improve the
quality of the escape analysis so as to improve the effective-
ness of our type-inference technique.

Currently, the dataflow computation is implemented with
an ad hoc approach. However, Kildall [6] designed a general
approach for solving a large spectrum of problems, and our
type-inference technique is a good candidate for using that
general approach. We already have a general implementa-
tion of this approach, and it can be customized by providing
a domain in the form of a standard instance3 that provides
the details of the required lattice operations. In order to im-
prove maintainability, we intend to adapt our type-inference
technique so that it uses this implementation of Kildall’s ap-
proach.

Finally, the type lattice used by our technique is currently
very coarse. A more populated lattice can greatly improve
the effectiveness of our technique, though care must be taken
to avoid excessive processor time in the type inferencer itself.

After the submission of this paper, considerable progress
has been made in implementing the algorithm in terms of
Kildall’s algorithm, and using an expanded lattice with more
joins, but it has not yet been tested extensively.

7. ACKNOWLEDGEMENTS
We thank Robert Strandh for the original design of this

method and contributions to this paper, Christian Schafmeis-
ter for a timing example and Lisp implementation to test in,
and Stas Boukarev for information about SBCL’s constraint
propagation.

3Recall that a standard instance is an instance of (a sub-
class of) the class named standard-class. Some authors
use the term “CLOS class”, but that term does not exist in
the Common Lisp standard.

38 ELS 2017

8. REFERENCES
[1] INCITS 226-1994[S2008] Information Technology,

Programming Language, Common Lisp. American
National Standards Institute, 1994.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. An efficient method of computing
static single assignment form. In Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89,
pages 25–35, New York, NY, USA, 1989. ACM.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct.
1991.

[4] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’82, pages 207–212,
New York, NY, USA, 1982. ACM.

[5] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler.
A history of haskell: Being lazy with class. In
Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages, HOPL III,
pages 12–1–12–55, New York, NY, USA, 2007. ACM.

[6] G. A. Kildall. A unified approach to global program
optimization. In Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’73, pages 194–206,
New York, NY, USA, 1973. ACM.

[7] R. Milner, M. Tofte, and D. Macqueen. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA,
1997.

ELS 2017 39

Session III: Demonstrations

Delivering Common Lisp Applications with ASDF 3.3
Robert P. Goldman

SIFT
rpgoldman@si�.net

Elias Pipping
FU Berlin

elias.pipping@fu-berlin.de

François-René Rideau
TUNES

fare@tunes.org

Abstract
ASDF is the de facto standard build system for Common Lisp (CL).
In this paper, we discuss the most important improvements in ASDF
versions 3.2 and 3.3. ASDF’s ability to deliver applications as a sin-
gle executable �le now allows the static linking of arbitrary code
wri�en in C. We substantially improved ASDF’s portability library
UIOP, so its interface to spawn and control external processes now
supports asynchronous processes. ASDF permits programmers to
extend ASDF’s build processes in an object-oriented way; until
ASDF 3.2, however, ASDF did not correctly handle updates to these
extensions during incremental builds. Fixing this involved manag-
ing the multiple phases in an ASDF build session. We also improved
ASDF’s source �nding: it provides more usable default behaviors
without any con�guration; power users willing to manage its loca-
tion caching can speed it up; and it o�ers be�er compliance with
standard con�guration locations.

CCSConcepts •So�ware and its engineering→So�waremain-
tenance tools;

Keywords ASDF, Build System, Common Lisp, Portability, Appli-
cation Delivery, Demo

1 Introduction
Common Lisp (CL) is a general-purpose programming language
with over ten active implementations on Linux, Windows, macOS,
etc. ASDF, the de facto standard build system for CL, has matured
from a wildly successful experiment to a universally used, robust,
portable tool. While doing so, ASDF has maintained backward
compatibility through many major changes, from Daniel Barlow’s
original ASDF in 2002 to François-René Rideau’s largely rewri�en
versions, ASDF 2 in 2010, ASDF 3 in 2013, and now ASDF 3.3 in
2017. ASDF is provided as a loadable extension by all actively main-
tained CL implementations; it also serves as the system loading
infrastructure for �icklisp, a growing collection of now over 1,400
CL libraries. In this paper, we present some of the most notable im-
provements made to ASDF since we last reported on it [4], focusing
on improvements to application delivery and subprocess manage-
ment, be�er handling of ASDF extensions, and source location
con�guration re�nements.

2 Application Delivery
ASDF 3 introduced bundle operations, a portable way to deliver a
so�ware system as a single, bundled �le. �is single �le can be
either: (1) a source �le, concatenating all the source code; (2) a
FASL �le, combining all compiled code; (3) a saved image; or (4)
a standalone application. In the �rst two cases, the programmer

ELS 2017, Brussel, Belgium
2017. �is is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. �e de�nitive Version of Record was published in Proceedings
of �e 10th European Lisp Symposium, April 3–4, 2017.

controls whether or not the bundle includes with a system all the
other systems it transitively depends on.

We made bundle operations stable and robust across all active
CL implementations and operating systems. We also extended
these operations so that ASDF 3.2 supports single-�le delivery of
applications that incorporate arbitrary C code and libraries. �is
feature works in conjunction with CFFI-toolchain, an extension
which we added to the de facto standard foreign function interface
CFFI. CFFI-toolchain statically links arbitrary C code into the Lisp
runtime. As of 2017, this feature works on three implementations:
CLISP, ECL, and SBCL.

Loading a large Lisp application, either from source or from
compiled �les, can take multiple seconds. �is delay may be unac-
ceptable in use cases such as small utility programs, or �lters in a
Unix pipe chain. ASDF 3 can reduce this latency by delivering a
standalone executable that can start in twenty milliseconds. How-
ever, such executables each occupy tens or hundreds of megabytes
on disk and in memory; this size can be prohibitive when deploying
a large number of small utilities. One solution is to deliver a “multi-
call binary” à la Busybox: a single binary includes several programs;
the binary can be symlinked or hardlinked with multiple names,
and will select which entry point to run based on the name used
to invoke it. Zach Beane’s buildapp has supported such binaries
since 2010, but buildapp only works on SBCL, and more recently
CCL. cl-launch, a portable interface between the Unix shell and
all CL implementations, also has supported multicall binaries since
2015.

3 Subprocess Management
ASDF has always supported the ability to synchronously execute
commands in a subprocess. Originally, ASDF 1 copied over a func-
tion run-shell-command from its predecessor mk-defsystem [2];
but it could not reliably capture command output, it had a baroque
calling convention, and was not portable (especially to Windows).
ASDF 3 introduced the function run-program that �xed all these
issues, as part of its portability library UIOP. By ASDF 3.1 run-
program provided a full-�edged portable interface to synchronously
execute commands in subprocesses: users can redirect and trans-
form input, output, and error-output; by default, run-program will
throw CL conditions when a command fails, but users can tell it to
:ignore-exit-status, access and handle exit code themselves.

ASDF 3.2 introduces support for asynchronously running pro-
grams, using new functions launch-program, wait-process, and
terminate-process. �ese functions, available on capable im-
plementations and platforms only, were wri�en by Elias Pipping,
who refactored, extended and exposed logic previously used in the
implementation of run-program.

With run-program and now launch-program, CL can be used to
portably write all kind of programs for which one might previously
have used a shell script. Except CL’s rich data structures, higher-
order functions, sophisticated object system, restartable conditions
and macros beat the o�ering of its scripting alternatives [4] [5].

42 ELS 2017

ELS 2017, April 3–4, 2017, Brussel, Belgium Robert P. Goldman, Elias Pipping, and François-René Rideau

4 Build Model Correctness
�e original ASDF 1 introduced a simple “plan-then-perform” model
for building so�ware. It also introduced an extensible class hierar-
chy so ASDF could be extended in Lisp itself to support more than
just compiling Lisp �les. For example, some extensions support
interfacing with C code.

Unfortunately, these two features were at odds with one another:
to load a program that uses an ASDF extension, one would in a �rst
phase use ASDF to plan then perform loading the extension; and
one would in a second phase plan then perform loading the target
program. Of course, there could be more than just two phases: some
extensions could themselves require other extensions in order to
load, etc. Moreover, the same libraries could be used in several
phases.

In practice, this simple approach was e�ective in building so�-
ware from scratch, though not necessarily as e�cient as possible
since libraries could sometimes unnecessarily be compiled or loaded
more than once. However, in the case of an incremental build, ASDF
would overlook that a change in one phase could a�ect the build in
a later phase, and fail to invalidate and re-perform actions accord-
ingly. Indeed it failed to even consider loading a system de�nition
as an action that may be invalidated and re-performed when it
depended on code that had changed. �e user was then responsible
for diagnosing the failure and forcing a rebuild from scratch.

ASDF 3.3 �xes this issue by supporting the notion of a session
in which code is built and loaded in multiple phases. It tracks the
status of traversed actions across phases of a session, whereby an
action can independently be (1) considered up-to-date or not at the
start of the session, (2) considered done or not for the session, and (3)
considered needed or not during the session. When ASDF 3.3 merely
checks whether an action is still valid from previous sessions, it
uses a special traversal that carefully avoids either loading system
de�nitions or performing any other actions that are potentially
either out-of-date or unneeded for the session.

Build extensions are a common user need, though most build
systems fail to o�er proper dependency tracking when they change.
�ose build systems that do implement proper phase separation
to track these dependencies are usually language-speci�c build
systems (like ASDF), but most of them (unlike ASDF) only deal
with staging macros or extensions inside the language, not with
building arbitrary code outside the language. An interesting case
is Bazel, which does maintain a strict plan-then-perform model yet
allows user-provided extensions (e.g. to support Lisp [6]). However,
its extensions, wri�en in a safe restricted DSL, are not themselves
subject to extension using the build system.

To �x the build model in ASDF 3.3, some internals were changed
in backward-incompatible ways. Libraries available on �icklisp
were inspected, and their authors contacted if they were (ab)using
those internals; those libraries that are still maintained were �xed.

5 Source Location Con�guration
In 2010, ASDF 2 introduced a basic principle for all con�guration:
allow each one to contribute what he knows when he knows it, and
do not require anyone to contribute what he does not know [1]. In
particular, everything should “just work” by default for end-users,
without any need for con�guration, but con�guration should be
possible for “power users” and unusual applications.

ASDF 3.1, now o�ered by all active implementations, includes
„/common-lisp/ as well as „/.local/share/common-lisp/ in
its source registry by default; there is thus always an obvious place
in which to drop source code such that ASDF will �nd it: under the
former for code meant to be visible to end-users, under the la�er
for code meant to be hidden from them.

ASDF 2 and later consult the XDG Base Directory environment
variables [3] when locating its con�guration. Since 2015, ASDF
exposes a con�guration interface so all Lisp programs may similarly
respect this Unix standard for locating con�guration �les. �e
mechanism is also made available on macOS and Windows, though
with ASDF-speci�c interpretations of the standard: XDG makes
assumption about �lesystem layout that do not always have a direct
equivalent on macOS, and even less so on Windows.

Finally, a concern for users with a large number of systems avail-
able as source code was that ASDF could spend several seconds
the �rst time you used it just to recursively scan �lesystem trees in
the source-registry for .asd �les — a consequence of how the de-
centralized ASDF system namespace is overly decoupled from any
�lesystem hierarchy. Since 2014, ASDF provides a script tools/cl-
source-registry-cache.lisp that will scan a tree in advance
and create a �le .cl-source-registry.cache with the results,
that ASDF will consult. Power users who use this script can get
scanning results at startup in milliseconds; the price they pay is hav-
ing to re-run this script (or otherwise edit the �le) whenever they
install new so�ware or remove old so�ware. �is is reminiscent
of the bad old days before ASDF 2, when power users each had to
write their own script to do something equivalent to manage “link
farms”, directories full of symlinks to .asd �les. But at least, there
is now a standardized script for power users to do that, whereas
things just work without any such trouble for normal users.

6 Conclusions and Future Work
We have demonstrated improvements in how ASDF can be used
to portably and robustly deliver so�ware wri�en in CL. While the
implementation is speci�c to CL, many of the same techniques
could be applied to other languages.

In the future, there are many features we might want to add,
in dimensions where ASDF lags behind other build systems such
as Bazel: support for cross-compilation to other platforms, repro-
ducible distributed builds, building so�ware wri�en in languages
other than CL, integration with non-Lisp build systems, etc.

Bibliography
[1] François-René Rideau and Robert Goldman. Evolving ASDF:

More Cooperation, Less Coordination. 2010.
[2] Mark Kantrowitz. Defsystem: A Portable Make Facility for

Common Lisp. 1990.
[3] Waldo Bastian, Ryan Lortie and Lennart Poe�ering. XDG Base

Directory Speci�cation. 2010.
[4] François-René Rideau. Why Lisp is Now an Acceptable Script-

ing Language. 2014.
[5] François-René Rideau. Common Lisp as a Scripting Language,

2015 edition. 2015.
[6] James Y. Knight, François-René Rideau and Andrzej Walczak.

Building Common Lisp programs using Bazel or Correct, Fast,
Deterministic Builds for Lisp. 2016.

ELS 2017 43

Radiance - A Web Application Environment

Nicolas Hafner
Shirakumo.org

Zürich, Switzerland
shinmera@tymoon.eu

ABSTRACT
Radiance[1] is a set of libraries that provide an environment
for web applications. By putting its focus on running mul-
tiple web services or applications within the same environ-
ment, it has developed features that set it apart from tra-
ditional web frameworks. In particular, it shows a new ap-
proach to the way different framework features are provided,
and how the routing to content is performed. These differ-
ences allow applications written against Radiance to trans-
parently share common resources such as the HTTP server,
user accounts, authentication, and so forth with each other.

CCS Concepts
•Software and its engineering→Development frame-
works and environments; •Information systems →
Web applications;

Keywords
Common Lisp, web framework, web development, encapsu-
lation, interfacing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’17 April 3–4, 2017, Brussel, Belgium
© 2017 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

1. INTRODUCTION
As the internet evolved, websites began to evolve and be-

came more and more dynamic. Content is no longer a set of
static webpages, but rather automatically updated, or even
individually composed for the specific user viewing the web-
site. Creating such dynamic websites requires a lot of ex-
tra work, much of which is usually done in much the same
way for every website. The requested content needs to be
retrieved somehow, transformed as needed, and finally as-
sembled into deliverable HTML.

In order to handle these common aspects, web frameworks
have been created. These frameworks can come in all kinds
of sizes, from the very minimal set of an HTML templating
engine and a web server as seen in “micro-frameworks”[2],
to extensive sets of utilities to handle user interaction and
data of all kinds.

Typically these frameworks are constructed with the in-
tent of helping you develop a single web application, which is
then deployed and run standalone. However, this paradigm
can lead to issues when multiple applications should be de-
ployed side-by-side. For example, if the framework does
not provide explicit support for a particular feature such
as user accounts, the two applications will likely have imple-
mented ad-hoc solutions of their own, which are incompat-
ible with each other and thus can’t be trivially merged to-
gether. Large, “macro-frameworks” may avoid the problems
introduced by ad-hoc feature implementation, but instead
run the risk of introducing too many features that remain
unused.

Radiance initially grew out of the desire to write web ap-
plications that could be run together in such a way, that
users would not have to create multiple accounts, track mul-
tiple logins, and so forth. Another primary goal of it was to
write it in such a way, that it would be possible to exchange
various parts of the framework without needing to change
application code. This separation would allow flexibility on
the side of the administrator, to pick and choose the parts
that best fit their environment.

2. EXAMPLE REQUIREMENTS OF AN AP-
PLICATION

In order to illustrate the reasoning behind the individual
components present in the Radiance system, we are going
to make use of a simple, imaginary example web applica-
tion throughout the paper. This application should provide

44 ELS 2017

a “blog platform,” wherein users can create text posts to
which they can link their friends. They should also be able
to edit the posts again at a later point and customise the
look and feel to their preference.

When talking about such an application in the context
of Radiance, we think of it as a form of library that is then
loaded together with Radiance to form a full webserver. This
approach is in contrast to the deployment models of many
other frameworks, where the “library” is deployed bundled
tightly together with the framework as a single application.

In order to write our blog application, we are going to
want a database that stores the posts, a system to handle
user accounts and authentication, a cache system for perfor-
mance, an HTTP server, and a template engine.

Imagine now, if you will, that an administrator also wanted
to run a forum on the same host as well, perhaps in or-
der to allow people to discuss and engage with each other
about the various posts on the main blog. Requiring users to
maintain a login for each service would be annoying, to say
the least. Furthermore, as an administrator, we would like
to make sure that as much data is kept in the same place as
possible, and arranged in a similar way, to ease maintenance.

For our blog to share as many resources as it can with po-
tential third-party applications residing in the same instal-
lation, it needs to rely on the framework to provide all of our
required features, except perhaps for the template engine.
Additionally, it needs to have some system that divides up
the URL namespace between applications. As the applica-
tion writer, we cannot have any presumptions about what
the final setup will look like — what kinds of applications
will be deployed together, and how the public URLs should
resolve.

3. THE RADIANCE SYSTEM
The core of the Radiance system is rather small. Despite

this, it can provide a plethora of features in the spirit of a
macro-framework, if needed. Most of its features are plug-
gable, which is done through interfaces.

The division of the URL namespace is provided through
the routing system, which allows both a convenient view for
developers to work with, and a powerful way for administra-
tors to configure the system to their liking without having
to touch application code.

Finally, the management of a Radiance installation is han-
dled through so-called “environments,” which specify the
configuration of the individual components.

3.1 Interfaces
Interfaces represent a form of contract. They allow you

to define the signatures of constructs exposed from a pack-
age, such as functions, macros, classes, and so forth. These
function signatures are accompanied by documentation that
specifies their public behaviour. Through this system, Ra-
diance can provide several “standard interfaces” that specify
the behaviour of many features that are commonly needed
in web applications, without actually having to implement

them.

In order to make this system more concrete, let’s look at
an interface that might provide some sort of caching mech-
anism.

(define-interface cache
(defun invalidate (name)
"Causes the cached value of NAME to be re-computed.")

(defmacro with-caching (name invalidate &body body)
"Caches the return value if INVALIDATE is non-NIL."))

This construct defines a new package called cache, ex-
ports the symbols invalidate and with-caching from it,
and installs stub definitions for the respective function and
macro. With this interface specification in place, an appli-
cation can start writing code against it. In our imaginary
blog service, we could now cache the page for a specific post
like so:

(defun post-page (id)
(cache:with-caching id NIL
(render-post (load-post id))))

However, as it currently is, this function will obviously not
work. The with-caching macro is not implemented with
any useful functionality. As the writer of the blog applica-
tion, we don’t need to know the specifics of how the caching
is implemented, though. All we need to do is tell Radiance
that we need this interface. This can be done by adding the
interface as a dependency to our application’s ASDF[3] sys-
tem definition.

(asdf:defsystem blog-service
...
:depends-on (...

(:interface :cache)))

Radiance extends ASDF’s dependency resolution mecha-
nism to allow for this kind of declaration. When the
blog-service system is now loaded, Radiance will notice
the interface dependency and resolve it to an actual system
that implements the desired caching functionality. This res-
olution is defined in the currently active environment, and
can thus be configured by the administrator of the Radiance
installation.

For completeness, let’s look at an implementation of this
cache interface. The implementation must be loadable through
an ASDF system, so that the above dependency resolu-
tion can be done. The actual implementation mechanism
is handed to us for free, as Lisp allows redefinition.

(defvar cache::*caches* (make-hash-table))

(defun cache:invalidate (name)
(remhash name *caches*))

(defmacro cache:with-caching (name invalidate &body body)
(once-only (name)

`(or (and (not ,invalidate) (gethash ,name *caches*))
(setf (gethash ,name *caches*)

(progn ,@body)))))

This implementation is a particularly primitive and straight-
forward one, in order to keep things short. The function and
macro are provided by just overriding the stub definitions
that were in place previously. The variable definition is not

ELS 2017 45

part of the official interface, and is instead exposed through
an unexported symbol, denoting an implementation-dependant
extension.

Using direct overwriting of definitions means that all ap-
plications must use the same implementation. However, usu-
ally this effect is intended, as we want to maximise the
sharing between them. If an implementation should have
special needs, it can always bypass the interfaces and make
direct use of whatever it might depend on. This approach
with interfaces does bring some benefits, however. For one,
it allows the implementations to be as efficient as possible,
as there is no intermediate layer of redirection.

Radiance provides standard interface definitions for all of
the components we require for the blog application, and
more. A full list of the interfaces and their descriptions
is available in the Radiance documentation1. Thus, Radi-
ance can be used like a macro-framework, but does not load
any features unless specifically required. Additionally, any
of the implementations can be exchanged by a system ad-
ministrator for ones that more closely match their require-
ments, without having to change anything about the appli-
cation code.

Finally, Radiance provides a system that allows the pro-
grammer to optionally depend on an interface. This mecha-
nism is useful to model something like the user preferences
mentioned in our example application. An administrator
might not always want to provide an administration or set-
tings panel. To make this dependency optional, we can de-
fer the compilation and evaluation of our relevant logic to a
later point, after an implementation has been loaded. For
an imaginary user-settings interface, an example might
look like the following:

(define-implement-trigger user-settings
(user-settings:define-option ...))

Since all the symbols are already provided by the inter-
face definition, there are no problems when the reader parses
the source. The forms can thus simply be saved away to be
evaluated once Radiance notices that an implementation of
the interface in question has been loaded.

Ultimately, interfaces are a form of compromise between
providing all possible features at once, and almost no fea-
tures at all. The usefulness of an interface heavily depends
on its specification, and for implementations to be really
exchangeable without modifying the application code, each
implementation and application must strictly adhere to the
specification.

3.2 Routes
In order to allow the administrator to change where pages

are accessible from, an application cannot hard-code its re-
source locations and the links in its templates. It is doubly
important to do this when it comes to housing multiple ap-
plications in one, as the system needs to be set up in such
a way that the applications do not clash with each other or
potentially confuse pages of one another.

1https://github.com/Shirakumo/radiance/#interface

In many frameworks, like for example Symfony[4], this
problem is solved by naming every resource in the system
by a tag, and then allowing the configuration of what each
tag resolves to individually. Radiance takes a different ap-
proach. It introduces the idea of two separate namespaces:
an external one, which is what a visitor of a website sees
and interacts with, and an internal one, which is what the
programmer of an application deals with.

This separation allows application programmers to model
their pages from a perspective that looks much more like the
external view. Instead of dealing with named tags, they deal
in concrete internal URLs that, in a development setup, of-
ten have a relatively direct one-to-one mapping to the exter-
nal URLs. This makes it easier to visualise and think about
the application structure. From the administrator’s point of
view this setup is more convenient too, as they simply need
to think in terms of translations, rather than specific tag in-
stances.

The translation between the two namespaces is the re-
sponsibility of the routing system. The way it is connected
into the life-cycle of a request is illustrated in Figure 1.

Routing System

User

HTTP Server Implementation

Dispatch Application Template System

Internal URL
External URL

Internal URL

Data
HTML

HTTP Request

Map URL Reverse URL

External URL

Figure 1: Standard request life-cycle

When a request is dispatched by Radiance, it first parses
the request URL into an object presentation that makes it
easier to modify. It then sends it through the mapping func-
tion of the routing system, which turn this external URL
into an internal one. The request is then dispatched to the
application that “owns” the URL in the internal representa-
tion.

Since Radiance has full control over the organisation of
the internal representation, it can make strict demands as
to how applications need to structure their URLs. Specifi-
cally, it requires each application to put all of its pages on a
domain that is named after their application.

In our sample application, we might write the view page
something like this, where blog/view is the internal URL
that the view page is reachable on.

(define-page view "blog/view" ()
(render-template (template "view.html")

(get-post (get-var "post-id"))))

If, as an administrator of an installation of this blog ap-
plication, we now wanted to reach this page through the

46 ELS 2017

URL www.example.com/blog/view, the mapping route func-
tions would have to strip away the www.example.com do-
main, recognise the blog folder, and put that as the URL’s
domain instead. We can achieve this behaviour relatively
easily with the following definition.

(define-route blog :mapping (uri)
(when (begins-with "blog/" (path uri))
(setf (domains uri) '("blog")

(path uri) (subseq (path uri) 5))))

Alternatively, we could also use the even simpler string-
based definition.

(define-string-route blog :mapping
"/blog/(.*)" "blog/\\1")

Naturally, if you wanted different behaviour depending on
which domain the request came from, you’d have to write a
more specific translation.

With the mapping alone the case is not yet solved, though.
When a page is emitted that contains links, the links must be
translated as well, but in the opposite way. Unfortunately,
because routes can be arbitrarily complex, it is not possible
for the system to figure out a reversal route automatically.
The logic of a reversal route will usually be much the same
as it was for the mapping route and should thus not be a
problem to figure out, though.

The reversal of URLs should receive special support from
the templating system, as it is very frequently needed and
should thus be short. Radiance does not dictate any specific
template system, but offers extensions to some existing sys-
tems like Clip[5] to simplify this process. As a brief example,
in Clip, URLs can be denoted through special attributes like
this:

<a @href="blog/list">Latest Blog Posts
<form method="post">
<textarea name="text"></textarea>
<input type="submit" @formaction="blog/submit" />

</form>

The templating engine takes care of reading out the @ at-
tribute values, running them through the reversal functions
of the routing system, and putting the resulting URL into
the corresponding attribute to produce a valid link.

3.3 Environments
Radiance’s “environment” encapsulates the configuration

of a Radiance installation. Through it, applications can pro-
vide settings that the administrator can set to their liking. It
also provides the information necessary to figure out which
implementation to use for an interface.

The environment itself simply dictates a directory that
contains all of these configuration files. Each application in
the system automatically receives its own directory in which
it can store both configuration and temporary data files. By
simply switching out this environment directory, the system
can then be loaded into completely different configurations,
for example allowing you to easily keep “development” and
“production” setups.

An administrator of a system will not have to touch any
source code, and instead can configure the system through

a set of human-readable configuration files. It is, of course,
still possible to configure the system through usual Lisp code
as well, should one prefer this approach.

In our example application we might want to give the
administrator the ability to define a global blog title. We
could provide a default value for it like this:

(define-trigger startup ()
(defaulted-config "Irradiant Blogs" :title))

We need to stick the configuration update into a trigger,
in order to defer the evaluation to when Radiance is being
started up and the environment has been decided. During
the loading of the system, the environment might not have
been set yet, and we would not be able to access the config-
uration storage.

While Radiance does provide default implementations for
all of its interfaces, it is likely that some of them are not
usable for a production setting. In order to change, say, the
implementation of the database interface, we would then
have to modify the Radiance core’s configuration file. We
can either modify the file directly like so:

((:interfaces (:database . "i-postmodern")
...)

...)

. . . or instead use the programmatical way, like so:

(setf (mconfig :radiance-core :interfaces :database)
"i-postmodern")

i-postmodern here is the name of a standard implemen-
tation of the database interface for PostgreSQL databases.

Routes can also be configured through the core configura-
tion file. Our previous example mapping route could be set
up in the configuration file like this.

((:routes (blog :mapping "/blog/(.*)" "blog/\\1"))
...)

Radiance will take care of converting the configuration
data into an actual route definition like we saw above.

The individual configuration of every application can be
changed in much the same way.

4. CONCLUSION
Radiance provides a web framework that adjusts itself

depending on how many features the application requires.
By separating the applications from the implementations of
these features with an interface, it allows the application
programmer to write their software against a well-specified
API, and retains the ability for the administrator to decide
which implementation is most suitable for their setup.

By maintaining a strict separation of the URL namespace
and providing an automated URL rewriting mechanism, Ra-
diance allows for easy sharing of the namespace between an
arbitrary number of applications, while at the same time
giving the administrator a convenient way to modify the
behaviour of the translation to fit their specific server con-
figuration.

ELS 2017 47

Through the environment system, Radiance standardises
the way each application is configured by the administrator
and how the system is pieced together when it is loaded. As
a consequence of that standardisation it becomes trivial to
switch between different setups of a Radiance installation.
The simple, human-readable configuration format used al-
lows even users without intimate knowledge of Lisp to set
up an instance.

5. FURTHER WORK
Currently, while it is possible to dynamically load appli-

cations, it is not possible to dynamically unload them. Do-
ing so is troublesome, as the system of an application might
potentially modify any other part of the Lisp process. How-
ever, if a constraint on what kind of changes can be rolled
back is introduced, it should be possible to provide a usable
form of this kind of feature.

Radiance also does not allow you to change the implemen-
tation of an interface on the fly. This feature has much the
same problems as the previous issue. In addition, though,
the system needs to ensure that all dependant applications,
including optionally dependant ones, are reloaded to make
macro redefinitions take effect. Furthermore, since some in-
terfaces expose classes and instances thereof, the system
would either have to be able to migrate objects between
interface implementations, or somehow invalidate the old
instances if they are retained in another part of the applica-
tion.

Ultimately it should be made possible to switch out the en-
vironment of a Radiance installation on the fly, for example
to switch between development and production setups with-
out having to restart completely. Doing so could massively
improve the time needed to discover differences between dif-
ferent setups.

6. ACKNOWLEDGEMENTS
Thanks to Joram Schrijver, Till Ehrengruber, and Robert

Strandh for feedback, corrections, and suggestions on the
paper.

7. REFERENCES
[1] N. Hafner. Radiance, a web application envrionment.

[Online; accessed 2016.12.16]
http://shirakumo.org/projects/radiance.

[2] Various. Microframework. [Online; accessed 2016.12.16]
https://en.wikipedia.org/wiki/Microframework.

[3] Various. Another system definition facility. [Online;
accessed 2017.3.14] https://en.wikipedia.org/wiki/
Another System Definition Facility.

[4] Various. Symfony. [Online; accessed 2017.3.13]
https://en.wikipedia.org/wiki/Symfony.

[5] N. Hafner. Clip, a common lisp html templating engine.
[Online; accessed 2016.12.16]
https://github.com/Shinmera/clip.

48 ELS 2017

Teaching Students of Engineering some Insights of the Internet
of Things using Racket and the RaspberryPi

Daniel Brunner
Systemhaus Brunner & Brunner Software

Schulstr. 8
Biedenkopf 35216, Germany

daniel@dbrunner.de

Stephan Brunner
Systemhaus Brunner & Brunner Software

Schulstr. 8
Biedenkopf 35216, Germany

stephan.brunner@systemhaus-brunner.de

ABSTRACT

We gave a course to teach students of engineering some
insights into the Internet of Things (IoT). We started with
an introduction into programming using Racket and the
Beginner Student Language (BSL) teachpack. After that we
introduced the RaspberryPi1 and showed how to read data
from a thermal sensor and switch a LED. With this knowledge
we taught students to implement a simple publish-subscribe
pattern where the RaspberryPi collected some thermal data
and a program on their PC monitored these data and could
switch the LED depending on the measured temperature.
With this setup we explained several aspects of distributed
computing and the Internet of Things in particular.

CCS CONCEPTS

�Social and professional topics �Computing educa-
tion; �Applied computing �Engineering; �Computer
systems organization �Sensors and actuators;

KEYWORDS

Racket, BSL, RaspberryPi, IoT, distributed computing

ACM Reference format:

Daniel Brunner and Stephan Brunner. 2016. Teaching Students of

Engineering some Insights of the Internet of Things using Racket
and the RaspberryPi. In Proceedings of 10th European Lisp Sym-

posium, Brussels, Belgium, April 3–4, 2017 (10th ELS), 2 pages.

DOI:

1 INTRODUCTION AND GOAL

Nowadays a lot of news is written about the “Internet of
Things” (IoT). In Germany these news are often related to
the so-called “Industrie 4.0”, a term which describes a new
way to organize processes of manufacturing. Although the
term is often used in newspapers and even at our universities,
a precise and widely accepted definition does not yet exist.
But most authors would agree that digitalization influences

1http://www.raspberrypi.org

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

10th ELS, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). .
DOI:

manufacturing and leads to new forms of manufacturing
or even to additional product-related services. Therefore
we took this as a starting point and our goal was to teach
students of engineering some basic principles on how to design
a distributed application.

The basic idea was to have a small device (RaspberryPi
with a thermal sensor) which monitors some state of an
imaginary machine and sends this data to a central message
broker. A separate monitoring system (on the student’s PC)
should subscribe to these messages and check if the monitored
device is in some “healthy” state. If the measured data was
out of a given range, some action should be initiated (switch
on a LED which was connected to the RaspberryPi).

Although there are a lot of IoT suites available, we wanted
to accomplish this setup with very basic tools. On the other
hand we wanted to avoid diving into assembler programming
or system programming with C. Therefore we chose Racket
along with the Beginner Student Language and the uni-
verse teachpack from the “How to Design Programs” (HtDP)
teaching materials.

With these in hand we gave a two-day course at the dual
study program StudiumPlus2 of the University of Applied
Sciences of Central Hesse (Technische Hochschule Mittel-
hessen3). Most of our students only had little knowledge
in programming. Some of them took a C++ course at the
beginning of their studies. Therefore we could not rely on
any programming skills.

2 BASIC PROGRAMMING

To teach some basic ideas of programming we chose the
approach of “How to Design Programs (2nd edition)” (see
[2]). We taught some of the material of the first chapters and
emphasized on the structural design recipe (see [1]). Students
could follow and perform their exercises with Racket’s IDE,
DrRacket, which works on the student’s PC as well as on the
RaspberryPi. This took about one third of the whole course.

We tried to limit the material to what really is essential
to build a small distributed application. Therefore we taught
students about some basic data type of BSL: images, num-
bers, strings, booleans as well as some functions on how to
work with these data types. After introducing booleans we
went on to teach some logical operators and ended up with
conditionals (cond and if and some predicates). These con-
cepts were introduced using the universe teachpack which

2http://www.studiumplus.de
3http://www.thm.de

ELS 2017 49

10th ELS, April 3–4, 2017, Brussels, Belgium Daniel Brunner and Stephan Brunner

implements interactive, graphical programs (so-called world
programs). Along with the data types we introduced the def-
inition of functions and constants using define, comments,
defining and using structs and how to use require.

3 SETUP

After teaching some basics in programming we set up the
following components to establish a simple publish-subscribe
pattern using the universe teachpack, e.g. connecting the
world programs to the universe server, a central control
program. To keep things very simple we omitted any authen-
tication, encryption etc. We built teams consisting of two
students. Each team received a RaspberryPi.

3.1 Student’s PC and RaspberryPi

We provided the students with two modules: one with some
basic struct definitions and constants to establish the publish-
subscribe pattern and a second one where we hid some system
calls to obtain the temperature using the I2C bus or switching
the LED via the GPIO. This was done by simple calls to the
command line tools i2cget and gpio.

We prepared the RaspberryPi with a thermal sensor (LM75,
see [3]), a red LED and the newest Raspbian4 image which
contains a graphical user interface. On top of that we in-
stalled DrRacket. Therefore students could use a simple
VNC viewer to connect to the RaspberryPi and develop their
programs directly on the RaspberryPi using the same IDE.
Consequently students did not have to bother with Linux’
command line programs.

Alternatively they could use the VNC viewer’s function to
upload files. Furthermore having a GUI is a requirement for
the universe teachpack because the world programs need a
to-draw clause.

The task for the student’s PC was to develop a program
which subscribed to the messages of their RaspberryPi, check
if it is in a given range of temperatures and publish a suitable
“change state” message.

After setting up the PC, the RaspberryPi and the above-
described programs the students should monitor their sensor’s
temperature and watch for the LED to light up which it would
if the temperature was out of a given range (e.g. using some
cooler spray on the sensor).

3.2 Instructor’s PC

The instructor’s PC was running the message broker, a simple
server program that implemented the described protocol.
The source code of this component was not shown to the
students. They were only taught how to publish and subscribe
to data. To give a good overview over all RaspberryPis and
their states, we built a small program that subscribed to all
messages from the RaspberryPis and showed their states to
the whole class via projector.

4http://www.raspbian.org

4 DISCUSSION

After the setup was working, we could explain several aspects
of distributed systems and IoT in particular like the availabil-
ity and type of network, low latency, bandwith restrictions,
network congestion, authentication, message signing as well
as topics like data format of the sensor, issues with time
zones, different protocols and file formats. We ended up
giving some advice on how to debug such distributed systems
if something goes wrong.

Using Racket and the universe teachpack (and omitting
lots of security measures) resulted in very short programs:
Our sample implementation for student’s components con-
sisted of 67 lines for the program on the RaspberryPi and
95 lines for monitoring the messages. The modules that
hid some implementation details on the structs and system
programming (LM75, LED) used another 176 lines. There-
fore students were not distracted by an overhead caused by
libraries or the programming language itself. On the instruc-
tor’s side more code was necessary: the message broker took
321 lines and our “overview” another 107 lines. To sum up:
although only a fraction of Racket’s BSL plus the universe
teachpack was used, we were able to come up with a very
short working solution.

After the two-day course students reported that they
learned very fast and were suprised, they could achieve some
results with only little knowledge in programming. We hoped
that omitting authentication and encryption would encourage
some of the students to hack or at least play with some of
the other RaspberryPis. But that did not happen. Maybe
they should be given more time to experiment and to think
about possible shortcomings.

In a future course we are going to spend more time on the
aspects of distributed computing, e.g. in terms of the universe
teachpack: connecting world programs with a universe. This
should broaden the understanding of the IoT and help the
students to implement some of these techniques in their
professional life.

ACKNOWLEDGMENTS

We would like to thank two anonymous reviewers for their
helpful advice and Gerd Manthei of StudiumPlus at Technis-
che Hochschule Mittelhessen who made this course possible.

REFERENCES
[1] Matthias Felleisen. 2015. Growing a Programmer. (8 Septem-

ber 2015). http://www.ccs.neu.edu/home/matthias/Thoughts/
Growing a Programmer.html

[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. 2014. How to Design Programs (2nd
ed.). MIT Press, Cambridge MA. http://www.ccs.neu.edu/home/
matthias/HtDP2e/

[3] National Semiconductor 2001. LM75: Digital Temperatur Sensor
and Thermal watchdog with Two-Wire Interface. National Semi-
conductor. http://esd.cs.ucr.edu/labs/temperature/LM75.pdf

50 ELS 2017

Interactive Functional Medical Image Analysis
A demonstration using Racket and the vigracket library to detect sickle-cell anaemia

Benjamin Seppke
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

Hamburg, Germany 22527
seppke@informatik.uni-hamburg.de

Leonie Dreschler-Fischer
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

Hamburg, Germany 22527
dreschler@informatik.uni-hamburg.de

ABSTRACT
�is article demonstrates the functional application of Computer
Vision methods by means of a prototypical process chain. For
this demo, we have selected the application area of medical im-
age analysis, in detail the classi�cation of blood cells using micro-
scopic images. We further focus on the task of detecting abnormal
sickle-shaped red blood cells, which are an indicator for a relatively
common disease in countries around the equator: the so-called
sickle-cell anaemia. From the functional languages, we have cho-
sen Racket and the vigracket Computer Vision library [3]. Although
this demo just scratches the surface of medical image processing, it
provides a good motivation and starting point.

CCS CONCEPTS
•Computingmethodologies→Image segmentation; •So�ware
and its engineering →Functional languages; •Applied com-
puting →Bioinformatics;

KEYWORDS
Functional Programming, Racket, Medical Image Processing, Com-
puter Vision, Language Interoperability
ACM Reference format:
Benjamin Seppke and Leonie Dreschler-Fischer. 2017. Interactive Functional
Medical Image Analysis. In Proceedings of European Lisp Symposium 2017,
Brussels, Belgium, April 2017 (ELS’2017), 2 pages.

1 INTRODUCTION
Functional programming and functional languages have a long
tradition in research and teaching at the Department of informat-
ics at the University of Hamburg. Since 8 years, we successfully
combine the Computer Vision library vigra [1] with functional
programming languages. As an example in [4] we have presented
how well Computer Vision approaches may be introduced into
the Racket programming language. To reach a broader range of
users, it shall not be unmentioned that the used C-wrapper library
in platform-independent and has been tested and proven to work
under Windows, Mac OS X and Linux.

A�er the latest optimisations, the Computer Vision wrapper
libraries are even more powerful with respect to performance and
image segmentation tasks [2]. Functional languages natively o�er
interactive development cycles, generic modelling and probably
the most powerful garbage collectors.

ELS’2017, Brussels, Belgium 2017.

Figure 1: Blood sample of a patient with sickle-cell anaemia.
�e sickle-shaped cells occur among the regular, circle-
shaped cells. (©Getty Images/Photoresearchers)

2 DEMONSTRATION
Sickle-cell anaemia or sickle-cell disease is genetic disease occurring
in many parts of Africa and other countries. Besides its negative
e�ects, there also seems to be a protective e�ect against Malaria. A
comprehensive report on the sickle-cell disease and on the research
progress can be found in [5]. We have chosen the detection of
the sickle-cell disease for this demonstration as it requires shape
detection and description of red blood cells on microscopy images.
As an example, Figure 1 shows a typical image of a patient’s red
blood cells. For this demonstration we will distinguish between the
main working phases of the process chain in logical order:

2.1 Loading images
Before loading images, it might be useful to de�ne a working folder.
By changing this folder, we can easily adapt our demo to di�erent
users or other folders. �e image is then be loaded by vigracket in
a three element list containing arrays of foreign memory for the
red, green and blue channel.

(require vigracket)

(define dir (current-directory))
(define img (loadimage (build-path dir "cells.jpg")))

2.2 Preprocessing
�e �rst step for the analysis of the di�erent imaged blood cells is
the division of the image contents into foreground (the cells) and
background. �is can e.g. be achieved by applying a threshold to
one or more channels of the image.

ELS 2017 51

ELS’2017, April 2017, Brussels, Belgium Benjamin Seppke and Leonie Dreschler-Fischer

Table 1: Semantics of the columns for RGB region-wise fea-
ture extraction. Each row corresponds to one segment.

Columns Features
0 segment size

1, 2 upper le� x and y-coordinates of segment
3, 4 lower right x and y-coordinates of segment
5, 6 mean x and y-coordinates of segment
… other statistics of segment

�e threshold is then used to pre-classify the pixels of the image
into foreground (grey value = 255) and background pixels (grey
value = 0). Here, we have chosen the red-channel and a �xed
threshold of 222 to generate the mask, described above. A�er the
thresholding we apply a morphologic opening �lter to suppress the
in�uence of smaller artefacts:
(define mask (image-map (λ(x) (if (< x 222.0) 255.0 0.0))

(image- >red img)))
(define omask (openingimage mask 1.0))

2.3 Divison in segments
To analyse the single cells’ properties, we have to divide the fore-
ground into corresponding segments. If we de�ne a segment as
a connected component of (masked) pixels, we can assign unique
labels for each segment. �e #t tells the function to use eight-pixel
connectivity for the component detection and 0.0 denotes the back-
ground value:
(define labels (labelimage omask #t 0.0))

Instead of 0 and 255, this function assigns increasing values
from 1 to the number of connected components found for each
foreground classi�ed pixel.

2.4 Segment analysis and classi�cation
To decide whether a segment represents a sickle-cell or an circle-
shaped cell, we need to get statistics, also called features, for each
segment. �is process can be automised by vigracket’s latest func-
tional extensions. We use the extractfeatures method to derive
RGB-based statistics using the image and the label image.
(define stats (extractfeatures img labels))

�e result, stats, is also an image, but with slightly changed
semantics. Each row represents on regionwith its extracted features.
�e semantic with respect to the columns is shown in Table 1.
For this demonstration, we �nd it su�cient to check whether the
dimensions of each segment are roughly circle-like. We further use
the aspect ratio of each region’s bounding box plus one threshold,
to accept a circle-like structure.
(define (circle-like? segment threshold)

(let* [(width (- (image-ref stats 3 segment 0)
(image-ref stats 1 segment 0)))

(height (- (image-ref stats 4 segment 0)
(image-ref stats 2 segment 0)))

(a (max width height))
(b (min width height))]

(< (/ a b) threshold)))

Figure 2: Classi�cation result of Figure 1 using the demon-
strated approach. Red: classi�ed sickle-cells, green: classi-
�ed circle-like cells, black: background.

2.5 Extraction and usage of results
Using the circle-like? function, we are now able to classify each
region. Since the classi�cation is a binary decision, we may simply
�lter the list of all segments:
(define maxlabel (image-reduce max 0.0 labels))
(define label-ids (build-list maxlabel values))
(define filtered-ids (filter (curryr circle-like? 4/3)

label-ids))

Now filtered-ids contains the ids of all segments which are circle-
like (aspect ratio below 4/3) and thus not correspond to sickle-cells.
�is list can be used to quantify the ratio of di�erent cell-types, to
mark them in the image (see Figure 2) or to derive special statistics
like color for these cells. Although the resulting classi�cation leaves
still place for improvements.

3 CONCLUSIONS
We demonstrated the use of interactive functional Computer Vi-
sion in a medical context. Although this demonstration has been
performed using Racket and the vigracket library, it might also be
performed by means of Common Lisp and the vigracl library.

Due to the limitations of this demo, the quality of the results is
limited, too. However, this should not be seen as a comprehensive
and best-possible segmentation and classi�cation approach for the
selected application area. Instead, it should be a motivation for all
readers to utilise the power and simplicity of functional program-
ming languages and powerful libraries for interdisciplinary areas of
research. Although imperative languages are very popular at these
�elds at the moment, many tasks can be solved using functional
languages while bene��ing from their advantages, too.

REFERENCES
[1] Ullrich Köthe. 2017. �e VIGRA homepage. Retrieved January 30, 2017. (2017).

h�p://ukoethe.github.io/vigra/
[2] Benjamin Seppke. 2016. Near-Realtime Computer Vision with Racket and the

Kinect sensor. Technical Report. University of Hamburg, Dept. Informatics.
[3] Benjamin Seppke. 2017. �e vigracket homepage. Retrieved January 30, 2017.

(2017). h�ps://github.com/bseppke/vigracket
[4] Benjamin Seppke and Leonie Dreschler-Fischer. 2015. E�cient Applicative

Programming Environments for Computer Vision Applications: Integration and
Use of the VIGRA Library in Racket. In Proceedings of the 8th European Lisp
Symposium.

[5] Graham R. Serjeant. 2010. One hundred years of sickle cell disease. British
Journal of Haematology 151, 5 (2010), 425–429. DOI:h�p://dx.doi.org/10.1111/j.
1365-2141.2010.08419.x

52 ELS 2017

Session IV: Applications

Parallelizing Femlisp

Marco Heisig
Chair for Applied Mathematics 3

FAU Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen

marco.heisig@fau.de

Dr. Nicolas Neuss
Chair for Applied Mathematics 3

FAU Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen

neuss@math.fau.de

ABSTRACT
We report on the parallelization of the library Femlisp [4],
which is a Common Lisp framework for solving partial dif-
ferential equations using the finite element method.

CCS Concepts
•Software and its engineering → Software libraries
and repositories; •Applied computing → Mathematics
and statistics;

Keywords
Parallelization, MPI, distributed computing, partial differ-
ential equations

1. INTRODUCTION
Finite elements (FE) are a particularly successful method

for solving partial differential equations, which, in turn, model
many important everyday problems. Since the discretization
of the three-dimensional continuum leads to very large dis-
crete problems, the parallel solution of these problems is a
necessity.

The library Femlisp [4] is a framework written completely
in Common Lisp (CL). This gives the user all the benefits
of CL: for example, compact and flexible code as well as
interactivity. However, until recently, Femlisp was a serial
program, which was a major impediment for many applica-
tions. This only changed in 2016.

In this contribution, we report on some aspects of how
we parallelized Femlisp. In Section 2, we describe the li-
brary DDO, on which Femlisp parallelization is based. In
Section 3, we sketch the most important steps of the paral-
lelization process and, in Section 3.1, we give some numerical
results, showing that our efforts have been successful.

2. DYNAMIC DISTRIBUTED OBJECTS
Parallel computing in Common Lisp is usually based on

the portable libraries BORDEAUX-THREADS and LPAR-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

10th European Lisp Symposium 2017, Brussels, Belgium
c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

ALLEL for shared-memory parallelization, and CL-MPI and
LFARM for distributed-memory parallelization. Taking these
tools as a basis, we enhance them with a library called Dy-
namic Distributed Objects (DDO).

This library works as follows:

• The objects to be shared between different Lisp im-
ages are modified by inheriting from the mixin class
DISTRIBUTED-OBJECT. Note that only a relatively
small number of interface objects have to be “identi-
fied” in this way.

• Synchronization of these so-called distributed objects
occurs only at certain synchronization points so that
the communication overhead remains reasonably small.

• The basic administrative data structure is a relation
implemented with the help of red-black binary trees
connecting three items: an index (“local index”) for
the distributed object on this processor, the neighbor-
ing processor, and the index of the corresponding dis-
tributed object on that neighboring processor.

• The local index refers to its associated distributed ob-
ject via a weak hash table. This implies that an entry
in this table does not prevent the garbage collector
from removing the object if it is not needed locally
any more. However, as soon as a distributed object
has been garbage-collected, a finalizer is called which
ensures that the fact that this object has vanished is
communicated to the neighboring processors.

3. PARALLELIZATION OF FEMLISP
One goal when parallelizing Femlisp was to keep the se-

rial (or rather shared-memory parallel) code working as be-
fore and to introduce the treatment of the interfaces as an
augmented library. This augmented library contains the fol-
lowing:

1. Mesh generation can generate distributed coarse meshes
(i.e. meshes where only part of the mesh is located
on each processor with correctly identified interface
parts).

2. Mesh refinement ensures that the refined interfaces are
again identified correctly.

3. Discretization is automatically parallelized, because we
decided to work with so-called inconsistent matrices Ai

and vectors fi (see [1]) and consequently no informa-
tion has to be exchanged to obtain the global stiffness

54 ELS 2017

Figure 1: Three refinement levels in 2D.

Figure 2: Three of four vector solutions in 2D.

matrix (to make an inconsistent vector or matrix con-
sistent, the interface parts would have to be added up).

4. The result of this discretization step is a very large
sparse distributed linear system with unknowns associ-
ated with certain geometric entities in the distributed
mesh. This sparse linear system has the important
property that its matrix graph only couples unknowns
which are geometrically not too far apart. Neverthe-
less, solving it efficiently is a non-trivial task on which
much research has been carried out in recent decades.
In particular, it is now well known that an optimal
solver must be hierarchical and therefore has to contain
both local and non-local communication in an appro-
priate way. For our calculations here, we chose a BPX-
preconditioned CG algorithm which is well known for
both optimality and relatively easy parallelization (see
e.g. [2]).

3.1 Numerical results
As a model problem, we compute the effective elastic be-

havior of a periodically perforated composite. Such materi-
als are often encountered in modern technology, and exhibit
large-scale behavior which is different from that of each of
the components and which depends both on the properties of
the components as well as on their geometric arrangement.

The calculation of the effective behavior can be done by
solving dd vector PDE problems on a d-dimensional repre-
sentative cell. In the simple case of a ball-like perforation,
this representative cell is a unit cube with a ball-like hole (or,
in the d = 2 case, a unit square with a circle-like hole). This
calculation is not a real challenge in the two-dimensional
case, and yields the effective coefficient with high accuracy
in only a few minutes. For example, using the meshes from
Figure 1, choosing a suitable discretization, and solving the
discrete problem with the above-mentioned BPX scheme,
leads to the solutions shown in Fig. 2.

In the case d = 3, however, solving the same problem is
much more challenging and therefore an interesting oppor-
tunity for testing the quality of our parallelization.

In the following, we report some results from [3]. Our
architecture of choice is a compute server at our institute
featuring 256 GB RAM and a NUMA architecture with an
AMD Opteron 6180 SE CPU (4 sockets with 12 cores each

Cells Unknowns Matrix entries Â11
11

48 192.024K 18.5712M 2.6231458888
384 1.51991M 148.704M 2.6231424485

3072 12.0165M 1.18752G 2.6231424309

Table 1: Approximation when refining the mesh
(K,M,G are abbreviations for 103, 106, 109).

Sockets/MPI workers
Cells 1 2 3 4

48 42 25 (1.7) 20 (2.1) 17 (2.5)
384 300 170 (1.8) 130 (2.3) 105 (2.9)

3072 1985 960 (2.1) 685 (2.9) 565 (3.5)

Table 2: Execution times in seconds and speedups
(in parentheses)

and no hyperthreading).
Solving this problem results in Table 1, from which we can

see that we can already obtain a high accuracy of the effec-
tive coefficient on a mesh with 384 cells (which correspond to
about 1.5 million unknowns and 150 million matrix entries).
This value is finally checked using a calculation on a refined
mesh (which corresponds to about 12 million unknowns and
one billion matrix entries).

The execution times needed to obtain these results can
be found in Table 2. We can clearly see that the speedup
is almost optimal as soon as the problem becomes large
enough (so that the communication matters less). Note
also that these results only show the improvements due to
our distributed-memory parallelization, and that every MPI
worker process already employs 12 OS threads. Indeed,
a completely serial calculation would take more than four
times as long than the results shown in the first column of
Table 2 (see [3], where we study the parallelization of Fem-
lisp in more detail starting from the serial code).

4. ACKNOWLEDGMENTS
We would like to thank the KONWIHR project (http://

www.konwihr.uni-erlangen.de/about-konwihr.shtml) for their
support as well as Eberhard Bänsch and Balthasar Reuter
for helpful discussions and suggestions.

5. REFERENCES
[1] P. Bastian, K. Birken, K. Johannsen, S. Lang,

N. Neuss, H. Rentz-Reichert, and C. Wieners. UG – a
flexible software toolbox for solving partial differential
equations. Comput. Visual. Sci., 1:27–40, 1997.

[2] J. H. Bramble and X. Zhang. The analysis of multigrid
methods. In P. G. Ciarlet and J.-L. Lions, editors,
Handbook of Numerical Analysis, volume 7, pages
173–415. North–Holland, Amsterdam, 2000.

[3] M. Heisig and N. Neuss. Making a Common Lisp Finite
Element library high-performing — a case study.
(submitted), 2017.

[4] N. Neuss. http://www.femlisp.org.

ELS 2017 55

Tutorials

General Game Playing in Common Lisp
Steve Losh

Reykjavı́k University
Menntavegi 1

Reykjavı́k, Iceland
steve@stevelosh.com

ABSTRACT
Common Lisp has a rich history in the �eld of arti�cial intelligence.
One sub�eld of AI that is currently an area of active research is
general game playing, which focuses on writing players that can
learn to play any game intelligently given only its rules. We provide
a short introduction to the �eld of general game playing and present
cl-ggp, a framework for writing general game players in Common
Lisp. We then implement a simple general game player in about
forty lines of code to show the framework in action.

CCS CONCEPTS
•Computing methodologies →Game tree search; Logic pro-
gramming and answer set programming; •So�ware and its engi-
neering →Application speci�c development environments;

KEYWORDS
General game playing, Common Lisp

1 OVERVIEW OF GENERAL GAME PLAYING
Traditional game AI research has focused on creating agents for
individual games, such as Deep Blue[2] for Chess and AlphaGo[7]
for Go. �e �eld of general game playing has a higher-level goal:
creating agents capable of playing any game intelligently given
only its rules. Instead of programmers using domain knowledge
to create a new AI for each game from scratch, a general game
player must be able to receive a set of rules and be ready to play
strategically almost immediately1.

While playing any game is a laudable goal, in practice there
are some restrictions imposed on the games for practicality. Most
existing research in the �eld of general game playing deals with
�nite, simultaneous-move, complete-information games, and the
International General Game Playing Competition focuses on these
types of games[3]. Relaxing these restrictions (e.g. playing games
with incomplete information like Texas hold’em) is an area of active
research.

1Typically players are given anywhere from thirty seconds to several minutes of
preparation time a�er receiving the rules for any preprocessing they might want to
perform.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
10th ELS April 3–4, Brussels, Belgium
© 2017 Copyright held by the owner/author(s).

Figure 1: A partial game tree for tic-tac-toe.

Games of this type can be thought of as a tree of states2, the
leaves of which are terminal states where the game has ended.
Figure 1 shows an example of a partial game tree for the game of
tic-tac-toe.

2 OVERVIEW OF GAME DESCRIPTION
LANGUAGE

Pi�ing general game players against each other in competitions
requires a standardized way to describe game rules. A simple logic
programming language called Game Description Language (GDL)
was created for this purpose3. GDL is a variant of Datalog with
several extensions and an s-expression-based syntax that Lisp users
will appreciate. We present a basic overview here, but readers who
want more details should consult the full speci�cation[4].

A game state in GDL is described by a series of logical facts of
the form (true . . .). Listing 1 shows the state corresponding
to the lower-le� node in the example game tree.

�e de�nition of a game in GDL consists of logical facts and
rules. �e roles and initial state of the game are given as facts as
shown in Listing 2.

Other aspects of a game are described as logical rules of the form
(<= <head> <body. . . >) as shown in Listing 3. Logic variables
are named with a ? pre�x.

In lines 1-11 we de�ne row, line, and open predicates which
will be useful in de�ning the rest of the game rules. �e de�nitions
for column and diagonal have been omi�ed to save space.

2It may be possible to reach an identical game state from multiple paths, so the “game
tree” would more properly be called the “game directed acyclic graph”.
3GDL was intended to be a heavily restricted language to make it easier to reason
about, but unfortunately turned out to be Turing complete[5]. In practice this is usually
not a problem.

58 ELS 2017

10th ELS April 3–4, April 2017, Brussels, Belgium Steve Losh

Listing 1: An example state for a game of tic-tac-toe.
1 (true (control x))
2 (true (cell 1 1 x))
3 (true (cell 1 2 o))
4 (true (cell 1 3 blank))
5 (true (cell 2 1 blank))
6 (true (cell 2 2 blank))
7 (true (cell 2 3 blank))
8 (true (cell 3 1 blank))
9 (true (cell 3 2 blank))

10 (true (cell 3 3 blank))

Listing 2: Role and initial state de�nition for tic-tac-toe.
1 (role x)
2 (role o)
3 (init (control x))
4 (init (cell 1 1 blank))
5 (init (cell 1 2 blank))
6 (init (cell 1 3 blank))
7 (init (cell 2 1 blank))
8 (init (cell 2 2 blank))
9 (init (cell 2 3 blank))

10 (init (cell 3 1 blank))
11 (init (cell 3 2 blank))
12 (init (cell 3 3 blank))

�e terminal predicate (lines 13-17) determines whether a par-
ticular state is terminal. A game of tic-tac-toe terminates when one
player has completed a line or there are no open spaces le� on the
board.

For all terminal states the (goal <player> <value>) predicate
(lines 19-31) must describe a single goal value for every role. We
give a player a score of 100 if they win by marking a line, 0 if their
opponent wins, or 50 for a draw.

�e (legal <player> <move>) predicate (lines 33-41) gives the
legal moves for each player at any given state. All players must have
at least one move in every non-terminal state. In our de�nition of
tic-tac-toe there are two types of moves: when a player has control
they must mark a blank cell, and when the other player has control
they can only perform a “no-op” move.

When all players have made a move they are added to the state of
the game as (does <player> <move>) facts. �e successor state
can then be computed from the (next <fact>) predicate (lines
43-60).

Tic-tac-toe has two kinds of information that must be tracked for
each state: the contents of the board and which player has control.
A new state is computed from the current state in four parts:

• Control changes hands every turn (lines 45-46).
• Cells that are already marked stay marked (lines 48-50).
• If a player uses their move to mark a cell, that cell is marked

in the next state (lines 52-54).
• All other blank cells remain blank (lines 56-60).

�ere are several other restrictions on game de�nitions that we
will not cover here. Interested readers should consult the full GDL
speci�cation[4] to learn all the details of playing games wri�en in
GDL.

Listing 3: Rules for tic-tac-toe.
1 (<= (row ?n ?mark)
2 (true (cell ?n 1 ?mark))
3 (true (cell ?n 2 ?mark))
4 (true (cell ?n 3 ?mark)))
5
6 (<= (line ?mark) (row ?n ?mark))
7 (<= (line ?mark) (column ?n ?mark))
8 (<= (line ?mark) (diagonal ?n ?mark))
9

10 (<= open
11 (true (cell ?r ?c blank)))
12
13 ;;;; Terminal
14
15 (<= terminal (line x))
16 (<= terminal (line o))
17 (<= terminal (not open))
18
19 ;;;; Goal Values
20
21 (<= (goal ?player 100)
22 (line ?player))
23
24 (<= (goal ?player 0)
25 (line ?other)
26 (distinct ?player ?other))
27
28 (<= (goal ?player 50)
29 (not (line x))
30 (not (line o))
31 (not open))
32
33 ;;;; Legal Moves
34
35 (<= (legal ?player (mark ?row ?col))
36 (true (cell ?row ?col blank))
37 (true (control ?player)))
38
39 (<= (legal ?player noop)
40 (true (control ?other))
41 (distinct ?player ?other))
42
43 ;;;; State Transitions
44
45 (<= (next (control x)) (true (control o)))
46 (<= (next (control o)) (true (control x)))
47
48 (<= (next (cell ?row ?col ?player))
49 (true (cell ?row ?col ?player))
50 (distinct ?player blank))
51
52 (<= (next (cell ?row ?col ?player))
53 (true (cell ?row ?col blank))
54 (does ?player (mark ?row ?col)))
55
56 (<= (next (cell ?row ?col blank))
57 (true (cell ?row ?col blank))
58 (does ?player (mark ?x ?y))
59 (or (distinct ?row ?x)
60 (distinct ?col ?y)))

ELS 2017 59

General Game Playing in Common Lisp 10th ELS April 3–4, April 2017, Brussels, Belgium

3 WRITING GENERAL GAME PLAYERS IN
COMMON LISP

To write a general game player capable of competing with other
players we can split the implementation into three distinct parts:

(1) �e HTTP-based GGP network protocol, for connecting
to and communicating with a central game server.

(2) Parsing GDL game descriptions and reasoning about states
to determine legal moves, terminality, goal values, etc.

(3) An AI to search the game tree and �nd moves that will
lead to a win for the player.

cl-ggp is a library wri�en in Common Lisp to handle the tedious
parts of this process. It is installable with �icklisp4. �e code is
available as a Mercurial5 or Git6 repository7, and is released under
the MIT license. We present a short guide to its usage here, but
for a much more thorough introduction readers should refer to the
documentation8.

�e library contains two separate ASDF systems: cl-ggp and
cl-ggp.reasoner.

3.1 �e cl-ggp System
�e main cl-ggp system handles the GGP network protocol and
manages the basic �ow of games. It takes a simple object-oriented
approach similar to that of the ggp-base package9 for the JVM.

To create a general game player users de�ne a CLOS subclass of
the ggp-player class and implement four methods to handle the
main �ow of the game:

(player-start-game <player> <rules> <role> <deadline>)
is called by the framework when a new game begins. Each
player will only ever be running a single game at a time.
�e method receives as arguments the GDL description
of the game (a list of s-expressions), the role it has been
assigned, and the time limit for any initial processing it
may wish to do10.

(player-update-game <player> <moves>) is called by the
framework at the beginning of each turn. It receives as an
argument the list of moves done by players in the previous
turn (except for the �rst turn, in which moves will be nil).
Players will typically use this method to compute the new
state of the game.

(player-select-move <player> <deadline>) is called by
the framework directly a�er player-update-game, and
must return a move to perform before the given deadline.

(player-stop-game <player>) is called by the framework
when a game has ended. Players can use it to trigger any
cleanup they might require.

Once all the necessary methods have been de�ned, an instance
can be created with (make-instance <class> :name <name>

4As of the time of this writing it is not in a �icklisp dist, so you’ll need to use
�icklisp’s local project support.
5h�ps://bitbucket.org/sjl/cl-ggp/
6h�ps://github.com/sjl/cl-ggp/
7�e most recent commit hashes at the time of this writing are abdfc9d (Mercurial)
and 749651e (Git).
8h�ps://sjl.bitbucket.io/cl-ggp/
9h�ps://github.com/ggp-org/ggp-base/
10Symbols in rules are interned in the ggp-rules package to avoid polluting other
namespaces.

:port <port number>) and given to start-player to begin lis-
tening on the given port. stop-player can be used to stop a player
and relinquish the port.

3.2 �e cl-ggp.reasoner System
�e cl-ggp.reasoner system implements a basic Prolog-based
reasoning system to use as a starting point if desired. Under the
hood it uses the Temperance11 logic programming library to com-
pute and reason about states. Temperance is an implementation of
the Warren Abstract Machine[8]12 in pure Common Lisp.

�e included reasoner is intended to be a simple starting point
for experimentation. Users who want be�er performance or want
more access to the reasoning process are encouraged to write their
own reasoning systems.

�e reasoner API consists of six functions:
(make-reasoner <rules>) Creates and returns a reasoner

object for reasoning about the given GDL rules.
(initial-state <reasoner>) Returns the initial state of

the game as described by the (init . . .) facts in the
GDL.

(next-state <reasoner> <state> <moves>) Returns the
successor state of the given state, assuming the given
moves were taken.

(terminalp <reasoner> <state>) Returns t if the given
state is terminal, nil otherwise.

(legal-moves-for <reasoner> <state> <role>) Returns
a list of all legal moves for the given role in the given state.

(goal-value-for <reasoner> <state> <role>) Returns
the goal value for the given role in the given state.

4 IMPLEMENTING A RANDOM PLAYER
�e basic framework and included reasoner are enough to write a
simple general game player that can play any GDL game legally
(though not particularly intelligently). Such a player is shown in
Listing 4.

We �rst de�ne a subclass of ggp-player called random-player
with slots for holding the information it will need to play a game.

In player-start-gamewe create a reasoner with the rules passed
along by the framework. We store the reasoner and the assigned
role in the player instance.

In player-update-game we compute the current state of the
game. If moves is nil this is the �rst turn in the game, and so
we simply request the initial state from the reasoner. Otherwise
we compute the next state from the current one and the moves
performed. We store the current state in the player for later use.

In player-select-move we compute the legal moves our role
can perform in the current state and choose one at random. �is
ensures we always play legally, but is not usually a very e�ective
strategy. A more intelligent player would use the given time to
search the game tree and try to �nd which moves lead to high goal
values for its role.

Finally in player-stop-game we clear out the slots of the player
so the contents can be garbage collected.

11h�ps://bitbucket.org/sjl/temperance/
12A virtual machine designed for compiling and running Prolog code.

60 ELS 2017

10th ELS April 3–4, April 2017, Brussels, Belgium Steve Losh

Listing 4: A simple general game player capable of playing
any GDL game legally.

1 (defclass random-player (ggp-player)
2 ((role :accessor p-role)
3 (current-state :accessor p-current-state)
4 (reasoner :accessor p-reasoner)))
5
6 (defmethod player-start-game
7 ((player random-player) rules role deadline)
8 (setf (p-role player) role
9 (p-reasoner player) (make-reasoner rules)))

10
11 (defmethod player-update-game
12 ((player random-player) moves)
13 (setf (p-current-state player)
14 (if (null moves)
15 (initial-state (p-reasoner player))
16 (next-state (p-reasoner player)
17 (p-current-state player)
18 moves))))
19
20 (defmethod player-select-move
21 ((player random-player) deadline)
22 (let ((moves (legal-moves-for
23 (p-reasoner player)
24 (p-current-state player)
25 (p-role player))))
26 (nth (random (length moves)) moves)))
27
28 (defmethod player-stop-game
29 ((player random-player))
30 (setf (p-current-state player) nil
31 (p-reasoner player) nil
32 (p-role player) nil))
33
34 (defvar *random-player*
35 (make-instance 'random-player
36 :name "RandomPlayer"
37 :port 4000))
38
39 (start-player *random-player *)

Once the four required methods are de�ned we create an instance
of the player and start it listening on the given port.

5 IMPROVING THE PLAYER
Classical game tree search strategies like minimax can be used to
search the game tree for promising moves, and for small games
they produce acceptable results. However, because a general game
player must be able to play any game it cannot have a heuristic
function hard-coded into it13, which makes many traditional search
techniques much more di�cult.

One strategy that has recently gained popularity is simulation-
based search, such as Monte-Carlo Tree Search[1]. MCTS works
by running many random playouts from a state to determine its

13Any heuristic that works for one game could potentially back�re in a di�erent game.

approximate value without expanding the entire game tree, operat-
ing under the assumption that a state where random playouts tend
to produce good results is a good state to be in.

MCTS relies on running many random playouts to provide data,
so the faster playouts can be run the be�er its results will be. In
practice the bo�leneck in running random simulations is reasoning
about and computing states, so another improvement would be to
optimize the reasoner or write an entirely new one, possibly not
using Prolog-style reasoning at all (e.g. a propositional network[6]).

6 CONCLUSION
General game playing involves the creation of AI agents capable of
playing any game intelligently given only its rules. A�er giving an
overview of the �eld we presented cl-ggp, a framework for writing
general game players in Common Lisp, and showed how to create
a simple player with it. We hope this framework will reduce the
friction involved in creating players and encourage more people to
experiment with Common Lisp as a platform for research in general
game playing.

ACKNOWLEDGMENTS
We would like to thank Stephan Schi�el for providing feedback on
a dra� of this paper.

REFERENCES
[1] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M Lucas,

Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Trans. Comput. Intellig. and AI in Games () 4, 1 (2012),
1–43.

[2] Murray Campbell, A Joseph Hoane Jr., and Feng-hsiung Hsu. 2002. Deep Blue.
Arti�cial Intelligence 134, 1-2 (Jan. 2002), 57–83.

[3] Michael R Genesereth and Yngvi Björnsson. 2013. �e International General
Game Playing Competition. AI Magazine (2013).

[4] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. 2008. General Game Playing: Game Description Language Speci�ca-
tion. Technical Report.

[5] Abdallah Sa�dine. 2014. �e Game Description Language Is Turing Complete.
IEEE Transactions on Computational Intelligence and AI in Games 6, 4 (2014),
320–324.

[6] Eric Schkufza, Nathaniel Love, and Michael R Genesereth. 2008. Propositional Au-
tomata and Cell Automata - Representational Frameworks for Discrete Dynamic
Systems. Australasian Conference on Arti�cial Intelligence (2008).

[7] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schri�wieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
�ore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[8] David H D Warren. 1983. An Abstract Prolog Instruction Set. (Oct. 1983), 1–34.

ELS 2017 61

Session V: Languages and
meta-languages (1)

Fast, Maintainable, and Portable Sequence Functions ∗

Irène Durand
Robert Strandh

University of Bordeaux
351, Cours de la Libération

Talence, France
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr

ABSTRACT
The Common Lisp sequence functions are challenging to im-
plement because of the numerous cases that need to be taken
into account according to the keyword arguments given and
the type of the sequence argument, including the element
type when the sequence is a vector.

For the resulting code to be fast, the different cases need
to be handled separately, but doing so may make the code
hard to understand and maintain. Writing tests that cover
all cases may also be difficult.

In this paper, we present a technique that relies on a good
compiler to optimize each separate case according to the
information available to it with respect to types and values
of keyword arguments. Our technique uses a few custom
macros that duplicate a general implementation of the body
of a sequence function. The compiler then specializes that
body in different ways for each copy.

CCS Concepts
•Software and its engineering → Abstraction, mod-
eling and modularity; Software performance; Com-
pilers;

Keywords
Common Lisp, Compiler optimization, Portability, Main-
tainability

1. INTRODUCTION
The Common Lisp [1] sequence functions are challenging

to implement for several reasons:

• They take several keyword parameters that modify the
behavior in different ways. Several special cases must
therefore be taken into account according to the value
of these keyword parameters.

∗The code presented in this article is available at
https://github.com/idurand/cl-portable-find.git

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

10th ELS April 3–4, 2017, Brussels, Belgium
c© 2017 Copyright held by the owner/author(s).

• In order for performance to be acceptable, different
variations may have to be implemented according to
the type of the sequence to be traversed.

• When the sequence is a vector, it may be necessary to
specialize the implementation according to the element
type of the vector, and according to whether the vector
is a simple array or not.

For reasons of maintainability, it is advantageous to cre-
ate a small number of versions, each one containing a single
loop over the relevant elements. In each iteration of the
loop, tests would determine the exact action based on cur-
rent values of keyword arguments. In the case of a vector,
the general array accessor aref would be used to access the
elements.

On the other hand, for reasons of performance, it is prefer-
able to create a large number of different versions of each
function, each version being specialized according to the ex-
act values of the keyword arguments given. In the case of a
vector, it is also advantageous to have versions specialized to
the available element types provided by the implementation.
However, in this case, maintenance is problematic, because
each version has to be maintained and tested separately.

A compromise used by some implementations is to use the
Common Lisp macro system to abstract some of the spe-
cialization parameters as macro arguments. With this tech-
nique, a special version is created by a call to some general
macro, providing different cases for keyword parameters, ele-
ment types, test functions, etc. We find that this technique
results in code that is extremely hard to understand, and
therefore to be perceived as correct by maintainers.

In this paper, we present a different technique. We use
the Common Lisp macro system, but not in order to cre-
ate macros that, when called, create special versions of a
sequence function. Instead, our technique makes it possi-
ble to write very few versions of each sequence function,
thus keeping a high degree of maintainability. Most of our
macros have no apparent role in our functions, so do not
require the maintainer to understand them. Instead, they
serve the sole purpose of allowing the compiler to generate
efficient code.

Our technique was developed as part of the SICL project1

which aims to supply high quality implementation indepen-
dent code for a large part of the Common Lisp standard.

2. PREVIOUS WORK
1See https://github.com/robert-strandh/SICL

64 ELS 2017

Most implementations process list elements in reverse or-
der when :from-end is true only when the specification re-
quires it, i.e., only for the functions count and reduce.

We designed a technique [3] that allows us to always pro-
cess list elements in reverse order very efficiently when :from-

end is true. Since that paper contains an in-depth descrip-
tion of our technique, and in order to keep the presentation
simple, in this paper, no example traverses the sequence
from the end.

2.1 ECL and Clasp
The sequence functions of ECL have a similar superficial

structure to ours, in that they take advantage of custom
macros for managing common aspects of many functions
such as the interaction between the test and test-not key-
word arguments, the existence of keyword arguments start
and end, etc. But these macros just provide convenient syn-
tax for handling shared aspects of the sequence functions.
They do not assist the compiler with the optimization of
the body of the code.

For functions for which the Common Lisp specification
allows the implementation to process elements from the be-
ginning of the sequence even when from-end is true, ECL
takes advantage of this possibility. For the count function
applied to a list, ECL simply reverses the list before pro-
cessing the elements.

The Common Lisp code base of Clasp is derived from that
of ECL, and the code for the sequence functions of Clasp is
the same as that of ECL.

2.2 CLISP
The essence of the code of the sequence functions of CLISP

are written in C, which makes them highly dependent on
that particular implementation. For that reason, in terms
of previous work, CLISP is outside the scope of this paper.
Our technique is still applicable to CLISP, of course, since
it uses only standard Common Lisp features.

2.3 SBCL
The sequence functions of SBCL are implemented using a

mixed approach.
Macros are used to create special versions for the purpose

of better performance. Transformations during compilation
can replace a general call to a sequence function by a call
to a special version when additional information is available
such as when the sequence is a specialized vector, or when
some keyword argument has a particular explicit value in
the call.

Macros are also used to abstract details of combinations
of values of keyword arguments.

However, when little information is available at the call
site, a call to the general purpose function is maintained,
and no particular attempt has been made to optimize such
calls. As a result, in order to obtain high performance with
the SBCL sequence functions, the programmer has to supply
additional explicit information about the element type (in
case of a vector) and explicit keyword arguments to such
calls.

2.4 Clozure Common Lisp
The sequence functions of Clozure Common Lisp are im-

plemented according to the approach where each function
has a number of special versions according to the type of

the sequence and the combination of the values of the key-
word arguments.

However, the code in Clozure Common Lisp contains very
few attempts at optimizing performance. For example, while
there is an explicit test for whether a vector to be used as a
sequence is a simple array, there is no attempt to specialize
according to the element type of the vector.

3. OUR TECHNIQUE
We illustrate our technique with a simplified version of the

function find. Recall that this function searches a sequence
for the first occurrence of some item passed as an argument,
and that the behavior can be altered as usual with parame-
ters for determining the comparison function, a key function
to apply to each element, the direction of the search, and the
interval to search.

In the begining of this section, our version is simplified in
the following way:

• The only type of sequence handled is vector.

• The test function is fixed to be eql.

• The interval to search is the entire vector.

• The key function to apply to each element is fixed to
be identity.

• The search is from the beginning of the vector.

In the general version of the find function, all these pa-
rameters must of course be taken into account, and then our
technique becomes even more applicable and even more im-
portant. But the general version does not require any addi-
tional difficulty beyond what is needed for the special case,
and the general case would only clutter the presentation,
hence the special version which we will call find-vector.

Clearly, in terms of portability and maintainability, it
would be desirable to implement find-vector like this:

(defun find-vector-1 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(loop for index from 0 below (length vector)

for element = (aref vector index)
when (eql item element)
return element))

Unfortunately, most implementations would have difficul-
ties optimizing this version, simply because the exact action
required by the function aref depends on the element type
of the vector, and whether the vector is a simple-array. This
information is clearly loop invariant, but most compilers do
not contain adequate optimization passes in order to dupli-
cate and specialize the loop.

To improve code layout, in what follows, we assume the
following type definition:

(deftype simple-byte-vector ()
‘(simple-array (unsigned-byte 8)))

To help the compiler, one can imagine a version like this:

(defun find-vector-2 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(if (typep vector ’simple-byte-vector)

(loop for index from 0 below (length vector)
for element = (aref vector index)

ELS 2017 65

when (eql item element)
return element)

(loop for index from 0 below (length vector)
for element = (aref vector index)
when (eql item element)
return element)))

Here, we have illustrated the specialization with a non-
standard element type, so that either an implementation-
specific type predicate has to be used, or (as in our example)
a call to typep is needed.

Whether a local declaration of the type of the vector
in addition to the call to typep is required for the com-
piler to optimize the call to aref is of course implementa-
tion specific. Similarly, whether a special version (possibly
implementation-specific) of aref is required also depends on
the implementation.

Not only do we now have implementation-specific code,
but we also have a maintenance problem. The loop will
have to be duplicated for each sequence function, and for ev-
ery specific type that the implementation can handle. This
duplication requires separate tests for each case so as to
guarantee as much coverage as possible. Given the number
of combinations of types, plus the additional parameters we
have omitted, this requirement quickly becomes unmanage-
able.

To solve this problem, we introduce a macro with-vector-

type that abstracts the implementation-specific information
and that takes care of duplicating the loop:

(defmacro with-vector-type (vector-var &body body)
‘(macrolet ((vref (array index)

‘(aref ,array ,index)))
(if (typep ,vector-var ’simple-byte-vector)

(locally (declare (type simple-byte-vector
,vector-var))

,@body)
(progn
,@body))))

Here, we have introduced a new operator named vref in
the form of a local macro, and that is globally defined to
expand to aref. This global definition works for SBCL,
but different implementations may need different expansions
in different branches. For example, some implementations
might need for the macro to expand a call to sbit in a
branch where the vector is a simple bit vector.

We have also introduced a local declaration for exact type
of the vector in the specialized branch. Each implementation
must determine whether such a declaration is necessary.

Using this macro, we can now write our function find-

vector like this:2

(defun find-vector-4 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(with-vector-type vector

(loop for index from 0 below (length vector)
for element = (vref vector index)
when (eql item element)
return element)))

We notice a couple of essential properties of this code:

2In our examples, as in our real code, we frequently use a
value of 0 for the safety optimize quality. However, this
is the case only for auxilary functions called from proto-
col functions that have verified all parameters before call-
ing such an auxiliary function. Overall, the combination is
therefore still safe as seen by the application programmer.

• The exact set of available vector types in the imple-
mentation is hidden inside the macro with-vector-

type, which would have a different version in differ-
ent Common Lisp implementations, but there will be
a single occurrence of this macro for all the sequence
functions.

• The maintenance problem resulting from duplicating
the loop has disappeared, because the macro with-

vector-type is in charge of the duplication, making it
certain that the copy is exact.

For a second example in the same spirit, consider how
the keyword parameter end is handled when the sequence is
a list. Again, we illustrate our technique with a simplified
version of the find function.

As for the previous example, in terms of portability and
maintainability, it would be desirable to implement find-

list like this:

(defun find-list-1 (item list &key end)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(loop for index from 0

for element in vector
when (and (not (null end)) (>= index end))
return nil

when (eql item element)
return element))

As with the previous example, most Common Lisp imple-
mentations would have difficulties optimizing the code, even
though the test (null end) is loop invariant. We solve this
problem by introducing the following macro:

(defmacro with-end (end-var &body body)
‘(if (null ,end-var)

(progn ,@body)
(progn ,@body)))

The code for find-list can now be written like this:

(defun find-list-2 (item list &key end)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(with-end end
(loop for index from 0

for element in vector
when (and (not (null end)) (>= index end))
return nil

when (eql item element)
return element))

We notice that the loop body looks the same as in the
portable and maintainable version shown before, and the
only difference is that the loop has been wrapped in a call
to the macro with-end. A good compiler will now specialize
each of the two copies of the loop introduced by the with-

end macro according to the value (i.e., nil or not) of the
variable end. In the first copy, the entire first when clause of
the loop will be removed. In the second copy, the test in the
first when clause of the loop is reduced to the comparison
between index and end.

4. PROPERTIES OF OUR TECHNIQUE

4.1 Performance
We compared the performance of our technique for the

find function shown in Appendix B to the performance of
the find function shipped with SBCL.

66 ELS 2017

We tested the performance of our technique only on SBCL
because it is one of the few implementations that has a com-
piler that implements all the optimizations that our tech-
nique requires in order to perform well. In Section 5 we
discuss what these optimizations are.

The results show a significant performance gain compared
to the find function of SBCL. In fact, as it turns out, the
SBCL sequence functions often require the programmer to
declare the element type (when the sequence is a vector)
in order for performance to be improved. We have not at-
tempted to compare our technique to this case, for the simple
reason that one of the advantages of our technique is pre-
cisely that no additional information is required in order for
performance to be acceptable.

Most of our tests use relatively fast test functions such as
eq or eql. This is a deliberate choice, as we want to compare
the performance of the traversal of the sequence, and a more
time-consuming test function would dominate the execution
time. Because of the inherent imprecision in timing results,
using more time-consuming test functions would require us
to subtract two large timing results, thereby making the
difference even less precise.

In this paper, we report only execution time, and no other
performance parameter such as memory use or amount of
allocated memory. In fact, the only situation where memory
consumption is more than a small constant is when the stack
is used as temporary storage when :from-end is true and the
sequence is a list. This situation is fully covered in our paper
dedicated to processing lists in reverse order [3]. Similarly,
there is no allocation of memory involved in our technique.
Client-supplied functions for tests and key computation may
of course allocate memory.

4.1.1 Results on vectors
When the sequence is a vector, the main performance con-

sideration has to do with the element type of the vector. The
parameters start, end, and from-end do not significantly al-
ter the way the traversal is implemented. The key function
may influence performance, but for the cases that we treat
specially, only unspecialized vectors are concerned.

Our first test shows the performance comparison for an
unspecialized vector with the key function being identity

and the test function being eq. As shown in the diagram
below, our function is around three times as fast as that of
SBCL.

��

�����

�����

�����

�����

����

�����

�����

�����

�� ������ ������ �	���� ������ �
���� ������ ������ ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

�������������������������

���� �!�������"�����"��#�$�%&���!�����'(�)*'+�)�

'(�)
'+�)

The next test uses a vector whose element type is charac-
ter. The key function is identity, and the test function is
eql. As shown in the diagram below, our function is around
twice as fast as that of SBCL.

��

�����

�����

�����

�����

����

�����

�����

�����

�����

�� ������ ������ �	���� ������ �
���� ������ ������ ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

������������������������

����������� ��!�����!��"�#�$%���������&'�()&*�(�

&'�(
&*�(

The next test shows a vector with the element type being
(unsigned-byte 8) and the test function being =. In this
case, our function is only around 20% faster than that of
SBCL. This modest improvement can be explained by the
fact that this test function is not one of the functions that
we treat in a special way. An implementation that wishes
better performance for this case can modify the macros to
reflect this desire.

��

�����

����

�����

����

�����

�� ������ ������ ������ ������ ������ �	���� �
���� ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

���������������������

������ !������"�����"��#�$�%���� ��!��&'�()&*�(�

&'�(
&*�(

For completeness, we finally show a test for a vector with
the element type being bit. In this case, our technique is
slow, because it accesses the elements one at a time, whereas
a good, native implementation of find would use available
processor instructions to handle an entire word at a time [2].

��

�����

����

�����

����

�����

�� ������ ������ ������ ������ ������ �	���� �
���� ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

���������������������

������� ������!�����!��"�#�$%������ ��&'�()&*�(�

&'�(
&*�(

4.1.2 Results on lists
When the sequence is a list, the concept of element type is

not applicable. The key function is important, because the
sequence functions may be used for association lists. For
that reason, we include a test with car as a key function.
Also, for lists, the parameter end may influence the per-
formance. In our implementation, we specialize the loops

ELS 2017 67

according to whether this parameter is nil or a number,
allowing for two different specialized versions of the main
traversal loop.

Our first test, like the first one on a vector, traverses a list
of symbols. The test function is eq, and no end parameter
has been given, which is equivalent to giving it the value
nil. Again, our implementation is around three times as
fast as that of SBCL.

��

�����

�����

�����

�����

����

�����

�����

�����

�� ������ ������ �	���� ������ �
���� ������ ������ ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

�����������������������

����� ��������!�����!��"�#�$%�&�������'(�
)'*�
�

'(�

'*�

In the next test, the sequence is a list containing only
bignums. The test function is =. As the diagram shows,
our technique is only moderately faster than that of SBCL.

��

�����

����

�����

����

�����

�� ������ ������ ������ ������ ������ �	���� �
���� ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

����������������������

����� ��������!�����!��"�#�$��%�������&'�
(&)�
�

&'�

&)�

In the next test, the sequence is a list where each element
is a pair where the first element is a bignum, so that we
can use car as a key function. The test function is still
=. There seems to be no significant difference for this case,
compared to the previous one, suggesting that the native
implementation of car is so fast that calling = will dominate
the computation.

��

�����

����

�����

����

�����

�� ������ ������ ������ ������ ������ �	���� �
���� ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

�������������������

����������� ��!�����!��"�#�$%���������&'�
(&)�
�

&'�

&)�

In the next test, the sequence is a list of pairs of symbols;
it uses car as key function, eq as test function and a non
nil value for the end parameter. Our implementation is at

least twice as fast as that of SBCL.

��

�����

����

�����

����

�����

�� ������ ������ ������ ������ ������ �	���� �
���� ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

�����������������������

��� �������!��"�����"��#���$%���������&'�
(&)�
�

&'�

&)�

Our final test uses a non nil value for the end parameter.
Despite the fact that we use a slightly more expensive test

function (namely =), the performance of our implementation
is very good; it is around three times as fast as that of SBCL.

��

�����

�����

�����

�����

����

�����

�����

�����

�����

�� ������ ������ �	���� ������ �
���� ������ ������ ������ ������ ������

�
��
�

���
��
�
�
�
�
	
�

�������������������

����������� ��!�����!��"���#$�%�������&'�
(&)�
�

&'�

&)�

4.2 Maintainability
From the point of view of maintainability, there are clear

advantages to our technique. With only a small amount of
macro code, we are able to hide the implementation details
of the functions, without sacrificing performance.

The small amount of macro code that is needed to make
our technique work is clearly offset by the considerable de-
crease in the code size that would otherwise have been re-
quired in order to obtain similar performance.

4.3 Disadvantages
There are not only advantages to our technique.
For one thing, compilation times are fairly long, for the

simple reason that the body of the function is duplicated a
large number of times. Ultimately, the compiler eliminates
most of the code, but initially the code is fairly large. And
the compiler must do a significant amount of work to deter-
mine what code can be eliminated. To give an idea of the
orders of magnitude, in order to obtain fully-expanded code
on SBCL, we had to increase the inline limit from 100 to
10 000, resulting in a compilation time of tens of seconds for
a single function. For the case of a vector, the inner loop will
be replicated for each element type, then each of these repli-
cas will again be replicated for each special case of the test

and test-not functions, and again for each special case of a
key function, and finally for the two cases of processing from
the beginning or the end. The resulting number of replicas of
the inner loop depends on the number of such special cases,
but can easily exceed 1000. Each replica will ultimately be

68 ELS 2017

stripped down by the compiler because redundant tests will
be eliminated for each one.

Another disadvantage of our technique is that it doesn’t
lend itself to applications using short sequences. For such
applications, it would be advantageous to inline the sequence
functions, but doing so would make each call site suffer the
same long compilation times as we now observe for the or-
dinary callable functions.

Not all compilers are able to optimize the main body of a
function according to some enclosing condition. For a Com-
mon Lisp implementation with a more basic compiler, no
performance improvement would be observed. In addition,
the duplication of the main body of the function would re-
sult in a very large increase of the code size, compared to a
simpler code with the same performance.

For the special case of bit vectors, our technique will not
be able to compete with a good native implementation of
the sequence functions. The reason is that, despite the opti-
mizations that the compiler can perform with our technique,
the body of a typical sequence function still consists of a loop
where each iteration treats a single element. A native imple-
mentation would not treat a single element in an iteration.
Instead, it would take advantage of instructions that exist
in most processors for handling an entire word at a time,
which on a modern processor translates to 64 bits. An im-
plementation that uses our technique would then typically
handle bit vectors as a special case, excluded from the gen-
eral technique.

5. CONCLUSIONS AND FUTURE WORK
We have presented a technique that allows implementa-

tions of most of the Common Lisp sequence functions that
are simultaneously fast, maintainable, and portable, pro-
vided the compiler supplied by the implementation is suffi-
ciently sophisticated to apply certain standard optimization
techniques.

The main exception for which our technique is generally
unable to compete with a native implementation is when the
sequence is a bit vector. Any implementation that accesses
the elements of the bit vector one at a time, rather than
using native instructions that can handle an entire word at
a time, is unable to match the native performance [2]. On
the other hand, our technique allows the Common Lisp im-
plementation to treat bit vectors as an exceptional case, and
use our general technique for the other cases.

We have yet to perfect the exact declarations to include
in our implementation, and the exact places where these
declarations should be added. Different Common Lisp im-
plementations have different requirements in this respect, so
this work may have to be repeated for different implemen-
tations.

At the moment, we have been working exclusively with
SBCL, for the simple reason that the SBCL compiler does
provide the optimizations that are required in order for our
technique to yield excellent performance. We intend to ex-
periment with other major implementations as well in order
to determine which ones are suited for our technique. For
our technique to provide fast code, the compiler must be
able to remove redundant tests. A test T2 is redundant if it
is dominated3 by a test T1 testing the exact same condition,

3Dominance is a graph-theory concept that is frequently
used in optimizing compilers to transform intermediate code

and T2 can be reached from only one of the two branches of
T1. In our technique, an outer macro provides T1, whereas
T2 occurs in the inner loop of the function.

The Cleavir compiler framework of the SICL project will
ultimately include a technique for path replication in inter-
mediate code, that, while not specifically meant for the kind
of optimization required for the technique presented in this
paper, will have the same effect as more direct techniques
currently used in advanced compilers.

Our technique is well adapted to processing sequences
with a relatively large number of elements. When the se-
quence contains few elements, the overhead of the call and of
processing the keyword arguments may be significant. Also,
we do not take advantage of any declaration of element type,
in the case when the sequence is a vector. We plan to in-
vestigate the possibility of modifying our macros so that
definitions of specialized functions are automatically gener-
ated, leaving a fairly small general function that can then
be inlined.

6. ACKNOWLEDGMENTS
We would like to thank Bart Botta, Pascal Bourguignon,

and Philipp Marek for providing valuable feedback on early
versions of this paper.

7. REFERENCES
[1] INCITS 226-1994[S2008] Information Technology,

Programming Language, Common Lisp. American
National Standards Institute, 1994.

[2] H. G. Baker. Efficient implementation of bit-vector
operation in common lisp. SIGPLAN Lisp Pointers,
III(2-4):8–22, Apr. 1990.

[3] I. Durand and R. Strandh. Processing list elements in
reverse order. In Proceedings of the 8th European Lisp
Symposium, ELS ’15, 2015.

APPENDIX
A. PROTOCOL

In this appendix, we describe the macros and functions
that are part of the protocol of our technique, used for im-
plementing most of the sequence functions.

apply-key-function element key-function [Function]

This function takes an element of the sequence and a func-
tion to apply in order to obtain the object to use for com-
parison. For performance reasons, this function should be
inlined.

A typical definition of this function might look like this:

(defun apply-key-function (element key-function)
(declare (optimize (speed 3) (debug 0) (safety 3)))
(declare (type function key-function))
(cond ((eq key-function #’identity)

element)
((eq key-function #’car)
(car element))
((eq key-function #’cdr)
(cdr element))
(t
(funcall key-function element))))

in the form of an instruction graph.

ELS 2017 69

canonicalize-key key-var [Macro]

This macro takes a single argument which must be a vari-
able that holds the value of the &key keyword argument. Its
role is to make sure the contents of the variable is a function.
A typical implementation might look like this:

(defmacro canonicalize-key (key-var)
‘(cond ((null ,key-var)

(setf ,key-var #’identity))
((not (functionp ,key-var))
(setf ,key-var (fdefinition ,key-var)))
(t nil)))

with-key-function key-function-var &body body [Macro]

This macro takes a single argument which must be a vari-
able that holds the value of the canonicalized &key keyword
argument. It is used to duplicate body for different typical
values for the key argument to many sequence functions. A
typical implementation of this macro looks like this:

(defmacro with-key-function (key-function-var &body body)
‘(cond ((eq ,key-function-var #’identity)

,@body)
((eq ,key-function-var #’car)
,@body)
((eq ,key-function-var #’cdr)
,@body)
(t
,@body)))

In each clause of the cond form in this macro, the in-
lined version of the function apply-key-function will be
simplified in a different way by the compiler, resulting in a
specialized loop.

for-each-relevant-cons

(cons-var index-var list start end from-end) &body body [Macro]

This macro executes body for each relevant cons cell. It
takes into account the values of start and end to restrict the
execution to a particular sub-sequence, and it takes into ac-
count the value of from-end to determine the order in which
the relevant cons cells are supplied to the body code. The
parameter cons-var is the name of a variable that contains
a reference to the relevant cons cell for each execution of
body. Similarly, the parameter index-var is the name of a
variable that contains the index of the particular cons cell
to be processed.

Because of the size of the definition of this macro, due
mainly to the code for processing cons cells in reverse order
[3], we do not show its definition here.

with-test-and-test-not

(test-var test-not-var) &body body [Macro]

The role of this macro is to supply certain special cases
for the possible values of the keyword parameters test and
test-not of a typical sequence function. It is assumed that
it has already been verified that at most one of the two
keyword arguments has a value other than nil. A typical
implementation might look like this:

(defmacro with-test-and-test-not
((test-var test-not-var) &body body)

‘(cond ((null ,test-not-var)

(locally (declare (type function ,test-var))
(cond ((eq ,test-var #’eq)

,@body)
((eq ,test-var #’eql)
,@body)
(t
,@body))))

((null ,test-var)
(locally (declare (type function ,test-not-var))
(cond ((eq ,test-not-var #’eq)

,@body)
((eq ,test-not-var #’eql)
,@body)
(t
,@body))))

(t nil)))

with-from-end from-end-var &body body [Macro]

This macro duplicates body for the two cases where the
value of the argument variable from-end-var is either true
or false. A typical implementation looks like this:

(defmacro with-from-end (from-end-var &body body)
‘(if ,from-end-var

(progn ,@body)
(progn ,@body)))

satisfies-two-argument-test-p

item element test test-not [Function]

This function is typically inlined. It provides special cases
for common values of the test and test-not keyword argu-
ments of a typical sequence function. All but one of these
cases will be eliminated in each branch of the macro with-

test-and-test-not in which this function is located. A
typical implementation might look like this:

(defun satisfies-two-argument-test-p
(item element test test-not)

(declare (optimize (speed 3) (debug 0) (safety 3)))
(cond ((null test-not)

(locally (declare (type function test))
(cond ((eq test #’eq)

(eq item element))
((eq test #’eql)
(eql item element))
(t
(funcall test item element)))))

((null test)
(locally (declare (type function test-not))
(cond ((eq test-not #’eq)

(not (eq item element)))
((eq test-not #’eql)
(not (eql item element)))
(t
(not (funcall test-not item element))))))

(t nil)))

for-each-relevant-element

element-var index-var vector start end
from-end &body body [Macro]

This macro is used to traverse the elements of a vector.
The argument element-var is a symbol that is bound to each
element during the execution of body. Similarly, element-
var is a symbol that is bound to the index of the relevant
element. The vector argument is an expression that must
evaluate to a vector. The arguments start and end are ex-
pressions that evaluate to the two indices of the interval to

70 ELS 2017

traverse. Finally, from-end is a generalized Boolean that
indicates whether the traversal is to be done from the end
of the relevant interval. A typical implementation of this
macro might look like this:

(defmacro for-each-relevant-element
((elementv indexv vector start end from-end)
&body body)

(let ((vectorv (gensym))
(startv (gensym))
(endv (gensym)))

‘(let ((,vectorv ,vector)
(,startv ,start)
(,endv ,end))

(declare (type fixnum ,startv ,endv))
(if ,from-end

(loop for ,indexv downfrom (1- ,endv)
to ,startv

do (let ((,elementv
(aref ,vectorv ,indexv)))

,@body))
(loop for ,indexv from ,startv below ,endv

do (let ((,elementv
(aref ,vectorv ,indexv)))

,@body))))))

with-simple vector &body body [Macro]

This macro simply checks whether vector is a simple-

array, and duplicates body in each branch of the test. A
typical implementation might look like this:

(defmacro with-simple (vector &body body)
‘(if (typep ,vector ’simple-array)

(progn ,@body)
(progn ,@body)))

with-vector-type vector-var &body body [Macro]

This macro duplicates body for each possible value of array-
upgraded-element-type that the implementation provides.
It also provides a local definition for the macro vref which
we use instead of aref to access the elements of the vector
in body. If the compiler of the implementation is unable to
specialize aref according to the element type, then the im-
plementation may provide different definitions of the macro
vref for different element types. Since the supported ele-
ment types vary from one implementation to another, we do
not provide an example of how this macro may be imple-
mented.

B. EXAMPLE IMPLEMENTATION
As an example of how the sequence functions might be

implemented using the functions and macros in Appendix A,
we show our implementation of find-list which is called
from find when the sequence is known to be a list:

(defun find-list
(item list from-end test test-not start end key)

(declare (optimize (speed 3) (debug 0) (safety 0)))
(declare (type list list))
(with-bounding-indices-list (start end)
(with-key-function key
(with-test-and-test-not (test test-not)
(with-from-end from-end
(for-each-relevant-cons

(cons index list start end from-end)
(let ((element (apply-key-function

(car cons) key)))

(when (satisfies-two-argument-test-p
item element test test-not)

(return-from find-list element)))))))))

ELS 2017 71

DIY Meta Languages with Common Lisp
Alexander Lier Kai Selgrad Marc Stamminger

Computer Graphics Group, Friedrich-Alexander University Erlangen-Nuremberg, Germany
{alexander.lier, kai.selgrad, marc.stamminger}@fau.de

ABSTRACT
In earlier work we described C-Mera, an S-Expression to C-style
code transformator, and how it can be used to provide high-level
abstractions to the C-family of programming languages. In this
paper we provide an in-depth description of its internals that would
have been out of the scope of the earlier presentations. �ese imple-
mentation details are presented as a toolkit of general techniques
for implementing similar meta languages on top of Common Lisp
and illustrated on the example of C-Mera, with the goal of making
our experience in implementing them more broadly available.

CCS CONCEPTS
•So�ware and its engineering→Source code generation; Pre-
processors; Translator writing systems and compiler generators;

KEYWORDS
Code Generation, Common Lisp, Macros, Meta Programming
ACM Reference format:
Alexander Lier, Kai Selgrad, and Marc Stamminger. 2017. DIY Meta Lan-
guages with Common Lisp. In Proceedings of European Lisp Symposium,
Brussel, Belgium, April 2017 (ELS’17), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
In this paper we describe techniques that we employed to imple-
ment C-Mera [19], a meta language for C (and C-like languages),
embedded in Common Lisp. C-Mera provides a Lisp-like syntax
for C, that is, it is not a compiler from Lisp to C, but from C wri�en
in Lisp-form to regular C, i.e. there is no inherent cross-language
compilation. An exemplary C-Mera (C++) program that simply
prints all of its command-line arguments looks as follows:
1 (include <iostream >)

2
3 (defmacro println (&rest args)

4 `(<< #:std:cout ,@args #:std:endl))

5
6 (function main ((int argc) (char *argv [])) -> int

7 (for ((int i = 1) (< i argc) ++i)

8 (println " - " argv[i]))

9 (return 0))

�e mapping to C++ is straightforward for the most part, and
readers familiar with Lisp will recognize that lines 3-4 show a very
simple macro that is then used in the main function. For a more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’17, Brussel, Belgium
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

thorough description and many more examples see our earlier
work [12, 17–19], note, however, that even the above code shows
features not present in many projects similar to C-Mera, e.g. inline
type annotations (i.e. pointers), idiomatic C shorthands such as the
post-increment and seamless integration with standard Common
Lisp macros.

On the side of the language’s user the most important features
of C-Mera are its �exibility and extensibility, especially via Com-
mon Lisp macros. Using those, custom abstractions can be built
easily, and with zero cost at run-time, which is very important
when working in high-performance application domains. As these
abstractions are quickly and easily a�ained such meta languages
can be a valuable tool for prototyping, research, and when working
on tight deadlines. Examples from this point of view can be found
in previous work on C-Mera and its application [12, 17–19].

In this paper we provide a more in-depth description of C-Mera
from the language implementor’s side. One of the key features of
C-Mera from this vantage point is the simplicity of its architec-
ture. Due to its embedding in Common Lisp (and adoption and
thus exploitation of its syntax) the problem of de�ning a system
suitable for highly involved meta programming in C and C-like lan-
guages is reduced to constructing C-programs from S-Expressions,
pre�y-printing the internal representation in form of C-code and
con�guring the Common Lisp environment such that any incon-
sistencies with our target languages are resolved appropriately.
�e implementation of these details is described on a much more
technical level than the scope of previous work allowed.

We believe that summarizing these details and documenting
the design decisions behind them can be valuable to projects with
similar goals, even when applied to di�erent target languages or
application domains. Especially since most of the implementation
details described are not tied to C at all, they can be applied to help
construct other meta languages on top of Common Lisp. Section 2
also lists a few Lisp-based projects that follow a similar path as C-
Mera and those could naturally �nd inspiration from this detailed
description.

In the remainder of this paper we �rst provide context for our
work, starting with C-Mera and similar Lisp-based approaches over
works that employ similar concepts in other languages to more gen-
eral compiler technology and how it is used towards the same ends
(Section 2). Following that, we detail the design goals we set up for
C-Mera and the evaluation process of a C-Mera program, from
how the source is read over its internal representation to tree tra-
versal during C-code generation (Section 3). We then describe our
package setup in more detail, noting the intricacies of overloading
C-Mera and Common Lisp symbols (Section 4). Finally, we provide
some very technical details on how to �nd a balance between the id-
iosyncrasies of the Common Lisp and C-family syntaxes (Section 5)
and conclude with a short summary (Section 6).

72 ELS 2017

ELS’17, April 2017, Brussel, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

2 RELATEDWORK
Our description of techniques for implementing meta languages in
Common Lisp is naturally founded on our experience of working on
C-Mera. Following the initial description [19] that demonstrated
meta programming for stencil computations, we showed how it
can be used to provide higher-level programming paradigms to the
realm of C-like languages [18]. We also presented two real-world
use cases. Firstly, a domain-speci�c language for high-performance
image-processing applications [17] and, secondly, how C-Mera can
be used to explore a vast space of implementation variants of a given
algorithm [12]. With this paper we go back towards describing our
base system presented earlier [19], however, the focus of this work
is not on a description of the concept and providing examples to
illustrate its versatility, but on the actual, low-level implementation
details and design choices involved in the process.

Convenient, fully �edged macros and therefore extensive and
easy meta programming is most prominently featured in the Lisp
family of languages such as Racket, Scheme and Common Lisp.
For this reason, these languages are host to many similar projects:
Parenscript [16] generates JavaScript, whereas C-Amplify [6],
Cl-Cuda [22], Lisp/c [2], and C-Mera target C, C++ and similar
C-syle languages (with varying degrees of language support and
maturity). While reaping the bene�ts of straightforward embedding
in a powerful host language, following this approach the language
designer is not as free as when starting out from scratch.

Some rather new languages, such as Rust [13], are designed to
also support Lisp-style macros. However, as long as such languages
show a less uniform syntax larger-scale meta programming (in the
example of Rust using procedural macros) comes at a higher cost
of engineering.

Naturally, the more ambitious and free option to write a language
from scratch is, in principle, always available. Speci�c tools, for
example Yacc [8], Lex [11] or ANTLR [14], and libraries such as
Spirit [7] can ease the process of constructing an appropriate
parser. However, building a consistent language and implementing
powerful meta-programming capabilities are still the responsibility
of the language designer.

Extending an existing language for meta programming provides
a more e�cient solution. For example, MetaOcaml [4] provides
facilities for multi-stage programming with OCaml. Another exam-
ple is Terra [5], which provides meta-programming capabilities
by utilizing Lua as the host language. Lua functions can be applied
to adjust, extend, and write Terra code and the embedded code
can reference variables and call functions de�ned in Lua. Terra’s
sytanx is based on Lua and processed with a just-in-time compiler
and can optionally be modi�ed further with Lua prior to eventual
compilation.

Such approaches require considerable e�ort to be realized, espe-
cially when targeting syntactically hard languages (e.g. C++). Other
approaches utilize available language resources that were originally
not intended for meta programming on that scale. C++ Template
Meta Programming [25] (TMP), for example, exploits the template
mechanism for extensive abstractions. �e demand for such abstrac-
tions is visible from the �eld started by this work [1, 24], especially
in the face of it being generally considered very hard [6, 10, 20].

In contrast, utilizing Lisp as an code generator is generally a
straightforward task, but unleashing the full potential of Lisp’s
built-in functions and macro system while allowing convenient
and naturally wri�en input code (from the perspective of the C, as
well as the Lisp programmer) can become rather tricky. In the most
naı̈ve approach, every syntactical element of a meta language im-
plemented in, e.g., Common Lisp, will be mapped to S-Expressions,
leading to highly verbose code. �is can go on well unto the level of
specifying how symbols have to be rewri�en [2]. Sections 4 and 5
will describe the compromise found during C-Mera’s implemen-
tation to have more free-form code while not su�ering a loss in
generality.

3 EVALUATION SCHEME
In this section we �rst de�ne the most important characteristics
that we wanted our meta language to exhibit (Section 3.1). We
then provide a short overview of our intended syntax and mode of
evaluation, exempli�ed with C-Mera (Section 3.2). Following that
we describe the evaluation scheme in more detail, starting with
how the internal representation is constructed (Section 3.3), kept
and �nally wri�en out again (Section 3.4).

3.1 Design Goals
�e most fundamental requirement for our language was being able
to seamlessly interact with Common Lisp’s macro system. �is way
we ensured that it is meta programmable to the same degree and
not limited, e.g., to some speci�c form of templating. Interaction
with Common Lisp’s macro system also entails that writing our
own macro-expansion routines was never intended, that is, our
problem statement is much simpler as it seems at �rst glance. We
also wanted to provide a system as accessible to C-programmers
as possible, given our primary objective. For us, this entails to
have the language properly keep the case of symbols (while not
making the Common Lisp code in macros more awkward than
necessary), to provide as many idiomatic C shorthands as possible
(e.g., increments, declaration decorators), to interact with Common
Lisp code (honoring lexical scope), to avoid quotation whenever
possible and being able to reference symbols from external C �les.

�e style of meta programming we wanted to support and ex-
plore is strictly macro-based. �at is, we want the language to
be able to specify new syntax and cast semantics into it and not
explicitly post-process a syntax tree (as possible, e.g., by working
on our AST, as described in Section 3.4, or, for example when using
C++ only, via Clang [23]). Note that the la�er approach is in fact
more powerful, but comes with a much larger overhead in engi-
neering and might consequentially not pay o� for projects of small
to medium size [17].

3.2 Look and Feel
In the following we will provide a higher-level overview of a few
aspects of C-Mera’s internal workings, mainly aiming to provide a
general outline of the intended look-and-feel we wanted to achieve
for our meta language.

Symbols. �e following toy example demonstrates the mapping
of two addition expressions enclosed in a lexical environment that
introduces a local variable in the Common Lisp context.

ELS 2017 73

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussel, Belgium

(let ((x 4))

(set foo (+ 1 2 (cl:+ 1 2) x 'x y)))

As can be seen in the following line generated from this example,
not all expressions appear in the resulting code, since the Common
Lisp expressions are not part of the target language:

foo = 1 + 2 + 3 + 4 + x + y;

�is example is comprised of the following components. �e set
form indicates an assignment for the target language and creates a
syntax element that is carried over to the resulting code. Both the
plain + and cl:+ (from the cl package) denote addition, but the one
from the cl package is evaluated directly within the host language
and yields the number 3, whereas the unquali�ed counterpart is
kept as an expression of the target language. Common Lisp’s special
operator let de�nes a lexical scope and introduces the variable x in
the example above. �is operation is solely executed in the scope of
the host language and does not contribute additional output to the
resulting code. In contrast to x, the symbol y is unde�ned, thus it
is taken to directly refer to a variable in C. Since there is obviously
no useful application of an unquoted, unde�ned variable in the
host language, the assumption that a symbol is designated to be
used in the target language (and thus is unde�ned in the host’s
context) is justi�ed. �erefore, there is no need to quote unde�ned
symbols inside target language syntax elements. However, it is still
required to quote symbols de�ned in the host language’s context,
to process them as variables for the target language and avoid value
substitution. �e implementation of this feature is described in
Section 5.3.

Functions and Macros. Functions are managed in a similar fash-
ion. �is also holds for special forms to construct the syntax tree
of the target language that are, naturally, de�ned in the host lan-
guage’s context (see Section 3.3). If the �rst element of a list is not
de�ned during evaluation, it is taken to denote a function call in
the target language. In the following example one function and
two macros are de�ned (one function is commented out) and foo is
assigned the result of calling those, in turn.

(defun bar (a b) (cl:+ a b))

; (defun baz (a b) (cl:+ a b))

(defmacro qux (a b) `(+ ,a ,b))

(defmacro qox (a b) `(cl:+ ,a ,b))

(set foo (bar 1 2))

(set foo (baz 1 2))

(set foo (qux 1 2))

(set foo (qox 1 2))

Here, the function bar returns the number 3, which is used directly
in the resulting code. �e function baz is not de�ned (indicated
by the line being commented out). Based on the aforementioned
processing of unbound symbols, the unde�ned list head baz is
treated as a function call in the target language. As can be seen in
the generated code below, only one function call (for which there
was no valid host-context function available) is generated in the
target code:

foo = 3;

foo = baz(1, 2);

foo = 1 + 2;

foo = 3;

Also note how the expansion of the qox macro is evaluated in the
host context.

As with symbols used for variable names, there is an ambiguity
if the symbol is de�ned both in the host and target language. In
these cases we opted to prefer the host language’s version (as with
variables), while a function call in the target language can be gen-
erated using the funcall form. Continuing the example above the
following expressions do not trigger host-language function calls
or macro invocations:

(set foo (funcall bar 1 2)) → foo = bar(1, 2);

(set foo (funcall qux 1 2)) → foo = qux(1, 2);

�e implementation of this feature is also described in Section 5.3.

3.3 Evaluation
�e evaluation scheme we apply in order to build an Abstract Syntax
Tree (AST) may be one of the most simple approaches. Nevertheless,
for our needs it is more than su�cient and, more importantly, very
easy to implement, utilize, and extend. In the following we show
how a target-language in�x operator (e.g. +) can be de�ned.

(defclass infix-node ()

((operator :initarg :op)

(member1 :initarg :lhs)

(member2 :initarg :rhs)))

�is speci�es an in�x expression as being comprised of an operation
with a le�- and right-hand side. Note that the representation is
simpli�ed at this point, a more detailed description of the AST
nodes can be found in Section 3.4.

With this example AST, nodes for such expressions can be gen-
erated by calls to make-instance, building up a tree of node objects.
As this would clearly not be very concise code, we wrap macros
around each AST-node constructor. For the case of an addition
expression this would be (+ ...). �e following macro su�ces to
wrap around the call to make-instance:

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs ,lhs

:rhs ,rhs))

Application of this macro yields the appropriate AST node:
(+ 1 2) → #<INFIX-NODE #x...>

Using this scheme we are not limited to one single level of evalua-
tion, nor constrained to entirely stay in the target language. Nesting
multiple target functions and mixing them with host code is sup-
ported and intended. �e following example shows an evaluation
process starting with:

(* (/ 1 2) (+ (cl:+ 1 2) 3))

Expressions are, as usual, evaluated from the inside (starting with
the two leaf nodes of the AST to-be). In this case, one of those
expressions generates a node object and the other evaluates as a
build-in Common Lisp expression:

(* #<INFIX-NODE #x1...> (+ 3 3))

�e next step is the evaluation of the remaining nested objects:
(* #<INFIX-NODE #x1...> #<INFIX-NODE #x2...>)

In the �nal step, the entire expression collapses to one single object:
#<INFIX-NODE #x3...>

74 ELS 2017

ELS’17, April 2017, Brussel, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

As can be seen, every evaluation results in a node object that is
therea�er used in the next evaluation step by its parent.

As described above, the full evaluation process also includes
macro expansion that generates the instantiation calls. �us, the
evaluation �rst expands to the following make-instance form:

(make-instance 'infix-node

:op '+

:lhs (make-instance 'infix-node

:op '/

:lhs 1

:rhs 2)

:rhs (make-instance 'infix-node

:op '+

:lhs (cl:+ 1 2)

:rhs 3))

According to this, the AST is built by expanding all macros and
collapsing the individual calls to make-instance by evaluation:

(make-instance 'infix-node

:op '+

:lhs #<INFIX-NODE #x1...>

:rhs #<INFIX-NODE #x2...>)

�is shows that the evaluation scheme results in an implicitly
self-managed construction of the AST. �at is, we rely entirely on
the standard Common Lisp reading and evaluation process. �ere-
fore, there is no need for an extra implementation of a parser inside
the host language, since every aspect is already handled by the
Common Lisp implementation itself.

Note that this evaluation scheme seamlessly integrates with
macro processing in general and thus facilitates the incorporation
of new, user-de�ned syntax, even up to the scope of de�ning custom
DSLs [17, 19] without any changes to the underlying AST.

3.4 Abstract Syntax Tree
�e AST is the intermediate representation of the fully macro-
expanded and evaluated input code. Every node type used for the
AST is derived from one common class (node). Independent from
additional information stored inside individual derived objects, ev-
ery class instance contains the slots values and subnodes (inherited
from node). �is very simple setup renders the traversal of the AST
almost trivial. Based on Common Lisp’s multi-methods, we require
only two methods to build various traversers. One of these methods
handles the class node:

(defclass node ()

((values :initarg :values)

(subnodes :initarg :subnodes)))

For derived classes, the slot values contains a list of slot names,
which are not processed further by the traverser (i.e. leaf nodes).
�e subnodes slot stores a list of slot names that the traverser de-
scends into (i.e. internal nodes). �e structure can be used to capture
nodes where the sub-nodes have di�erent semantics (e.g. condi-
tional expressions). Nodes storing multiple objects with the same
semantics (e.g. body forms) utilize nodelist:

(defclass nodelist (node)

((nodes :initarg :nodes)))

�e nodes slot is a plain list containing the sub-node objects. All
nodes in our AST are either a nodelist or derived from node, and
most of the traversal is implemented in terms of them.

AST Traversal. Traversal then works as follows: �e traverser
starts at the root node and when it encounters an object of type
node it calls itself recursively for slots of the current object listed in
subnodes:

(defmethod traverser ((trav t) (node node))

(with-slots (subnodes) node

(loop for slot-names in subnodes do

(let ((subnode (slot-value node slot-name)))

(when subnode

(traverser trav subnode))))))

A similar procedure is executed for nodelist nodes.
With the classes de�ned above and these methods we have a

simple traversal scheme that can easily be extended for further
tasks. Additionally, more speci�c traversal methods can implement
mechanisms for processing the data of individual node types. As a
result, building functionalities that require AST traversal becomes
straightforward. �e following traverser simply lists all in�x ex-
pressions in the tree (continuing the example from Section 3.2):

(defclass debug-infix ())

(defmethod traverser ((_ debug-infix) (node infix-node))

(format t "˜a˜%" (slot-value node 'op)

(call-next-method)))

Note that call-next-method continues with the general tree traversal.

Before and A�er. With additional support from Common Lisp’s
before and a�er methods, the generation of syntactically faithful
target code becomes even more comfortable. As an example, uti-
lizing these features enables catching the beginning and end of an
expression, which, for example, can easily be exploited for emi�ing
parentheses:

(defmethod traverser :before ((pp pretty-printer) (_ infix-node))

(format (stream pp) "(")))

(defmethod traverser :after ((pp pretty-printer) (_ infix-node))

(format (stream pp) ")")

With this approach we can easily ensure proper execution order
for arithmetic expressions:

(/ (+ 1 3) (+ 2 5)) → ((1 + 3) / (2 + 5))

Proxy-Node Extension. Although we are able to trigger traversal
events when entering and leaving a node as described above, we
cannot trigger them when descending and returning from speci�c
child nodes while processing their parent node. Visitation of these
nodes is implemented by methods on their respective node type, but
this loses the context of their parent node (which might be required
to generate inter-node output). �is situation can easily be solved
with proxy nodes. Nodes of this type are merely sentinels, without
additional content, and are solely applied to identify transitions
between nodes. �ey are usually inserted and removed by a node
that needs control over the output between its child nodes.

One example would be placing the +-signs in an arithmetic ex-
pression such as (+ a b) to yield a + b, using the following proxy:

(defclass plus-proxy (node)

((subnode :initarg :subnode)))

Using such an object for the right-hand-side operand of the in�x-
node would then trigger the proper method with correct placement
of the plus sign.

(defmethod traverser :before ((pp pretty-printer) (_ plus-proxy))

(format (stream pp) " + "))

ELS 2017 75

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussel, Belgium

Note that this scheme is just an approach to keep traversal me-
chanics and output logic distinct. When mixing both, proxies will
not be required, but then each method on a given node type will
have to repeat the traversal logic.

Overall be believe that our AST scheme is very simple and con-
sequently easy to use, while still being easily extensible.

4 PACKAGES
As seen in Section 3.2, we do not want to explicitly annotate symbols
with their packages. However, starting from the default package
(cl-user) the following a�empt to de�ne a macro fails:

(defmacro + (a b)

`(make-instance 'infix-node ...))

�is is due to the inherent package-lock on the user package’s in-
terned Common Lisp functions and macros. Every symbol interned
form common-lisp (or short, cl) is locked by default. �is would pre-
vent any of the rede�nitions we have already used many times until
now. A possible solution to allow modi�cations is unlocking pack-
ages, which generally is a poor approach, as it is not standardized
and drops the overridden symbols’ default implementation.

�e lock, however, only a�ects the actual symbols in the cl
package, not symbols of the same name from di�erent packages.
�is fact is usually not obvious as virtually all Common Lisp code
uses the cl package, which then results in name con�icts that cannot
be overridden due to the lock. �e key to solve this issue is very
simple: not using the cl package, or, when only few symbols are to
be overridden, to not include those when using the cl package.

(defpackage :meta-lang

(:use :common-lisp)

(:shadow :+))

�is package de�nition interns all symbols but + from the cl package.
As a result the symbol + is unbound and can be used, e.g., for macro
de�nitions:

(in-package :meta-lang)

(defmacro + (a b)

`(cl:+ ,a ,b))

�e example above de�nes a simple macro that maps the +-sign
to its implementation from the cl package. As can be seen, access
to the original implementation is still possible if the symbol is used
with its package pre�x. Such a package setup enables us do rede�ne
symbols according to our needs:

(defpackage :cm-c

(:use :common-lisp)

(:shadow :+))

(in-package :cm-c)

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs ,lhs

:rhs ,rhs))

Using this package, super�uous pre�xes can be omi�ed and are
only required when accessing (overridden) symbols from cl:

(+ (cl:+ 1 2) (cl:+ 2 3)) → 3 + 5;

Since we also want to reduce the amount of explicitly quali�ed
names in the input code we can utilize a simple macrolet to adjust
the e�ects of those symbols in its lexical scope:

(defmacro lisp (&body body)

`(macrolet ((+ (lhs rhs) `(cl:+ ,lhs ,rhs)))

,@body))

At this point we might end up at an impasse; once inside the
lexical scope of the macrolet, globally de�ned functions rede�ned
in the local scope are not accessible:

(+ 1 2) → 1 + 2

(cm-c:+ 1 2)) → 1 + 2

(cl:+ 1 2) → 3

(lisp

(+ 1 2) → 3

(cm-c:+ 1 2) → 3

(cl:+ 1 2)) → 3

�e obvious solution for this problem is to introduce a third
variable that retains the initial functionality, as opposed to the
locally used, volatile symbols. To keep the symbols’ names, an
additional package is required to place those symbols in:

(defpackage :swap (:use) (:export :+))

Macros plainly wrapping the original symbol or function, unfor-
tunately, fail to provide the required behaviour. Such macros emit
symbols that are then still bound in the lexical scope of the sur-
rounding macrolet.

(defmacro swap:+ (lhs rhs)

`(cm-c:+ ,lhs ,rhs))

To escape the lexical scope, we can access a symbol’s original macro
implementation with macroexpand-1:

(defmacro swap:+ (lhs rhs)

(macroexpand-1 `(cm-c:+ ,a ,b)))

As long as macroexpand-1 is called without an environment ar-
gument it returns the version of the macro de�ned in the global
environment. With such swap symbols we are able to address the
global implementation of our syntax, independent from the current
lexical scope.

5 BRIDGING THE SYNTACTIC GAP
In this section we describe how certain details of C-Mera are laid
out to strike a balance between the worlds of our host and target
languages. �e �rst part discussed is control over case. Common
Lisp converts symbols that it reads to upper case unless otherwise
speci�ed. With this default behaviour, users from C-family lan-
guages would be surprised to see how their code changed when
printed out in the target language. Section 5.1 details why the
built-in modes in Common Lisp do not su�ce and describes the
compromise employed in our language.

A di�culty of a di�erent kind is Lisp’s very uniform notation
on the one hand and C’s (and even more so its derived languages)
extensive syntax on the other hand. Although every aspect of C-
family languages can be modeled with S-Expressions, we doubt the
bene�t of having to formulate every li�le aspect of C’s syntax this
way. Arrays can be used as an example here: It is obvious that writ-
ing (array (array (array foo 1) 2) 3) is not as convenient, at least not as
concise, as writing foo[1][2][3]. We aim for supporting as much as
possible of C’s handy syntax by exploiting the extensible Common
Lisp reader to parse special syntax. Details on our implementation
of such shorthands are presented in Section 5.2.

76 ELS 2017

ELS’17, April 2017, Brussel, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

�e last aspect of our presentation is concerned with the input
code’s aesthetics and appeal. We want to write code as conve-
niently as possible and prevent exhaustive (and to part of our target
audience, confusing) usage of quotes. Instead of writing (funcall 'f

'a 'b (funcall 'g 1 'c)), we simply want to allow (and do support)
the call to be (f a b (g 1 c)), even if f, a, b, g, and c are unbound.
Program code, even if it is target code, should appear as natural
code in Lisp notation, and not require quotes when the situation can
be uniquely resolved. Our implementation of adaptive quotation
that tackles this issue is described in Section 5.3.

5.1 Preserving Case by Inversion
Code in Common Lisp is, unless explicitly avoided, converted to
upper case, therefore it o�en appears that the case of the input code
is not considered at all. It can be controlled on a per-symbol level
via (intern "foo") and explicit literals such as |foo|. More general
control is available via readtable-case, which can change the default
behaviour. Even though there is the so called modern style for
Common Lisp, which sets the readtable-case to :preserve, current
implementations are usually compiled in :upcase (causing all cl
symbols to be interned in upper case). Since our target language
does not do any automatic case conversion, but keeps the input
code’s case as it is, we have been compelled to reproduce this
behaviour as closely as possible in C-Mera.

�e naı̈ve approach is se�ing the readtable-case to :preserve when
processing a source �les. �is is an inadequate solution, however,
as it would require us to use upper-case representations of all the
standard Common Lisp symbols. As a result, input code would have
to be wri�en in the following form:

(setf (readtable-case *readtable*) :preserve)

(DEFUN foo (a b) (+ b c))

(DEFUN bar (a b) (CL:+ a b))

(foo 1 (foo X y) (bar 1 2))

With :preserve we are free to use upper- and lower-case symbols
for variables (X and y in this example), but also forced to write all
existing Common Lisp symbols (such as DEFUN) in upper case.

Since :downcase would not work at all (does not keep case), the
only option le� to investigate is :invert. In fact, with :invert, in-
put symbols in lower case are mapped to upper-case symbols (and
vice versa). �erefore, input code in lower case can be mapped
to existing functions and symbols. One problem remains: newly
introduced functions and variables are also inverted. Luckily, Com-
mon Lisp processes symbols an additional time during printing,
which is a natural part of source-to-source compilers such as we
are targeting. �erefore, the desired functionality is available out
of the box:

(format t "˜a" 'foo) → FOO

(format t "˜a" 'FOO) → FOO

(format t "˜a" 'Foo) → FOO

(setf (readtable-case *readtable*) :invert)

(format t "˜a" 'foo) → foo

(format t "˜a" 'FOO) → FOO

(format t "˜a" 'Foo) → Foo

�is seems to be a reliable solution, but one detail should be kept
in mind: �e intern function now shows counter-intuitive behavior

with inverted reading, since it does not use the reader and therefore
is not a�ected by the readtable:

(setf (readtable-case *readtable*) :invert)

(format t "˜a" (intern "foo")) → FOO

(format t "˜a" (intern "FOO")) → foo

(format t "˜a" (intern "Foo")) → Foo

Interning does not read symbols, but strings, and therefore it misses
the initial inversion step. In the given situation, we have imple-
mented and used our own intern function that inverts the read
string in the same way as the reader does.

5.2 Universal Reader
As exempli�ed at the outset of of Section 5, forcing the use of S-
Expressions for every minor syntactic detail to be generated can
become a nuisance. Luckily, Common Lisp’s �exible reader can
be used to strike a balance between having a macro-processable
S-Expression language and supporting idiomatic C-isms.

With (set-macro-character #\& #\'&-processor), for example, the
reader can be extended to process symbols starting with an amper-
sand by applying the function &-processor to such symbols. �is
particular reader function sets up a speci�c mechanism that covers
one single macro character. �erefore, it is usually required to
set up functions for individual syntax elements that di�er from
S-Expressions, but this scheme is limited to elements that can be
captured by such a simple pre�x.

According to that, it is easy to implement a function that han-
dles C syntax for the address-of operator. In that case the reader
simply consumes, e.g., (+ &a &b) and emits (+ (addr-of a) (addr-of b)).
Unfortunately, it is not easily possible to identify C++ references,
for example in (decl ((int& a))), since they can occur at the end of
the corresponding symbol. In addition to that, we are limited to one
single character. �erefore, we are unable to use the reader in that
fashion for neither pre�x increments nor decrements: (+ ++a --b).

Surprisingly, there is a very simple, general solution for pro-
cessing almost every type of symbol: hooking the reader macro to
whitespace.

(set-macro-character #\Space #'pre-process)

(set-macro-character #\Tab #'pre-process)

(set-macro-character #\ Newline #'pre-process)

�is setup con�gures the reader to utilize the function pre-process
to handle every symbol with a leading whitespace character. �e
task of pre-process is parsing individual symbols, identifying non-
Lisp syntax and emi�ing proper S-Expressions. By doing this, we
can support very convenient, but tricky C syntax, as shown in the
following examples:

(* ++a[4] --b[x++])

→ (* (aref (prefix++ a) 4) (aref (prefix-- b) (postfix++ x)))

(+ foo[baz [1]][2][3] &qox)

→ (+ (aref (aref (aref foo (aref baz 1)) 2) 3) (addr-of quox))

(set foo- >bar- >baz 5)

→ (set (pref (pref foo bar) baz) 5)

So far we are able to process symbols as long as they have lead-
ing whitespace. However, list heads usually do not have leading
whitespace, but begin directly a�er the opening parenthesis. �ese
situations should also be managed, for example in calls of type

ELS 2017 77

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussel, Belgium

(obj->func args...). �erefore, we need to register an additional
macro character:

(set-macro-character #\(#'pre-process-heads)

Contrary to the previous symbol processing, where each symbol is
handled separately, the macro-character setup above requires us
to imitate Common Lisp’s standard mode of reading lists, which is
easily achieved using (read-delimited-list #\)) in order to get all list
elements. �erea�er, pre-process-heads emits a slightly adjusted list
comprised of the altered list head and the (untouched) remaining
list elements. Eventually, the list’s head has been adapted to our
needs by pre-process-heads and the remaining list elements will be
modi�ed later-on by pre-process (as described above), if necessary.

Additionally, we might not want to process all list heads in gen-
eral, but only those that are neither bound variables, nor functions
or macros. �is is due to the fact that valid Common Lisp macros,
for example, can be named in a way that these reader macros would
pick up on. In general, we opted to take the meaning de�ned in the
host language for any ambiguous cases. Our approach to identify
bound symbols is detailed in the next section.

One con�ict that cannot be solved with the aforementioned
reader still remains. Packages in Common Lisp are denoted similarly
to namespaces in C++, but using the reader for this issue would
break Common Lisp’s package annotations. As an alternative, fully
quali�ed symbols could be exploited for C++ namespaces:

(defpackage :N1)

(set N1::foo 4)

→ N1::foo = 4;

�is, however, does not support nesting of namespaces, since nested
packages are not available in Common Lisp [21]. Naturally, the
explicit form can always be utilized, but is very verbose:

(set (from-namespace N1 N2 foo) 4)

→ N1::N2::foo = 4;

�erefore we apply set-dispatch-macro-character to introduce a
speci�c annotation for C++ namespaces:

(set-dispatch-macro-character #\# #\: #'colon-reader)

(set #:N1::N2::var 4)

→ (set (from-namespace N1 N2 var) 4)

→ N1::N2::var = 4;

As a further convenience for Common Lisp users, our reader macro
also supports the single-colon notation: #:N1:N2:var.

5.3 Adaptive�otation
A crucial part of being able to write code as we claim in Section 3.2
is identifying which symbols are bound to host-language interpre-
tations. One example is when it comes to using function calls for
the target language in traditional Lisp notation: Instead of being
forced to write (funcall 'foo 1 2 3) we want to support (foo 1 2 3),
even if the symbol foo is unbound and have it emit foo(1, 2, 3).

�e �rst a�empt to realize the aforementioned notation has been
the application of boundp and fboundp. Both functions work well
for globally de�ned variables, functions, and macros:

(defvar foo 1)

(boundp 'foo) ;; -> T

However, they cannot be applied to symbols from lexical environ-
ments:

(let ((bar 1))

(boundp 'bar)) ;; -> NIL

Since the naı̈ve approach cannot handle such symbols, we had
to look for an alternative. Every implementation of Common Lisp
that supports lexical scoping has to keep track of bound symbols
and their meaning. �is information is stored in the environment,
but not every implementation has a convenient method for ac-
cessing this data. In case of SBCL [15] and Clozure CL [3] we
can exploit function-information to check whether a function is
de�ned in the lexical or global scope. Similar to functions, we can
use variable-information for symbols. For implementations that
do not supply these functions, such as, for example, ECL [9], we
have to implement a look-up in the environment object itself. �e
following example shows how one could utilize the listed functions
and implement the missing look-up for ECL in order to retrieve
information whether a symbols is bound or not.

(defun fboundp! (function &optional env)

#+sbcl (sb-cltl2 :: function-information function env)

#+ clozure (ccl:: function-information function env)

#+ecl (or (fboundp function)

(find function (rest env)

:test #'(lambda (x y) (eql x (car y)))))

#-(or sbcl clozure ecl) (error "..."))

(defun vboundp! (variable &optional env)

#+sbcl (sb-cltl2 :: variable-information variable env)

#+ clozure (ccl:: variable-information variable env)

#+ecl (or (boundp variable)

(find variable (first env)

:test #'(lambda (x y) (eql x (car y)))))

#-(or sbcl clozure ecl) (error "..."))

Due to the fact that these functions require access to the environ-
ment object, they can only be applied usefully inside macros. �e
following macro is a minimal example for a possible use of these
functions:

(defmacro xboundp (item &environment env)

(if (or (fboundp! item env)

(vboundp! item env))

t ; item bound

nil)) ; item unbound

With such functions at hand, we are now free to build a more �exible
quotation scheme, speci�cally tailored to our meta language:

(defmacro quoty (item &environment env)

(cond ((listp item)

(if (fboundp! (first item) env)

item

`(function-call ...)))

((symbolp item)

(if (vboundp! item env)

item

`',item))

(t item)))

We can now add the quoty macro to the tree construction process
(see also Section 3.3):

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs (quoty ,lhs)

:rhs (quoty ,rhs)))

�is allows us to freely and seamlessly mix and match globally
and lexically bound symbols and functions with unbound symbols
taken to denote target-language functions and variables:

78 ELS 2017

ELS’17, April 2017, Brussel, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

(labels ((foo (a b) (cl:+ a b)))

(+ (foo 1 2) (bar 1 2)))

(labels ((foo (a b) (cl:+ a b)))

(let ((x 5))

(set A (+ (+ x y) (+ 'x (+ (foo 1 2) (bar 1 2)))))))

�e arithmetic expression in the last line results in the following
code for the target language:

A = 5 + y + x + 3 + bar(1, 2);

�oty is most useful in special forms, where we do not want to
quote every individual symbol, but still want to be �exible enough
to call functions or use symbol values. Another example from C-
Mera is that we utilize quoty in the variable-declaration macro,
decl:

(decl ((const super_fancy_type x = 4)) ...)

→ const super_fancy_type x = 4; ...

(defmacro with-pointer (pointer &body body)

`(decl (((postfix* ,pointer) x = (foo)))

,@body))

(with-pointer int ...)

→ int* x = foo(); ...

�e �exible quotation allows us to use types (super fancy type) and
functions (foo) that are not de�ned in the host language’s context.
Additionally we are now able to evaluate functions inside these
quasi-special forms (post�x* and foo in the example).

We have opted for this scheme to provide a simple syntax, even
in the face of e�ects similar to unwanted capture (by de�nition of
host functions).

6 CONCLUSION
In this paper we have presented many details on how we have
constructed our meta language, ranging from Common Lisp im-
plementation techniques to reader-macro hackery. Our pragmatic
approach shows with how li�le e�ort Common Lisp can be bent to-
ward our ends, resulting in an e�cient meta-programming system
for C-like languages.

We showed how our simple, Lisp-like notation can be evaluated
to provide seamless integration with Common Lisp code during
compilation, most notably with support for macros that are our
primary vehicle for meta programming (this is also illustrated in
our previous work on C-Mera). We also detailed the intricacies
of our scheme, namely how to properly override built-in symbols
while retaining their original interpretation in an accessible way,
how to con�gure the Common Lisp system to keep our target
language’s case while not sacri�cing a modern notation of the
Common Lisp meta part of the language. We furthermore showed
how we manage to provide many C-isms that programmers from
that area would �nd awkward working without (and even seasoned
Lisp users might miss for their conciseness), and how unnecessary
quoting of unbound symbols can be avoided while keeping the
Common Lisp interaction fully working.

Overall, none of these aspects are new �ndings. Our primary
goal with this summary paper is to have all of this information
collected in a single, clearly marked place. We hope this will help
projects with similar demands to get up to speed more easily than
when solutions to all of those issues have to found independently
and without proper context.

ACKNOWLEDGMENTS
�e authors gratefully acknowledge the generous funding by the
German Research Foundation (GRK 1773).

REFERENCES
[1] Andrei Alexandrescu. 2001. Modern C++ Design: Generic Programming and

Design Pa�erns Applied. Addison-Wesley.
[2] Jonathan Carlos Baca. 2016. Lisp/c. h�ps://github.com/eratosthenesia/lispc.

(2016). GitHub Repository, Accessed Jan 2017, Active May 2016.
[3] Gary Byers. 2017. Clozure Common Lisp. h�p://ccl.clozure.com/. (2017). Ac-

cessed Jan 2017.
[4] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Im-

plementing Multi-stage Languages Using ASTs, Gensym, and Re�ection. In
Proceedings of the 2nd International Conference on Generative Programming and
Component Engineering (GPCE ’03). Springer-Verlag New York, Inc., New York,
NY, USA, 57–76.

[5] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013.
Terra: A Multi-stage Language for High-performance Computing. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, New York, NY, USA, 105–116.

[6] Andreas Fredriksson. 2010. Amplifying C. h�p://voodoo-slide.blogspot.de/-
2010/01/amplifying-c.html and h�ps://github.com/deplinenoise/c-amplify. (2010).
Personal Blog & Github Report, Accessed Jan 2017, Repository active Feb 2010 –
Mar 2010.

[7] de Guzman Joel, Kaiser Hartmut, and Nu�er Dan. 2016. Boost Spirit.
h�p://www.boost.org/doc/libs/1 63 0/libs/spirit/doc/html/index.html. (2016). Ac-
cessed Jan 2017.

[8] S. C. Johnson. 1975. YACC—yet another compiler-compiler. Technical Report
CS-32. AT&T Bell Laboratories, Murray Hill, N.J.

[9] Daniel Kochmański. 2017. Embeddable Common Lisp. h�ps://common-
lisp.net/project/ecl/main.html. (2017). Accessed Jan 2017.

[10] Jan Cornelis Willem Kroeze. 2010. Tracing rays the past, present and future of ray
tracing performance. Ph.D. Dissertation. North-West University.

[11] M. E. Lesk and E. Schmidt. Lex — A Lexical Analyzer Generator. Technical Report.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974. PS1:16–1 – PS1:16–12
pages. h�p://kjellggu.myocard.net/misc/tutorials/lex.pdf

[12] Alexander Lier, Franke Linus, Marc Stamminger, and Kai Selgrad. 2016. A
Case Study in Implementation-Space Exploration. In Proceedings of ELS 2016 9th
European Lisp Symposium. 83–90.

[13] Nicholas D. Matsakis and Felix S. Klock, II. 2014. �e Rust Language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology (HILT ’14). ACM, New York, NY, USA, 103–104.

[14] Terence Parr. 2013. �e De�nitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf.

[15] Christophe Rhodes. 2008. Self-Sustaining Systems. Springer-Verlag, Berlin,
Heidelberg, Chapter SBCL: A Sanely-Bootstrappable Common Lisp, 74–86. DOI:
h�p://dx.doi.org/10.1007/978-3-540-89275-5 5

[16] Vladimir Sedach. 2016. Parenscript. h�p://common-lisp.net/project/parenscript/.
(2016). Accessed Jan 2017.

[17] Kai Selgrad, Alexander Lier, Jan Dörntlein, Oliver Reiche, and Marc Stamminger.
2016. A High-Performance Image Processing DSL for Heterogeneous Architec-
tures. In Proceedings of ELS 2016 9th European Lisp Symposium. 39–46.

[18] Kai Selgrad, Alexander Lier, Franz Köferl, Marc Stamminger, and Daniel
Lohmann. 2015. Lightweight, Generative Variant Exploration for High-Per-
formance Graphics Applications. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Experiences
(GPCE 2015). ACM, New York, NY, USA, 141–150. DOI:h�p://dx.doi.org/10.1145/
2814204.2814220

[19] Kai Selgrad, Alexander Lier, Markus Wi�mann, Daniel Lohmann, and Marc
Stamminger. 2014. Defmacro for C: Lightweight, Ad Hoc Code Generation. In
Proceedings of ELS 2014 7th European Lisp Symposium. 80–87.

[20] Philipp Slusallek. 2015. Approaches for Real-Time Ray Tracing and Lighting Sim-
ulation. h�p://www.dreamspaceproject.eu/dyn/1429609964713/DREAMSPACE -
D4.1.1 Approaches v1.3.pdf. (Jan. 2015).

[21] Alessio Stalla. 2017. Symbols as Namespaces. ELS 2016 9th European Lisp
Symposium, Lightning Talks Session 1, h�ps://www.european-lisp-symposi-
um.org/editions/2016/lightning-talks-1.pdf. (May 2017).

[22] Masayuki Takagi. 2017. Cl-Cuda. h�ps://github.com/takagi/cl-cuda. (2017).
GitHub Repository, Accessed Jan 2017, Active Apr 2012 – Jan 2017.

[23] �e Clang Developers. 2014. Clang: A C Language Family Frontend for LLVM.
h�p://clang.llvm.org. (2014).

[24] David Vandevoorde and Nicolai M. Josu�is. 2002. C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[25] Todd Veldhuizen. 1995. Template Metaprograms. C++ Report (May 1995).

ELS 2017 79

Static Taint Analysis of Event-driven Scheme Programs

Jonas De Bleser
Vrije Universiteit Brussel
jdeblese@vub.ac.be

Quentin Stiévenart
Vrije Universiteit Brussel
qstieven@vub.ac.be

Jens Nicolay
Vrije Universiteit Brussel
jnicolay@vub.ac.be

Coen De Roover
Vrije Universiteit Brussel
cderoove@vub.ac.be

ABSTRACT
Event-driven programs consist of event listeners that can be
registered dynamically with different types of events. The
order in which these events are triggered is, however, non-
deterministic. This combination of dynamicity and non-
determinism renders reasoning about event-driven applica-
tions difficult. For example, it is possible that only a partic-
ular sequence of events causes certain program behavior to
occur. However, manually determining the event sequence
from all possibilities is not a feasible solution. Tool support
is in order.

We present a static analysis that computes a sound over-
approximation of the behavior of an event-driven program.
We use this analysis as the foundation for a tool that warns
about potential leaks of sensitive information in event-driven
Scheme programs. We innovate by presenting developers
a regular expression that describes the sequence of events
that must be triggered for the leak to occur. We assess
precision, recall, and accuracy of the tool’s results on a set
of benchmark programs that model the essence of security
vulnerabilities found in the literature.

CCS Concepts
•Theory of computation→Program analysis; •Security
and privacy → Software security engineering;

Keywords
Taint Analysis, Abstract Interpretation, Static Program Anal-
ysis, Security Vulnerability, Event-driven Programs

1. INTRODUCTION
Event-driven programs are widely used on both client and

server side where external events and their corresponding
event listeners determine the program behavior. Analyzing
such programs is hard because the order in which events
occur is non-deterministic and control flow is not explicitly
available. These problems negatively impact the ability of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

10th European Lisp Symposium ELS’17, Brussels, Belgium
c© 2017 ACM. ISBN 123-4567-24-567/08/06.

DOI: 10.475/123 4

tools to detect security vulnerabilities. Among these vul-
nerabilities, leaks of confidential information and violations
of program integrity remain a continuously growing prob-
lem [22].

Static taint analysis has been proposed to detect those
vulnerabilities [3, 6, 8, 10, 18]. For event-driven programs,
the state of the art in static taint analysis either completely
ignores events or simulates them in every possible order.
Another limitation of the state of the art is the lack of infor-
mation about which event sequences cause a security vulner-
ability to occur. As a result, there is still little tool support
available to precisely detect such defects.

In this work, we present a static taint analysis to com-
pute the flow of values through event-driven programs in
which program integrity or confidentiality of information is
violated. We model a small event-driven Scheme language,
SchemeE , with an event model similar to JavaScript and
support for dynamic prototype-based objects. Through ab-
stract interpretation [4], we compute an over-approximation
of the set of reachable program states. From this set, we
identify security vulnerabilities and summarize event sequences
causing these vulnerabilities. This paper makes the follow-
ing contributions:

• We describe an approach to static taint analysis that is
able to detect security vulnerabilities in higher-order,
event-driven programs.

• We summarize event sequences leading to security vul-
nerabilities by means of regular expressions. This pro-
vides the developer with a description of the events
that have to be triggered for a security vulnerability
to occur, thereby facilitating the correction of the vul-
nerability.

• We investigate the use of k -CFA [15] as context sen-
sitivity in event-driven programs. We measure the in-
fluence on the results of our analysis and how it affects
the number of false positives.

2. TAINT ANALYSIS
A taint analysis is capable of detecting flows of values in a

program that violate program integrity or confidentiality of
information. Taint analysis defines such data-flow problems
in terms of sources, sinks and sanitizers. A source is any
origin of taint (e.g., user input or private information). A
sink is any destination where taint is not allowed to flow to
(e.g., database query or log utilities). A sanitizer converts
taint in such a way that it is no longer considered to be

80 ELS 2017

tainted (e.g., by stripping tags or by encryption). A security
vulnerability occurs whenever taint flows from a source into
a sink, without flowing through a sanitizer.

The program in Listing 1 contains a security vulnerability
that leaks a password to the screen. The variable password

is the source, as it is an origin of confidential information.
The function display exposes its argument to the screen
and is therefore a sink. The function encrypt is a sanitizer
as it converts its argument to an encrypted equivalent that
is allowed to be printed on screen. In this example, a leak of
confidential information occurs whenever the second branch
of the if-statement is executed. The goal of a static taint
analysis is to detect this violation without executing the
program.

1 (define password ’secret)
2 (define encrypt (lambda (x) (AES x)))
3 (if (> (length password) 10)
4 (display (encrypt password))
5 (display password))

Listing 1: Example of a security vulnerability that leaks
the password to the screen.

2.1 Motivating example
To illustrate the problem we are addressing in this paper

consider Listing 2, which exemplifies an event-driven pro-
gram containing a security vulnerability. This example is
written in SchemeE (Section 3) and represents a form that
contains a text input listening to the keypress event, to-
gether with two buttons that respectively listen to the clear
and save events.

1 (define o (object))
2 (define key #f)
3
4 (add-event-listener o ’keypress
5 (lambda (e) (set! key (source ’secret))))
6 (add-event-listener o ’clear
7 (lambda (e) (set! key #f)))
8 (add-event-listener o ’save
9 (lambda (e) (sink key)))

Listing 2: An event-driven program consisting of a secu-
rity vulnerability that leaks confidential information.

We define three event listeners (lines 5, 7, and 9) that
manipulate or access the variable key defined on line 2. The
first event listener (line 5) sets the variable key to the value
secret. This value represents confidential information and
therefore is tainted. We indicate this by using the special
form source, which returns its argument but annotates it
with a taint flag behind the scenes. The second event listener
(line 7) sets variable key to the untainted value #f. The third
event listener (line 9) leaks the contents of key (e.g., prints
it to the screen). This is indicated by means of the special
form sink, which raises an error if its argument is tainted.

Each event listener is registered (lines 4, 6, and 8) on ob-
ject o through the special form add-event-listener. This
special form takes three arguments: the object on which the
event listener is registered, the event that triggers the lis-
tener to be executed, and the function to execute when the
event occurs.

Registration enables the event listeners to become exe-
cutable, and in Listing 2 some execution orders may lead to
security vulnerabilities. This is the case whenever a key-

press event is immediately followed by a save event. By
taking into account the execution of event listeners, there

now exists a flow between the source (line 5) and the sink
(line 9) through variable key (line 2). This flow causes the
tainted value secret to be leaked.

However, information about the execution of event listen-
ers is not explicitly available from the source code, making
the flow between event listeners implicit. A naive abstract
interpretation of event-driven programs that ignores the ex-
ecution of event listeners will not detect that there is a flow
from and to variable key from every event listener. As a
result, such an analysis would not detect the leak of confi-
dential information in Listing 2. We tackle this problem in
the following sections.

3. AN EVENT-DRIVEN FLAVOR OF SCHEME
We start by introducing SchemeE , the language on which

we perform static taint analysis. SchemeE is a small Scheme
language that supports higher-order functions, objects, events,
and taint. The syntax of the language is shown in Figure 1.

var ∈ V ar = a set of identifiers

num ∈ N = a set of numbers

str ∈ String = a set of strings

s ∈ Symbol = a set of symbols

b ∈ B ::= #t | #f

l ∈ Lambda = (lambda (var) ebody)

e ∈ Exp ::= var | num | b | l | str | s

| (ef earg)

| (set! var eval)

| (if econd econs ealt)

| (letrec ((var e)) ebody)

| (source eval)

| (sanitizer eval)

| (sink eval)

| (object)

| (define-data-property eobj sname eval)

| (define-accessor-property eobj sname eg es)

| (get-property eobj sname)

| (set-property eobj sname eval)

| (delete-property eobj sname)

| (event sevent)

| (add-event-listener eobj sevent elistener)

| (remove-event-listener eobj sevent elistener)

| (dispatch-event eobj earg)

| (emit eobj earg)

| (event-queue)

Figure 1: Grammar of SchemeE .

3.1 Objects and Properties
SchemeE supports Javascript-like objects consisting of prop-

erties that are maintained in a map relating property names
to their respective values. There exist two kinds of proper-
ties in JavaScript: data and accessor properties. The former
associate property names with values, while the latter asso-
ciate them with a getter and setter function (i.e., allowing
side-effects). The special form object instantiates an object
without any properties. Accessing a property which does
not exist on an object yields #f as default value. Proper-
ties can be added (define-(data|accessor)-property), ac-
cessed (get-property), deleted (delete-property), or mod-
ified (set-property) at run time.

ELS 2017 81

3.2 Events and Event Listeners
Event listeners (also referred to as event handlers or call-

backs) are functions that are registered for a specific event
on an object and are executed whenever such an event is
dispatched as a result of an action (e.g., clicking a button or
pressing a key). In general, event-driven programs do not
terminate because they listen for events indefinitely (i.e.,
they enter an event loop). The behavior of event-driven
programs is largely determined by the execution of event
listeners.

In SchemeE , event listeners are added and removed by
the special forms add-event-listener and remove-event-

listener, respectively. New events can be created through
the special form event, which takes a symbol denoting the
event type as argument.

Listing 3 illustrates SchemeE ’s support for objects and
events. Two properties are defined on object o: data prop-
erty var (line 2) and accessor property result (line 3) with
its getter and setter functions (lines 4 and 5). Accessing
property result will return the value of var multiplied by
2, while setting it will cause var to be changed to the given
value.

Two event listeners for events modify and resets are reg-
istered on object o (lines 7 and 9). The former event listener
(line 7) modifies the accessor property result to become
2. The latter resets the property var so that its value be-
comes 0. To simulate events directly, we use the special
form dispatch-event. This special form dispatches events
synchronously and represents the occurrence of a particular
event on an object at that specific moment in time in the
program. As a result, the corresponding event listeners on
the target object are immediately executed.

First, a modify event is dispatched (line 12) and causes
the value of var to become 2. Accessing result on the
next line will therefore return 4. Second, a reset event is
dispatched (line 15) and causes the value of var to become 0,
as indicated on line 16. Third, the event listener registered
for modify event is removed on line 18. Any event that
occurs after the removal has no effect. This is reflected by
the value of result, because accessing it on line 20 still
results in the value 0 instead of 4. Finally, the property
var is removed from the object on line 22, and accessing it
returns the default value #f.

1 (define o (object))
2 (define-data-property o ’var 0)
3 (define-accessor-property o ’result
4 (lambda () (* 2 (get-property o ’var)))
5 (lambda (x) (set-property! o ’var x)))
6
7 (define modify (lambda () (set-property o ’result 2)))
8 (add-event-listener o ’modify modify)
9 (define reset (lambda () (set-property o ’var 0)))

10 (add-event-listener o ’reset reset)
11
12 (dispatch-event o (event ’modify)) ; var = 2
13 (get-property o ’result) ; 4
14
15 (dispatch-event o (event ’reset)) ; var = 0
16 (get-property o ’result) ; 0
17
18 (remove-event-listener o ’modify modify)
19 (dispatch-event o (event ’modify)) ; NOP
20 (get-property o ’result) ; 0
21
22 (delete-property o ’var)
23 (get-property o ’var) ; #f

Listing 3: Example program illustrating the features of
SchemeE .

3.3 Taint
Besides objects and events, SchemeE features special forms

to explicitly define sources (source), sinks (sink), and san-
itizers (sanitizer). Listing 4 shows how to use these to
define that variable v is a source, function display is a sink,
and encrypt is a sanitizer.

1 (define v (source 1))
2 (define display (lambda (x) (sink x)))
3 (define encrypt (lambda (x) (sanitizer x)))

Listing 4: Defining sources, sinks and sanitizers.

4. STATIC TAINT ANALYSIS OF EVENT-
DRIVEN PROGRAMS

We explain how to detect vulnerabilities through abstract
interpretation (Section 4.1), how to model such vulnerabili-
ties in event-driven programs (Section 4.2), and how to re-
port them in a user-friendly way through regular expressions
describing event sequences (Section 4.3).

4.1 Abstract interpretation in the context of
event-driven programs

To statically analyze event-driven programs, we perform
abstract interpretation using the technique of Abstracting
Abstract Machines (AAM) [21]. From the operational se-
mantics of SchemeE defined as an abstract machine, we de-
rive an abstract version of this semantics as an abstract ab-
stract machine. This machine can then be used to perform
abstract interpretation of event-driven programs. The re-
sult of an abstract interpretation is an abstract state graph
in which nodes represent program states and edges repre-
sent transitions between program states. This graph con-
tains every possible program behavior that can occur during
concrete interpretation, but possibly also spurious behavior
due to over-approximation. A single abstract state can rep-
resent multiple concrete states and is either the evaluation of
an expression, the result of an evaluation, or an error state.
Figure 2 depicts a fragment of an example abstract state
graph.

eval(#f)

(#f, Untainted)

eval((sink key)) eval((add-event-listener o 'clear ...)

error(Int, IS_TAINTED | source=9.25 | sink=17.37) eval('clear)

('clear, Untainted)

eval('#f)

Figure 2: Abstract state graph resulting from abstract in-
terpretation.

To detect security vulnerabilities, the abstract interpre-
tation keeps track of the flow of tainted values. An error

82 ELS 2017

state is generated whenever a tainted value reaches a sink.
For example, an error state is represented as the left leaf
node in Figure 2. This state provides information about the
tainted value such as the type of the value (i.e., Int), the
line and column number of the source (i.e., source=9.25)
and the sink (i.e., sink=17.37) involved in the vulnerability,
together with the precision with which the vulnerability was
detected. If the analysis detects a taint violation with full
precision, the error IS_TAINTED is produced. If it detects
that a taint violation may occur, the error MAYBE_TAINTED

is produced instead.
As illustrated in Section 2.1, naively performing abstract

interpretation of event-driven programs may miss security
vulnerabilities if events are not taken into account. By ig-
noring events, the resulting abstract state graph does not
contain behaviors related to the execution of event listeners.
Such a graph is an unsound approximation of the program
behavior and may not contain every security vulnerability
present in the program.

In order to obtain a sound static analysis for event driven
programs, it is crucial to execute event listeners. A sound
static analysis ensures that a given event-driven program
is free of vulnerabilities under any input and sequence of
events if the analysis detects no possible vulnerability during
abstract interpretation.

We describe our approach to simulate events in the next
section.

4.2 Simulating events
SchemeE provides the special form emit to asynchronously

trigger an event. As opposed to dispatch-event, any corre-
sponding event listeners are not directly executed. Instead,
the emitted event is scheduled in the global event queue and
program execution continues right after the call to emit.
At the end of the program, when the call stack is empty,
(event-queue) is used to initiate the event loop. The event
loop continually extracts a single event from the queue and
executes its corresponding registered event listeners in reg-
istration order.

Because the registered event listeners are executed accord-
ing to which event is consumed from the event queue during
abstract interpretation, the final abstract state graph in-
cludes the behavior of the event listeners. This approach
enables us to detect security vulnerabilities, including the
ones that occur as a result of program flow through event
listeners. To keep track of which event has been executed,
we annotate the edges of the abstract graph with informa-
tion about the triggered event. This information is used in
a later stage (Section 4.3) to generate regular expressions
that describe event sequences leading to a particular secu-
rity vulnerability. We call the resulting graph an abstract
event graph.

Because the order in which events are triggered is largely
non-deterministic, a naive approach is to assume that every
event can be triggered in any order at any time. However,
it is computationally expensive to explore the whole event
space for non-trivial programs in this manner, and it may re-
sult in many false positives. This can be mitigated partially
with domain knowledge about the semantics of the program
and how events occur. Madsen et al. [11] presents a mod-
eling approach to support events and provide the abstract
semantics of an event queue. We follow their approach in or-
der to reduce the search space by explicitly emitting events

in the program.
We extend our motivational example (Listing 2) with a

model that indicates which events can occur and when they
can occur. Listing 5 depicts such a model where the events
clear and save can never occur at the start of the program.
That is because buttons registered for these events are dis-
abled as long as there has not been any keypress event. We
specify this behavior by only emitting a keypress event at
line 18, before calling event-queue. Whenever a keypress

event has been triggered, any other type of event can occur.
We model this by emitting every event (lines 6–8) in the
event listener registered for keypress. We also model that
a save event can never occur after a clear event. This is
specified by only emitting keypress and clear at lines 12
and 13 in the event listener registered for clear. Finally, we
model the fact that a save event implies termination of the
program by not emitting any event from the listener at line
16. We consider termination to be the disappearance of the
form once the save button is pressed. While explicit event
modeling requires some effort, it reduces the search space
and avoids exploring spurious event sequences.

1 (define o (object))
2 (define key #f)
3
4 (add-event-listener o ’keypress
5 (lambda ()
6 (emit o (event ’keypress))
7 (emit o (event ’clear))
8 (emit o (event ’save))
9 (set! key (source ’secret))))

10 (add-event-listener o ’clear
11 (lambda ()
12 (emit o (event ’keypress))
13 (emit o (event ’clear))
14 (set! key #f)))
15 (add-event-listener o ’save
16 (lambda () (sink key)))
17
18 (emit o (event ’keypress))
19 (event-queue)

Listing 5: An event-driven program consisting of explic-
itly modeled event sequences and a leak of confidential
information.

While detecting security vulnerabilities in event-driven
programs is important, knowing why and how they occur
is at least as important. Manually inspecting the abstract
event graph for event sequences of interest is not an option,
given the complexity of event-driven programs and their re-
sulting event graphs. We tackle this problem in the next
section.

4.3 Computing event sequences
Manually deriving event sequences that lead to security

vulnerabilities is not trivial. This is because programs typi-
cally consist of many events, as well as many sources, sani-
tizers, and sinks. We address this problem by automatically
generating regular expressions describing the sequence of
events required for a security vulnerability to occur. Event
sequences provide valuable information to developers detect-
ing and fixing these vulnerabilities.

We start from the observation that the abstract event
graph is equivalent to a non-deterministic finite automaton
with ε-transitions (ε-NFA). This because each state can have
zero, one, or more successor states, and non-annotated edges
in the graph (i.e., control-flow not induced by triggering of
events) correspond to ε-transitions.

ELS 2017 83

This automaton (Q ,Σ , δ, q0 ,F) consists of the set of ab-
stract states Q, a transition function δ(q, a) where q ∈ Q
and a ∈ Σ is either an event or ε. The initial state q0 is the
root state of the abstract state graph, and the set of final
states F includes every error state.

This observation enables us to convert the abstract event
graph to regular expressions in three steps:

1. Convert the ε-NFA to an NFA by calculating the ε-
closure for each state.

2. Convert the NFA to a minimal deterministic finite au-
tomaton (DFA).

3. Convert the DFA to regular expressions for every com-
bination of source and sink.

Conversion to NFA.
The function ECLOSURE(Q) = {s | q ∈ Q ∧ s ∈ δ(q, ε)}

calculates the ε-closure for each state of the automaton.
Given this information, we can eliminate all ε-transitions be-
cause they do not contribute to the final regular expression.
This step results in an ε-free NFA and reduces the number
of states because most transitions are indeed ε-transitions.

Conversion to minimal DFA.
Any NFA can be converted into its corresponding unique

minimal DFA [16]. We opt for Brzozowski’s algorithm to
perform this conversion because it outperforms other algo-
rithms in many cases [2], despite its exponential character.
This algorithm minimizes an ε-free NFA into a minimal DFA
where both automatons accept the same language L. It does
so by reversing the directions of the transitions in an NFA
(rev), and then converting it into an equivalent DFA that
accepts the reverse language LR using the powerset con-
struction method (dfa). The process is repeated a second
time to obtain a minimalistic DFA that accepts language L.
This algorithm is performed by the function minimize.

minimize(fa) = dfa(rev(dfa(rev(fa))))

Extracting regular expressions.
Given a minimal DFA, we can convert it into a regular

expression using several methods [14]. We opt for the transi-
tive closure method because of its systematic characteristic.
First, an n×n×n matrix from a given DFA 〈Q,Σ, δ, q0, F 〉
with n states is built. We define Rk

i,j as the regular expres-
sion for the words generated by traversing the DFA from
state qi to qj while using intermediate states {q1 . . . qk}. We
compute this regular expression in every iteration from 1 to
k as follows:

Rk
i,j = Rk−1

i,j +Rk−1
i,k . Rk−1

k,k

∗
. Rk−1

k,j

The final outcome Rk
i,j is the regular expression that de-

scribes all the event sequences that lead to a particular se-
curity vulnerability.

We apply these steps to the example described in Sec-
tion 4.2 and show the resulting regular expressions below.
The first regular expression (1) is generated from the pro-
gram using the naive approach in which every possible event
ordering is explored. The second regular expression (2) is
generated by means of the model using explicitly modeled

event sequences (Listing 5). We abbreviate the events to
their first letter for brevity. A + indicates choice, . indi-
cates concatenation, and ∗ indicates repetition (Kleene star
operator). From both expressions, it is clear that the event
sequence leading to the leak ends with a keypress event
followed by a save event.

Figure 3 depicts the second regular expression as an au-
tomaton.

(k + ((c+ s).(c+ s)∗.k)).(k + (c.((c+ s)∗.k)))∗.s (1)

(k.k∗.c.(c+ (k.k∗.c+ c∗.k.k∗.c))∗.(c∗ + k)∗)∗.k.k∗.s (2)

Even in this simple example the generated event sequences
are rather long and complex. While all possibilities are im-
portant (e.g. when multiple unique event sequences may
lead to a leak), we deem the shortest possible event sequence
to be the most important one in order to patch the security
vulnerability. In this example, this is the sequence key-

press.save.

Keypress

SaveKeypress

Clear

Keypress

Clear

Figure 3: Finite state automaton of the regular expression
that represents event sequences leading to the security vul-
nerability in Listing 5.

5. IMPLEMENTATION
We implemented the static taint analysis for event-driven

programs discussed in this paper as a proof of concep1.
We make use of the modular framework Scala-AM [17]
to perform static analysis based on systematic abstraction
of abstract machines (AAM) [21]. The implementation sup-
ports SchemeE , our small Scheme language with support for
prototype-based objects, events, and taint that we described
in Section 3. We incorporated an existing library for the
manipulation of finite state automata [13] to obtain a min-
imal DFA from an abstract event graph by computing the
ε-closure and applying the DFA minimization as described
in Section 4.3.

Abstract counting [12] is enabled by default in our im-
plementation. This to improve precision by avoiding un-
necessary joining of values when it is safe to do so. Under
abstraction, the abstract machine represents the unbounded
heap memory by a map that relates a finite number of ad-
dresses to values. This results in possibly different values
being allocated at the same abstract addresses. Such values
are then joined in order to remain over-approximative in the
interpretation. Suppose variable x is allocated at address a
and represents a tainted value. Allocating a variable y rep-
resenting an untainted value at the same address a will cause
the values of x and y to join (i.e., to merge), so that the value
at address a now may be tainted. This over-approximated

1https://github.com/jonas-db/aam-taint-analysis

84 ELS 2017

value is then used in the remainder of the interpretation and
may lead to false positives.

6. PRELIMINARY EXPERIMENTS
To measure the applicability of our approach, we extracted

synthetic benchmarks from larger programs. These bench-
marks are described in Table 1. We include multiple bench-
marks that contain no security violation to assess to which
extent our approach produces false positives. These bench-
marks therefore enable us to determine the precision of our
analysis. We investigate the increase of precision and ac-
curacy that follows from the use of call-site-sensitivity (k-
CFA) [15] as context sensitivity for the analysis. This con-
text sensitivity is well-suited for programs with functions
calls, and we observed that it is not uncommon for event
listeners to call auxiliary functions.

The results of our experiments are shown in Table 1. The
time it takes to produce these results is at most 1.3 sec-
onds. Our analysis did not have any false negatives because
it is sound, and thus has a recall of 100%. For each bench-
mark, we indicate whether the analysis detected a leak with
maximal precision (Must) or not (May), or whether it de-
tected no leak (/). We also indicate whether the results
are correct (3) or not (7). For brevity, we only provide
the shortest event sequence instead of the full regular ex-
pression. We conclude from this table that increasing the
context sensitivity (i.e., increasing the value of k) results in
less false positives in our experiments, while also increasing
the precision and accuracy with which leaks are detected in
the two first benchmarks. However, the analysis was unable
to detect that benchmark programs manylst and delprop do
not contain a leak. These false positives are a consequence
of over-approximations due to abstract interpretation, and
are a common side-effect of static analysis in general. How-
ever, the developer can be certain of the absence of secu-
rity vulnerabilities by only verifying (e.g., simulating with
increased polyvariance or manual inspection) the generated
set of event sequences, as opposed to every possible combina-
tion of events. We discuss lstfunc and rmlst to understand
how context sensitivity can contribute to less false positives
and more precise results.

Context sensitivity and its influence on results.
Listing 6 shows the example lstfunc in which we model

the scenario where event a is emitted, followed by event b.
Each event listener calls the function f, which is a known
sink. The first call to f on line 7 with untainted value 2 does
not result in a security vulnerability. The second call on line
4, however, does result in a security leak.

1 (define window (object))
2 (define f (lambda (x) (sink x)))
3 (add-event-listener window ’b
4 (lambda (e) (f (source #f))))
5 (add-event-listener window ’a
6 (lambda (e)
7 (f 2)
8 (emit window (event ’b))))
9 (emit window (event ’a))

10 (event-queue)

Listing 6: lstfunc example, containing a security vul-
nerability.

Our analysis detects this leak but not with full precision.
This because the parameter x is allocated twice to the same

address, which causes the untainted value 2 and the tainted
value #f to join. Hence, our monovariant analysis (k = 0)
detects that x may be tainted. On the other hand, our poly-
variant analysis with k > 1 is able to distinguish between
the two calls to f and detects the security leak with full
precision.

Listing 7 shows rmlst where a finite event sequence a.b.c.d
is modeled. The example consists of multiple event listen-
ers, each registered for one specific event. The problematic
event listener defined on line 7 is registered for the event d

on line 14 and could cause a leak if the property p of oa

is tainted. However, this listener is removed on line 25 be-
fore any vulnerability can occur (i.e., this example does not
contain a leak).

Without context sensitivity (0-CFA), a leak is detected
by the analysis. The reason is related to the allocation and
subsequent joining of objects, even though this occurs in two
different event listeners (line 10 and 18). Two objects are
joined whenever they are allocated at the same address, and
a new abstract object is created that represents all properties
and all registered event listeners of both objects.

Function f (line 4) calls function g (line 3) which allocates
a new object. With 1-CFA, the analysis can differentiate
between the two different calls to f on line 11 and 19, but
not between the calls to g performed by f. Because of this,
the allocation of the second object (by means of calling f

on line 19) will join with the previously allocated object (by
means of calling f on line 11). The definition of the tainted
property p on line 12 will thus apply to both objects. Note
that o1 is aliased by oa which means that, due to joining,
oa will point to both objects.

Whenever the event c occurs, the event listener is removed
from the object oa. This is not the case when the object
points to an address that represents multiple objects because
removing it would be unsound since we do not know which
event listener was registered to which object. As a result,
emitting the event d on line 25 causes the event listener on
line 7 to execute. the tainted property p of object oa reaches
the sink.

1 (define oa #f)
2 (define window (object))
3 (define (g) (object))
4 (define (f) (g))
5
6 (define listener
7 (lambda (e) (sink (get-property oa ’p))))
8
9 (add-event-listener window ’a

10 (lambda (e)
11 (let ((o1 (f)))
12 (set-property o1 ’p (source 1))
13 (add-event-listener o1 ’d listener)
14 (set! oa o1)
15 (emit window (event ’b)))))
16
17 (add-event-listener window ’b
18 (lambda (e)
19 (f)
20 (emit window (event ’c))))
21
22 (add-event-listener window ’c
23 (lambda (e)
24 (remove-event-listener oa ’d listener)
25 (dispatch-event oa (event ’d))))
26
27 (emit window (event ’a))
28 (event-queue)

Listing 7: rmlst example, where no leak is present due
to the removal of an event listener.

ELS 2017 85

0-CFA 1-CFA 2-CFA
Name Description LOC Leaks Listeners Emits Result Regex Result Regex Result Regex

lstfunc Event listeners call the same function 9 1 2 2 May 3 ba Must 3 ba Must 3 ba
samelst Same event listener for different events 22 1 2 2 May 3 ba Must 3 ba Must 3 ba
nestedlst Event listener calls nested function 14 0 2 2 May 7 ba / 3 / / 3 /
objjoin Event listeners call factory method 28 0 4 4 May 7 abcd May 7 abcd / 3 /
delprop Event listeners delete object property 21 0 2 2 May 7 aa May 7 aa May 7 aa
funccalls Nested registration of event listeners 11 0 2 2 May 7 ab / 3 / / 3 /
rmlst Removing an event listener 26 0 4 4 May 7 abcd May 7 abcd / 3 /
manylst Multiple event listeners for an event 16 0 2 3 May 7 ac May 7 ac May 7 ac

Precision 25% 33% 50%
Recall 100% 100% 100%

Accuracy 25% 50% 75%

Table 1: Precision, recall, and accuracy with k-CFA. Result describes whether the result is detected with full precision (Must)
or not (May). It also indicates whether the result is correct (3) or not (7). Regex is the shortest event sequence that leads
to the security vulnerability. The use of / means that no regular expressions are generated and thus no vulnerabilities were
found. The gray areas indicate correct results and shows how precision increases with increased context sensitivity.

With 2-CFA, the analysis can distinguish between the two
calls to g, and it correctly detects that there are no leaks.

7. RELATED WORK
To the best of our knowledge there exists no precise static

taint analysis to detect security vulnerabilities in the context
of higher-order event-driven programs written in a dynamically-
typed language. Arzt et al. [3] present FlowDroid, a static
taint analysis for Android based on the static analysis frame-
work SOOT [20]. It is aware of the event-driven lifecycle of
Android and user-defined event listeners. However, their ap-
proach does not support higher-order functions. Jovanovic
et al. [8] introduce Pixy which aims to detect cross-site
scripting vulnerabilities (XSS) in PHP 4. However, they
do not support objects, events or higher-order functions.
Guarnieri et al. [6] present Actarus, a blended (i.e., a com-
bination of static and dynamic) taint analysis for JavaScript
to detect client-side vulnerabilities. Their approach is based
on the static analysis framework WALA [5]. However, be-
ing a blended analysis, it depends on run-time information.
Tripp et al. [18] present TAJ, a static taint analysis for Java
6 without support for higher-order functions. It targets four
security vulnerabilities in web applications, including cross-
site scripting (XSS), command injection, malicious file exe-
cutions and information leakage.

There is existing work related to static analysis of event-
driven JavaScript programs using abstract interpretation.
Liang and Might [10] present a static taint analysis for Python
using abstract interpretation. However, their analysis does
not support event-driven programs. Another difference is
that we opt to maintain a product of abstract values and
taint in a single abstract store instead of using two sepa-
rate stores. Tripp et al. [19] present Andromeda, a demand-
driven analysis tool for Java, JavaScript and .NET that has
been successfully used in a commercial product, but has no
support for event-driven programs. Jensen et al. [7] present
TAJS which is a tool to detect type-related and data-flow
related programming errors in event-driven JavaScript web
applications. It is capable of detecting the absence of ob-
ject properties or unreachable code and has support for the
HTML DOM. While the tool has support for events, it does
not track each individual event separately. Their approach
consists of merging events in several categories such as load,
mouse, keyboard, etc. This decision is a trade-off in terms
of performance but leads to less precise event information.

Kashyap et al. [9] present JSAI, a tool with support for
the HTML DOM and events. We notice that both TAJS
and JSAI simulate an event queue where event listeners are
executed in every possible order. To avoid exploring the
complete search space of events, Madsen et al. [11] present
a modeling approach to support events. They do not im-
plement a taint analysis but rather focus on detecting dead
event listeners, dead emits and mismatched synchronous and
asynchronous calls in Node.js. To model event-driven pro-
grams, they require the developer to explicitly place emit
statements in the program. The proposed abstract event
queue will then be filled with these events and enables the
tool to explore the flow of events. While this approach leads
to a smaller search space, it requires some knowledge about
the semantics of the program. Nevertheless, this work in-
spired our implementation of an event queue used in our
abstract machine.

8. CONCLUSION AND FUTURE WORK
In this work, we outline an approach to statically detect

security vulnerabilities in event-driven Scheme programs.
We propose the event-driven language SchemeE and use
abstract interpretation as a technique to compute an over-
approximation of the program’s behavior. We use a three-
step process to generate regular expressions that describe
event sequences that lead to a particular security vulnera-
bility. Event sequences provide valuable information to de-
velopers detecting and fixing these vulnerabilities. We also
investigate the effect of context sensitivity, more precisely
k-CFA, on the results of the analysis. Our results show that
our technique can detect security vulnerabilities in event-
driven programs and that higher precision can be achieved
with increased context sensitivity.

As future work, we envision to investigate techniques that
are able to avoid exploration of spurious event sequences.
We also want to implement our technique for JavaScript.
We deem this language support to be a continuation of our
work because we closely followed the semantics of objects
and events in JavaScript. For larger programs, we foresee
that the size of the abstract state graph grows rapidly be-
cause many event sequences have to be explored. The size
could be reduced by applying a macro-step evaluation [1]
(i.e., a single node per event listener that may consist of mul-
tiple states) instead of a small-step evaluation (i.e., a single
node per state). Another improvement can be to avoid the

86 ELS 2017

exploration of all permutations of event listeners. However,
according to Madsen et al. [11] it is uncommon for a sin-
gle object to have multiple event listeners registered for the
same event. Madsen et al. [11] also proposes two context
sensitivities specific to event-driven programs. We will im-
plement these as future work and investigate whether one
of the context sensitivities (or a combination thereof) can
further improve the results of the analysis. The concept of
event bubbling and event capturing is another problem that
affects program security, but requires a hierarchical relation-
ship between objects.

Although our approach is able to detect security vulnera-
bilities in event-driven programs, the non-deterministic be-
havior of events remains a computational challenge that in-
fluences the ability to detect vulnerabilities. Techniques are
needed to reduce the search space and to further improve
the precision of taint analysis in event-driven programs. Our
work provides foundations toward this goal.

Acknowledgements
Quentin Stiévenart is funded by the GRAVE project of the
Research Foundation - Flanders (FWO). Jens Nicolay is
funded by the SeCloud project sponsored by Innoviris, the
Brussels Institute for Research and Innovation.

References
[1] Gul A Agha, Ian A Mason, Scott F Smith, and Car-

olyn L Talcott. A foundation for actor computation.
Journal of Functional Programming, 7(01):1–72, 1997.

[2] Marco Almeida, Nelma Moreira, and Rogério Reis. On
the performance of automata minimization algorithms.
In Proceedings of the 4th Conference on Computation
in Europe: Logic and Theory of Algorithms, pages 3–
14, 2007.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
ACM SIGPLAN Notices, volume 49, pages 259–269.
ACM, 2014.

[4] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pages
238–252. ACM, 1977.

[5] Stephen Fink and Julian Dolby. WALA
– T.J. Watson libraries for analysis., 2006.
http://wala.sourceforge.net.

[6] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Ju-
lian Dolby, Stephen Teilhet, and Ryan Berg. Saving the
world wide web from vulnerable javascript. In Proceed-
ings of the 2011 International Symposium on Software
Testing and Analysis, pages 177–187. ACM, 2011.

[7] Simon Holm Jensen, Anders Møller, and Peter Thie-
mann. Type analysis for JavaScript. In Proceedings of
16th International Static Analysis Symposium (SAS),
volume 5673 of LNCS. Springer-Verlag, August 2009.

[8] Nenad Jovanovic, Christopher Kruegel, and Engin
Kirda. Pixy: A static analysis tool for detecting web ap-

plication vulnerabilities. In Security and Privacy, 2006
IEEE Symposium on, pages 6–pp. IEEE, 2006.

[9] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John
Wagner, Kevin Gibbons, John Sarracino, Ben Wieder-
mann, and Ben Hardekopf. Jsai: A static analysis plat-
form for javascript. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 121–132. ACM, 2014.

[10] Shuying Liang and Matthew Might. Hash-flow taint
analysis of higher-order programs. In Proceedings of the
7th Workshop on Programming Languages and Analysis
for Security, page 8. ACM, 2012.

[11] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static
analysis of event-driven node. js javascript applica-
tions. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 505–519.
ACM, 2015.

[12] Matthew Might and Olin Shivers. Improving flow anal-
yses via γcfa: abstract garbage collection and counting.
In ACM SIGPLAN Notices, volume 41, pages 13–25.
ACM, 2006.

[13] Anders Møller. dk.brics.automaton – finite-state
automata and regular expressions for Java, 2010.
http://www.brics.dk/automaton/.

[14] Christoph Neumann. Converting deterministic
finite automata to regular expressions, 2005.
http://liacs.leidenuniv.nl/ bonsanguem-

m/FI2/DFA_to_RE.pdf.
[15] Olin Shivers. Control-flow analysis of higher-order lan-

guages. PhD thesis, Carnegie-Mellon University, 1991.
[16] Michael Sipser. Introduction to the Theory of Compu-

tation, volume 2. Thomson Course Technology Boston,
2006.

[17] Quentin Stiévenart, Maarten Vandercammen, J Nico-
lay, W De Meuter, and C De Roover. Scala-am: A
modular static analysis framework. In Proceedings of
the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM, vol-
ume 16, 2016.

[18] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu
Sridharan, and Omri Weisman. Taj: effective taint
analysis of web applications. ACM Sigplan Notices, 44
(6):87–97, 2009.

[19] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia
Cousot, and Salvatore Guarnieri. Andromeda: Ac-
curate and scalable security analysis of web applica-
tions. In International Conference on Fundamental
Approaches to Software Engineering, pages 210–225.
Springer, 2013.

[20] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot –
a java bytecode optimization framework. In Proceed-
ings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 13. IBM Press,
1999.

[21] David Van Horn and Matthew Might. Abstracting ab-
stract machines. In ACM Sigplan Notices, volume 45,
pages 51–62. ACM, 2010.

[22] Dave Wichers. OWASP top ten project – a list of the
10 most critical web application security risks, 2013.
https://www.owasp.org/index.php.

ELS 2017 87

Session VI: Languages and
meta-languages (2)

+

on the lambda way
Alain Marty Engineer Architect

Villeneuve de la Raho, France
marty.alain@free.fr

ABSTRACT
The {lambda way} project is a web application built on two

engines:
• {lambda tank}, a tiny wiki built as a thin overlay on top of any

web browser,
• {lambda talk}, a purely functional language unifying writing,

styling and scripting in a single and coherent Lisp-like syntax.
In this document we progressively introduce the language

beginning with {lambda word} built on a minimal set of three
rules, then we add a bit of arithmetic with {lambda calc} and
finally call the browsers' functionalities leading to a programmable
programming language, {lambda talk}. As a guilding line, we
present how can be computed the factorial of any natural number,
at each level, regardless of its size and with a total precision, for
instance:
5! = 120
50! = 304140932017133803983857288678599
 00744706627746248466026044200000

KEYWORDS
• Information systems~Wikis
• Theory of computation~Regular languages
• Theory of computation~Lambda calculus
• Software and its engineering~Functional languages
• Software and its engineering~Extensible Markup Language

(XML)

INTRODUCTION
« But there are hundred of wiki engines and hundred of

languages! Why yet another wiki and another language nobody
will ever want to use? » Let's talk about it!

Web browsers give everybody an easy access to a plethora of
rich documents created by people mastering HTML, CSS, JS,
PHP... Web browser can also host web applications allowing
everybody to write HTML/CSS/JS code and so add informations
to web pages. Wikis belong to this category: « A wiki is a web
application which allows collaborative modification, extension, or
deletion of its content and structure.[1] »

Writing HTML/CSS/JS code being rather complex and at least
tiresome, intermediate syntaxes, for instance WikiText[2], have
been created to make enriching and structuring text a little bit
easier. And it's exactly what people use in blogs and wikis. The
best known of wikis is Wikipedia, full of rich documented pages
written by people supposed to be neither web designers nor
coders.

Everything works well but the underlying code is a very
obfuscated text, difficult to write, read, edit and maintain. In fact,
the WikiText syntax is not intended for writing rich documents,
not to speak of coding. Works have been done to build enhanced

syntaxes in order to unify writing, styling and coding, for instance,
not to mention desktop tools like LaTeX[3], web tools like
CURL[4], LML[5], Skribe[6], Scribble[7], SXML[8], LAML[9],
Pollen[10] ... But these tools are definitively devoted to coders, not
to web designers and even less to beginners. Hence the {lambda
way} project ...

We will forget the PHP engine,{lambda tank}, whose task is
to manage the text files on the server side, and we progressively
introduce the Javascript engine, {lambda talk}, working on the
client side. Using exclusively the {lambda way} environment, 1)
we begin to build {lambda word} on a minimal set of three rules,
2) we add a bit of arithmetic with {lambda calc} and finally 3) we
use the browser's functionalities leading to {lambda talk}.

1. {LAMBDA WORD}
We present the structure and evaluation of a {lambda word}

expression, then the implementation of the evaluator built on the
underlying engine, Javascript.

1.1. Structure & Evaluation
{lambda word} is built on three rules freely inspired by the

lambda calculus [11]. An expression is defined recursively as
follows:
expression := [word|abstraction|application]*
where
 ­ word: [^\s{}]*
 ­ abstraction: {lambda {word*} expression}
 ­ application: {expression expression}

A {lambda word} expression is a tree structure made of
words, abstractions and applications where 1) a
word is any character except spaces "\s" and curly braces "{}", 2)
an abstraction is the "process" (called a function) selecting a
sequence of words (called arguments) in an expression
(called body), 3) an application is the "process" calling an
abstraction to replace selected words by some other words
(called values). The evaluation of an expression follows these
rules:

• 1) a word is not evaluated,
• 2) an abstraction is evaluated to a single word, as a reference

stored in a global dictionary,
• 3) an application is evaluated to a sequence of words,
• 4) abstractions, called "special forms", are evaluated before

applications, called "forms".
Examples:

1) Hello World ­> Hello World
2) {lambda {o a} oh happy day!} ­> lambda_5
3) {{lambda {o a} oh happy day!}
 oOOOo aaAAaa} ­> oOOOoh haaAAaappy daaAAaay!

In the last example the abstraction is first evaluated,
defining "o" and "a" as characters whose occurences in the
expression "oh happy day!" will be replaced by some future

90 ELS 2017

values, and returning a reference, "lambda_5" ; the
application gets the awaited values "oOOOo" and "aaAAaa",
calls the abstraction which makes the substitution and returns
the result, "oOOOoh haaAAaappy daaAAaay!". Let's look at
a more interesting example:
4) {{lambda {z} {z {lambda {x y} x}}}
 {{lambda {x y z} {z x y}} Hello World}}
­> Hello
 {{lambda {z} {z {lambda {x y} y}}}
 {{lambda {x y z} {z x y}} Hello World}}
­> World

Let's trace the first line returning "Hello":
1: {{lambda {z} {z {lambda {x y} x}}}
 {{lambda {x y z} {z x y}} Hello World}}
2: {{lambda {z} {z {lambda {x y} x}}}
 {lambda {z} {z Hello World}}}
3: {{lambda {z} {z Hello World}}
 {lambda {x y} x}}
4: {{lambda {x y} x} Hello World}
5: Hello

In fact, without naming them, we just have built and used a set
of useful functions: [CONS CAR CDR]. This is a last example:
5) {{lambda {:n} {{lambda {:p} {:p {lambda {:x
:y} :y}}} {{:n {lambda {:p} {{lambda {:a :b :m}
{{:m :a} :b}} {{lambda {:n :f :x} {:f {{:n :f}
:x}}} {{lambda {:p} {:p {lambda {:x :y} :x}}}
:p}} {{lambda {:n :m :f} {:m {:n :f}}} {{lambda
{:p} {:p {lambda {:x :y} :x}}} :p} {{lambda {:p}
{:p {lambda {:x :y} :y}}} :p}}}}} {{lambda {:a
:b :m} {{:m :a} :b}} {lambda {:f :x} {:f :x}}
{lambda {:f :x} {:f :x}}}}}} {lambda {:f :x} {:f
{:f {:f {:f {:f :x}}}}}}} ­> lambda_200

Let's look at the end part of the expression, {:f {:f {:f
{:f {:f :x}}}}}. We notice that :f is applied 5 times to :x.
We will show later that the resulting word, lambda_200, can be
associated to the number 120, which is the factorial of 5: 5! =
1*2*3*4*5. Writing the same expression where :f is applyed
50 times to :x would lead to the exact 65 digits of 50! ... provided
we had thousands years before us!

Anyway, it happens that with nothing but three rules we can
do maths with absolute precision, at least theoretically! More
generally, these three rules make {lambda word} a Turing
complete [12] programmable programming language. Even if, at
this point, this language is practically unusable!

1.2. Names
In order to make life easier, we introduce a second special

form {def NAME expression} to populate the dictionary
with global constants and give names to lambdas. For instance:
{def MY_PI 3.1416} ­> MY_PI
{MY_PI} ­> 3.1416 // it's not a number

Note that, contrary to languages like Lisp[13] or Scheme[14],
the name of a constant is NOT evaluated, it's a reference pointing
to some value. Bracketing the name between {} returns the
pointed value, {MY_PI} is evaluated to 3.1416. A similar example
is given in any spreadsheet where PI stays PI and =PI() is
evaluated to 3.141592653589793.
{def GOOD_DAY
 {lambda {:o :a} :oh h:appy day!}}
­> GOOD_DAY
{GOOD_DAY oOOOo aaAAaa}
­> oOOOoh haaAAaappy day!

Note that arguments and their occurences in the function's
body have been prefixed with a colon ":". It's easy to understand
that doing that prevents the word day to be unintentionally
changed into daaAAaay. Escaping arguments - for instance
prefixing them with a colon ":" - is highly recommended if not
always mandatory.
{def CONS {lambda {:x :y :z}
 {:z :x :y}}} ­> CONS
{def CAR {lambda {:z}
 {:z {lambda {:x :y} :x}}}} ­> CAR
{def CDR {lambda {:z}
 {:z {lambda {:x :y} :y}}}} ­> CDR
{CAR {CONS Hello World}} ­> Hello
{CDR {CONS Hello World}} ­> World

This example not only makes more readable the fourth
examples of the previous section evaluated to "Hello" and
"World", but it opens the way to powerful structures.

1.3. Implementation
Working on the client side the {lambda word} evaluator is a

Javascript IIFE (Immediately Invoked Function Expression),
LAMBDAWORD, returning a set of functions, the main one being
eval(), called at every keyboard entry:
var LAMBDAWORD = (function() {
var eval = function(str) {
 str = pre_processing(str);
 str = eval_lambdas(str);
 str = eval_defs(str);
 str = eval_forms(str);
 str = post_processing(str);
 return str;
};
return {eval:eval}
})();

We note that, in its main part, the eval() function follows
strictly the definition of the language, evaluating abstractions
before applications.

1.3.1. Simple Forms

Simple forms {first rest} are nested evaluable
expressions caught recursively from the leaves to the root and
replaced by words. The evaluation stops when the expression is
reduced to words in a tree structure sent to the browser's engine
for the final evaluation and display.
var eval_forms = function(str) {
 var leaf =
 /\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g;
 while (str !=
 (str = str.replace(leaf, eval_leaf))) ;
 return str
};
var eval_leaf = function(_,f,r) {
 return (DICT.hasOwnProperty(f))?
 DICT[f].apply(null,[r]) :
 '('+f+' '+r+')';
};
var DICT = {}; // initially empty

We note that {lambda word} is built on a regular expressions
based evaluator. Contrary to, for instance, Lisp[13]] or
Scheme[14]], the evaluator doesn't follow the standard AST
process. It literally scans the code string, skips the words and
progressively replaces in situ nested forms by words. Even if this
choice is considered by some people as evil, it does work, at least

ELS 2017 91

in a wiki context, allowing in most cases realtime editing. The
reason is that Regular Expressions [15] are powerful and fast - .
This is what Ward Cunningham [16] wrote about that: « I was
surprised that the technique worked so well in so many cases. I
knew that regex are highly optimized and the cpus themselves
optimize sequential access to memory which the regex must have
at its core. [..] Yes, this has at its heart the repeated application of
a text transformation. The fact that it is repeated application of the
same transformation makes it exceptional. [..] Repeated
application of Regular Expressions can perform Touring Complete
computations. This works because the needed "state" is in the
partially evaluated text itself. » All is said!

The special forms {lambda {arg*} body} and {def
name body} are evaluated before simple forms. They are
matched and evaluated in a similar way, according to specific
patterns, and return words as references of functions added to the
dictionary.

1.3.2. Lambdas

var eval_lambdas = function(str) {
 while (str !== (str =
 form_replace(str,'{lambda', eval_lambda)));
 return str
};
var eval_lambda = function(s){
 s = eval_lambdas(s); // nested lambdas
 var index = s.indexOf('}'),
 args = supertrim(s.substring(1, index))
 .split(' '),
 body = s.substring(index+2).trim(),
 name = 'lambda_' + g_lambda_num++,
 reg_args = [];
 for (var i=0; i < args.length; i++)
 reg_args[i] = RegExp(args[i], 'g');

 DICT[name] = function() {
 var vals =
 supertrim(arguments[0]).split(' ');
 return function(bod) {
 if (vals.length < args.length) {
 for (var i=0; i < vals.length; i++)
 bod = bod.replace(reg_args[i],vals[i]);
 var _args=args.slice(vals.length)
 .join(' ');
 bod = '{' + _args + '} ' + bod;
 bod = eval_lambda(bod); // ­> a lambda
 } else { // ­> a form
 for (var i=0; i < args.length; i++)
 bod = bod.replace(reg_args[i],vals[i]);
 }
 return bod;
 }(body);
 };
 return name;
};

lambdas are first class functions. We note that they can be
nested but that they don't create closures: inside functions have no
access to outside functions' arguments, functions can't have free
variables getting their value from the outside environment. But in
lambdatalk partial function application is trivial: not giving a
multi-argument function all of its arguments will simply return a
function that takes the remaining arguments. We have seen a first
useful application of these capabilities while building pairs,
[CONS, CAR, CDR]. In fact any user defined agregate data
can be built, for instance lists, Btrees, Rational and
Complex numbers, 2D/3D vectors, ..., even if for a

matter of efficiency it's better to implement them in the underlying
language as primitive functions.

1.3.3. Defs

var eval_defs = function(str, flag) {
 while (str !== (str =
 form_replace(str,'{def',eval_def,flag)));
 return str
};
var eval_def = function (s, flag) {
 flag = (flag === undefined)? true : false;
 s = eval_defs(s, false); // nested defs
 var index = s.search(/\s/),
 name = s.substring(0, index).trim(),
 body = s.substring(index).trim();
 if (body.substring(0,7) === 'lambda_') {
 DICT[name] = DICT[body];
 delete DICT[body];
 } else {
 body = eval_forms(body);
 DICT[name] = function() { return body };
 }
 return (flag)? name : '';
};

We note that defs can be nested but that inner definitions are
added to the global dictionary, there is no local scope. In order to
prevent names conflicts, inner names should be prefixed by the
outer function names, as objects' methods in OOP.

It's worth noting that this implementation buit on two
functions eval_lambdas(), eval_forms(), an optional
one, eval_defs, and an initially empty dictionary, DICT =
{}, is sufficient to make {lambda word} a programmable
programming language. At this point {lambda word} knows
nothing but text substitutions. Surprisingly, this is enough to
introduce the concept of number and the associated operators.

2. {LAMBDA CALC}
After Alonzo Church, we define the so-called Church

numbers like this [#]: a Church number N iterates N times the
application of a function f on a variable x. For instance:
{def ZERO {lambda {:f :x} :x}} ­> ZERO
{def ONE {lambda {:f :x} {:f :x}}} ­> ONE
{def TWO {lambda {:f :x}
 {:f {:f :x}}}} ­> TWO
{def THREE {lambda {:f :x}
 {:f {:f {:f :x}}}}} ­> THREE
{def FOUR {lambda {:f :x}
 {:f {:f {:f {:f :x}}}}}} ­> FOUR
{def FIVE {lambda {:f :x}
 {:f {:f {:f {:f {:f :x}}}}}}} ­> FIVE

Applied to a couple of any words, we get for instance:
{THREE . .} -> (. (. (. .))). It's easy to count three
couple of parenthesis and we are led to define a function CHURCH
which returns their number:
{def CHURCH {lambda {:n}
 {{:n {lambda {:x} {+ :x 1}}} 0}}} ­> CHURCH
{CHURCH ZERO} ­> 0
{CHURCH ONE} ­> 1
{CHURCH FIVE} ­> 5

Note that the CHURCH function calls a primitive function,
'+', which is not supposed to exist in {lambda calc}. Consider
that it's only for readability and that does not invalidate the
demonstration. The definition of Church number gives the basis of
a first set of operators, [SUCC, ADD, MUL, POWER]

92 ELS 2017

{def SUCC {lambda {:n :f :x}
 {:f {{:n :f} :x}}}} ­> SUCC
{def ADD {lambda {:n :m :f :x}
 {{:n :f} {{:m :f} :x}}}} ­> ADD
{def MUL {lambda {:n :m :f}
 {:m {:n :f}}}} ­> MUL
{def POWER {lambda {:n :m}
 {:m :n}}} ­> POWER

{CHURCH {SUCC ZERO}} ­> 1
{CHURCH {SUCC ONE}} ­> 2
{CHURCH {ADD TWO THREE}} ­> 5
{CHURCH {MUL TWO THREE}} ­> 6
{CHURCH {POWER TWO THREE}} ­> 8

5! = 1*2*3*4*5 =
 {CHURCH {MUL ONE {MUL TWO {MUL THREE
 {MUL FOUR FIVE}}}}} ­> 120

Computing 50! the way we did with 5! could be boring and at
least wouldn't have any interest. We are going to build a better
algorithm, usable for any number N, using the previously defined
[CONS, CAR, CDR] constants. This is how: we define a
function FAC.PAIR which gets a pair [a,b] and returns a pair
[a+1,a*b]. FAC computes n iterations of FAC.PAIR starting
on the pair [1,1], leading to the pair [n,n!] and returns the
second, n!
{def FAC.PAIR {lambda {:p}
 {CONS {SUCC {CAR :p}}
 {MUL {CAR :p} {CDR :p}}}}}
­> FAC.PAIR
{def FAC {lambda {:n}
 {CDR {{:n FAC.PAIR} {CONS ONE ONE}}}}}
­> FAC

3! = {CHURCH {FAC THREE}} ­> 6
4! = {CHURCH {FAC FOUR}} ­> 24
5! = {CHURCH {FAC FIVE}} ­> 120

Replacing the names [FAC, FIVE] by their associated
lambda expressions in the last line, {FAC FIVE} displays
exactly the unreadable fifth expression of the previous section!
And just as {lambda word} could compute 50!, {lambda calc}
could do it, at least theoretically! And following, for instance,
"Collected Lambda Calculus Functions" [17], we could go on and
define some other operators, [PRED, SUBTRACT, DIV,
TRUE, FALSE, NOT, AND, OR, LT, LEQ, ...] and
even the Y combinator allowing almost-recursive functions to
become recursive. But the underlying browser's capabilities will
help us to go further more effectively!

3. {LAMBDA TALK}
{lambda word} was built on a single special form, {lambda

{args} body} and a hidden dictionary containing annonymous
functions. Then with a second special form, {def name
expression}, constants could be added to the dictionary,
[MY_PI, GOOD_DAY, CONS, CAR, CDR, leading to
{lambda calc} and its set of numerical constants, [CHURCH,
ZERO, ONE? TWO, ..., SUCC, ADD, MUL, POWER,
FAC]. It's time to use the power of web browsers, coming with a
powerful language, Javascript, and a complete "Document Object
Model" on which can be built a true usable programmable
programming language, {lambda talk}.

A new set of special forms, [if, let, quote|',
macros] is added to the primitive set, [lambda, def]. Note
that there is no set! function, {lambda talk} is purely

functional. This is the current content of the lambdatalk's
dictionary:
DICTionary: (220) [debug, lib, eval, force,
apply, when, <, >, <=, >=, =, not, or, and, +,
­, *, /, %, abs, acos, asin, atan, ceil, cos,
exp, floor, pow, log, random, round, sin, sqrt,
tan, min, max, PI, E, date, serie, map, reduce,
equal?, empty?, chars, charAt, substring,
length, first, rest, last, nth, replace,
array.new, array, array?, array.disp,
array.length, array.nth, array.first,
array.rest, array.last, array.slice, array.push,
array.pop, array.set!, cons, cons?, car, cdr,
cons.disp, list.new, list, list.disp,
list.length, list.reverse, list.2array,
list.first, list.butfirst, list.last,
list.butlast, @, div, span, a, ul, ol, li, dl,
dt, dd, table, tr, td, h1, h2, h3, h4, h5, h6,
p, b, i, u, center, hr, blockquote, sup, sub,
del, code, img, pre, textarea, canvas, audio,
video, source, select, option, svg, line, rect,
circle, ellipse, polygon, polyline, path, text,
g, mpath, use, textPath, pattern, image,
clipPath, defs, animate, set, animateMotion,
animateTransform, br, input, script, style,
iframe, mailto, back, hide, long_mult, drag,
note, note_start, note_end, show, lightbox,
minibox, lisp, forum, editable, sheet, lc,
turtle, MY_PI, GOOD_DAY, CONS, CAR, CDR, ZERO,
ONE, TWO, THREE, FOUR, FIVE, CHURCH, SUCC, ADD,
MUL, POWER, FAC.PAIR, FAC, fac, tfac_r, tfac, Y,
almost_fac, yfac, bigfac, D, log', log'',
log''', q0, q1, q2, q3, q4, quotient, sigma,
paren, mul, variadic, PDF, COLUMN_COUNT, space,
ref, back_ref, castel.interpol, castel.sub,
castel.point, split_gd, castel.split,
castel.build, svg.frame, svg.dot, svg.poly,
spreadsheet, sheet.new, sheet.input,
sheet.output]

where can be seen after the constant turtle the user defined
constants specifically built for this page. We are going to give
examples illustrating some of the capabilities of {lambda talk}.

3.1. Recursion and the Y-Combinator
With {lambda word} and {lambda calc} it was possible to

compute 5! defined as a product 1*2*3*4*5. Adding to
{lambda talk} the special form {if bool then one else
two} and its lazy evaluation opens the way to recursive
algorithms. It's now possible to write the factorial function
following its mathematical definition:
{def fac
 {lambda {:n}
 {if {< :n 0} then {b n must be positive!}
 else {if {= :n 0} then 1
 else {* :n {fac {­ :n 1}}}}}}} ­> fac

{fac ­1} ­> n must be positive!
{fac 0} ­> 1
{fac 5} ­> 120
{fac 50} ­> 3.0414093201713376e+64

Let's write the tail-recursive version:
{def tfac
 {def tfac_r
 {lambda {:a :n}
 {if {< :n 0} then {b n must be positive!}
 else {if {= :n 0} then :a
 else {tfac_r {* :a :n} {­ :n 1}}}}}}

ELS 2017 93

 {lambda {:n} {tfac_r 1 :n}}} ­> tfac

{tfac 5} ­> 120
{tfac 50} ­> 3.0414093201713376e+64

The recursive part is called by a "helper function" introducing
the accumulator :a. Because {lambda talk} doesn't know lexical
scoping, this leads to some pollution of the dictionary. The Y
combinator mentionned above in {lambda calc}, making
recursive an almost-recursive function, will help us to discard this
helper function. The Y combinator and the almost-recursive
function can be defined and used like this:
{def Y {lambda {:f :a :n} {:f :f :a :n}}}
­> Y

{def almost_fac
 {lambda {:f :a :n}
 {if {< :n 0} then {b n must be positive!}
 else {if {= :n 0} then :a
 else {:f :f {* :a :n} {­ :n 1}}}}}}
­> almost_fac

{Y almost_fac 1 5} ­> 120

Because the Y combinator can be applied to any other
almost-recursive function (sharing the same signature, for instance
fibonacci) we have reduced the pollution but we can do better.
Instead of applying the Y combinator to the almost recursive
function we can define a function merging the both:
{def yfac {lambda {:n}
 {{lambda {:f :a :n}
 {:f :f :a :n}}
 {lambda {:f :a :n}
 {if {< :n 0}
 then {b n must be positive!}
 else {if {= :n 0} then :a
 else {:f :f {* :a :n} {­ :n 1}}}}} 1
:n}}}
­> yfac

{yfac 5} ­> 120
{yfac 50} ­> 3.0414093201713376e+64
{map yfac {serie 0 20}}
­> 1 2 6 24 120 720 5040 40320 362880 3628800
39916800 479001600 6227020800 87178291200
1307674368000 20922789888000 355687428096000
6402373705728000 121645100408832000
2432902008176640000

The last point to fix is that {fac 50}, {tfac 50} and
{yfac 50} return a rounded value 3.0414093201713376e+64
which is obvioulsly not the exact value. We must go a little further
and build some tools capable of processing big numbers.

3.2. Big Numbers
The way the javascript Math object is implemented puts the

limit of natural numbers to 254. Beyond this limit last digits are
rounded to zeroes, for instance the four last digits of 264 = {pow 2
64} = 18446744073709552000 should be 1616 and are rounded to
2000. And beyond 269 natural numbers are replaced by float
numbers with a maximum of 15 valid digits. Let's come back to
the definition of a natural number: A natural number a0a1...an
is the value of a polynomial Σi=0naixi for x=10. For instance
12345 = 1*104+2*103+3*102+4*101+5*100. {lambda
talk} knowing lists, we represent a natural number as a list on
which we define a set of functions:

1) k*p
{def BN.k {lambda {:k :p}
 {if {equal? :p nil}
 then nil
 else {cons {* :k {car :p}}
 {BN.pk :k {cdr :p}}}}}}
2) p1+p2
{def BN.+ {lambda {:p1 :p2}
 {if {and {equal? :p1 nil} {equal? :p2 nil}}
 then nil
 else {if {equal? :p1 nil} then :p2
 else {if {equal? :p2 nil} then :p1
 else {cons {+ {car :p1} {car :p2}}
 {BN.p+ {cdr :p1} {cdr :p2} }}}}
}}}
3) p1*p2
{def BN.* {lambda {:p1 :p2}
 {if {or {equal? :p1 nil} {equal? :p2 nil}}
 then nil
 else {if {not {cons? :p1}}
 then {BN.pk :p1 :p2}
 else {BN.p+ {BN.pk {car :p1} :p2}
 {cons 0 {BN.p* {cdr :p1} :p2
}}}}}}}
4) helper functions
{def BN.bignum2pol {lambda {:n} .. }}
{def BN.pol2bignum {lambda {:p} .. }}
{def BN.normalize {lambda {:p :n} .. }}

We can now define a function bigfac working on big
numbers:
{def bigfac {lambda {:n}
 {if {< :n 1} then {BN.bignum2pol 1}
 else {BN.* {BN.bignum2pol :n}
 {bigfac {­ :n 1}}}}}}
­> bigfac

5! = {BN.pol2bignum
 {BN.normalize {bigfac 5} 1}} ­> 120
50! = {BN.pol2bignum
 {BN.normalize {bigfac 50} 50}} ­>
304140932017133803983857288678599
00744706627746248466026044200000

To sum up, exclusively working on words made of chars, we
could exceed the limits of the Javascript Math Object and work
with "numbers" of any size with exact precision. At least
theoretically. When numbers become too big the evaluation is
considerably slowed down and it's better to forget pure user
defined {lambda talk} function and add to the dictionary some
javascript primitive function, long_mult:
DICT['long_mult'] = function () {
 var args =
 supertrim(arguments[0]).split(' ');
 var n1 = args[0], n2 = args[1];
 var a1 = n1.split("").reverse();
 var a2 = n2.split("").reverse();
 var a3 = [];
 for (var i1 = 0; i1 < a1.length; i1++) {
 for (var i2 = 0; i2 < a2.length; i2++) {
 var id = i1 + i2;
 var foo = (id >= a3.length)?0:a3[id];
 a3[id] = a1[i1] * a2[i2] + foo;
 if (a3[id] > 9) {
 var carry =
 (id+1 >= a3.length)?0:a3[id+1];
 a3[id+1] = Math.floor(a3[id]/10)+carry;
 a3[id] ­= Math.floor(a3[id]/10)*10;
 }
 }
 }

94 ELS 2017

 return a3.reverse().join("");
};

We just redefine the previous factorial ! as !! replacing the
primitive * by the primitive long_mult:
{def !! {lambda {:n}
 {if {< :n 1} then 1
 else {long_mult :n {!! {­ :n 1}}}}}}

{!! 100} ­>
93326215443944152681699238856266700490715968
26438162146859296389521759999322991560894146
39761565182862536979208272237582511852109168
64000000000000000000000000

In {lambda word} knowing nothing but three rules working
on text substitutions, it was theoretically possible to compute 5!
and even 50!. In {lambda calc} results became readable, without
calling any other user defined function than the CHURCH function.
In {lambda talk} using the Math Object, things became easy and
for big numbers a specific primitive long_mult opened an
effective window in the world of big numbers.

We will now show other applications of {lambda talk}, built
on the powerful functionalities of the browsers' engines.

3.3. Derivatives
Because functions can be partially called, derivatives of any

function f(x) can be defined as functions of x and NOT as values
at a given x, f'(x), f''(x), f'''(x):

• 1) we define the derivative function:
{def D {lambda {:f :h :x}
 {/ {­ {:f {+ :x :h}} {:f {­ :x :h}} }
 {* 2 :h}}}} ­> D

• 2) we create the 1st, 2nd and 3rd derivatives of the function log
for a given value of :h and as functions of :x:

{def log' {lambda {:x} {D log 0.01 :x}}}
­> log'
{def log'' {lambda {:x} {D log' 0.01 :x}}}
­> log''
{def log''' {lambda {:x} {D log'' 0.01 :x}}}
­> log'''

• 3) we can now call the 1st, 2nd and 3rd derivatives of log on a
given value of x:

{log' 1} ­> 1.0000333353334772 // 1
{log'' 1} ­> ­1.0002000533493427 // ­1
{log''' 1} ­> 2.0012007805464416 // 2

3.4. de Casteljau
{lambda talk} can call the set of SVG functions implemented

in web browsers. The de Casteljau recursive algorithm [18] allows
drawing Bezier curves of any degree. For instance writing:
{{svg.frame 250px 200px}
 {svg.dot {{def q0 {cons 50 10}}}}
 {svg.dot {{def q1 {cons 100 10}}}}
 {svg.dot {{def q2 {cons 200 160}}}}
 {svg.dot {{def q3 {cons 50 190}}}}
 {svg.dot {{def q4 {cons 200 190}}}}

 {polyline {@ points="{castel.build
 {list.new {q0} {q1} {q2} {q3} {q4} {q2}}
 ­0.1 0.9 {pow 2 ­5}}"
 stroke="#f00" fill="transparent"
 stroke­width="3"}}

 {polyline {@ points="{castel.build
 {list.new {q2} {q1} {q3}}
 0.3 0.98 {pow 2 ­5}}"
 stroke="#0f0" fill="transparent"
 stroke­width="5"}}
}

displays the following colored λ:

We have defined 2D points as pairs and polylines as lists and
built a set of user functions in another wiki page,
lib_decasteljau called via a (require
lib_decasteljau):
{def castel.interpol {lambda {:p0 :p1 :t}
 {cons
 {+ {* {car :p0} {­ 1 :t}} {* {car :p1} :t}}
 {+ {* {cdr :p0} {­ 1 :t}} {* {cdr :p1} :t}}
}}}
{def castel.sub {lambda {:l :t}
 {if {equal? {cdr :l} nil} then nil
 else {cons {castel.interpol
 {car :l} {car {cdr :l}} :t}
 {castel.sub {cdr :l} :t}}
}}}
{def castel.point {lambda {:l :t}
 {if {equal? {cdr :l} nil}
 then {car {car :l}} {cdr {car :l}}
 else {castel.point {castel.sub :l :t} :t}
}}}
{def castel.build {lambda {:l :a :b :d}
 {map {castel.point :l} {serie :a :b :d}}}}
{def svg.frame {lambda {:w :h}
 svg {@ width=":w" height=":h"
 style="border:1px solid #888;
 box­shadow:0 0 8px;"}}}
{def svg.dot {lambda {:p}
 {circle {@ cx="{car :p}" cy="{cdr :p}" r="5"
 stroke="black" stroke­width="3"
 fill="rgba(255,0,0,0.5)"}} }}
{def svg.poly {lambda {:l}
 {if {equal? :l nil}
 then else {car {car :l}} {cdr {car :l}}
 {svg.poly {cdr :l}}}}}

3.5. Spreadsheet
A spreadsheet is an interactive computer application for

organization, analysis and storage of data in tabular form. A
spreadsheet is a good illustration of functional languages, (Simon
Peyton-Jones [19]) and thereby rather easy to implement in
{lambda talk}. The basic idea is that each cell contains the input
- words and expressions - and displays the output. Writing:
{require_ lib_spreadsheet}
{center {spreadsheet 4 5}}

ELS 2017 95

displays a table of 5 rows and 4 columns of editable cells in
which almost all {lambda talk} functions can be used:

Writing (require lib_spreadsheet) calls a set of
{lambda talk} and javascript functions written in another wiki
page, lib_spreadsheet. Two functions are added by this
library for linking cells:

• {LC i j} returns the value of the cell LiCj as an absolute
reference,

• {IJ i j} returns the value of the cell L[i]C[j] as a
relative reference. For instance writing {IJ -1 -1} in
L2C2 will return the value of L1C1.
Let's test: click on the [local storage] button, copy the code in

the frame below, paste it in the local storage frame, click on the
editor -> storage button, confirm the action and analyze the
spreadsheet's cells.
["{b NAME}","{b QUANT}","{b UNIT PRICE}","{b
PRICE}","Item 1","10","2.1","{* {IJ 0 ­2} {IJ 0
­1}}","Item 2","20","3.2","{* {IJ 0 ­2} {IJ 0
­1}}","Item 3","30","4.3","{* {IJ 0 ­2} {IJ 0
­1}}","","","{b TOTAL PRICE}","{+ {IJ ­3 0} {IJ
­2 0} {IJ ­1 0}}","4"]

3.6. MathML
{lambda talk} forgets the MathML markup set which is not

implemented in Google Chrome [20]. A set of functions,
[quotient, paren, sigma], can be defined and used to
render Mathematical Symbols:
i{del h}{quotient 20 ∂ψ ∂t}(x,t) = {paren 3 (}
mc{sup 2}α{sub 0} ­ i{del h}c {sigma 20 j=1 3}
α{sub j}{quotient 20 ∂ ∂x{sub j}} {paren 3)}
ψ(x,t) ­>

ih ∂ψ
∂t

(x,t) = (mc2α0 ­ ihc 3Σ
j=1

 αj
∂
∂xj) ψ(x,t)

No, it's not a picture!

3.7. Scripts
{lambda talk} code can be interfaced with Javascript code

written in any wiki page via a {script ...} form, allowing
the exploration of intensive computing. For instance ray-tracing
[21], curved shapes modeling [22], fractal [23] and turtle graphics
drawing [24]:

3.8. Macros
{lambda talk} macros bring the power of regular expressions

directly in the language. As a first application, the expression
{def name {lambda {args} body}} could be replaced
by the syntaxic sugar {defun {name args} body}
{macro
 {defun {(\w*?) ([^{}]*?)}(?:[\s]*?)(.*)}
 to {def €1 {lambda {€2} €3}}}

{defun {mul :x :y} {* :x :y}} ­> mul
{mul 3 4} ­> 12

As a second example, {lambda talk} comes with some
variadic primitives, for instance [+,-,*,/,list]. At first sight,
user functions can't be defined variadic, for instance:
{* 1 2 3 4 5} ­> 120 // * is variadic
{mul 1 2 3 4 5} ­> 2 // 3, 4, 5 are ignored

In order to make mul variadic we glue values in a list and use
a user defined helper function:
{def variadic
 {lambda {:f :args}
 {if {equal? {cdr :args} nil}
 then {car :args}
 else {:f {car :args}
 {variadic :f {cdr :args}}}}}}
­> variadic

{variadic mul {list 1 2 3 4 5}} ­> 120

But it's ugly and doesn't follow a standard call. We can do
better using a macro:
1) defining:
{macro {mul* (.*?)}
 to {variadic mul {list €1}}}

2) using:
(mul* 1 2 3 4 5) ­> 120

Now mul* is a variadic function which can be used as any
other primitive or user function, except that it's not a first class
function, as in most Lisps. As a last example, {lambda talk}

 Editing cell L5C4:
{+ {IJ ‑3 0} {IJ ‑2 0} {IJ ‑1 0}}

NAME QUANT UNIT PRICE PRICE
Item 1 10 2.1 21
Item 2 20 3.2 64
Item 3 30 4.3 129

. . TOTAL
PRICE

 214

[local storage]

96 ELS 2017

comes with a predefined small set of macros allowing writing
without curly braces titles, paragraphs, list items, links:
_h1 TITLE ¬
 stands for {h1 TITLE}
_p Some paragraph ... ¬
 stands for {p Some paragraph ...}
[[PIXAR|http://www.pixar.com/]]
 stands for
 {a {@ href="http://www.pixar.com/"}PIXAR}
[[sandbox]]
 stands for
 {a {@ href="?view=sandbox"}sandbox}

These simplified alternatives, avoiding curly braces as much
as possible, are fully used in the current document.

CONCLUSION
To sum up, {lambda talk} takes benefit from the extraordinary

power of modern web browsers, simply adding a coherent and
unique notation without re-inventing the wheel, just using the
existing foundations of HTML/CSS, the DOM and Javascript. It's
probably why the implementation of {lambda talk} is so easy and
short, as we have seen before. Three rules and an empty dictionary
built the foundations of a programmable programming language,
{lambda word}, at least in theory. Adding a few ones and
populating the dictionary with primitives built on the browsers
functionalities led to an effective one, {lambda talk}.

The {lambda way} project is « a dwarf on the shoulders of
giants »[25], a thin overlay built upon any modern browser,
proposing a small interactive development environment and a
coherent language without any external dependencies and thereby
easy to download and install [26] on a web account provider
running PHP. From any web browser on any system, complex web
pages can be created, enriched, structured and tested in real time
and directly published on the web. It's exactly how the current
document was created: entirely created and tested in the {lambda
way} environment [27] it was directly printed as a PDF document
[28], 8 pages in two columns following the ACM format
specifications.

Villeneuve de la Raho, 2017/03/19

REFERENCES

[1] Wiki: https://en.wikipedia.org/wiki/Wiki
[2] Wiki_markup:
https://en.wikipedia.org/wiki/Wiki_markup
[3] LaTeX: http://fr.wikipedia.org/wiki/LaTeX
[4] Curl: https://en.wikibooks.org/wiki/Curl
[5] lml: http://lml.b9.com/
[6] The­Skribe­evaluator: http://www­
sop.inria.fr/members/Manuel.Serrano/publi/jfp05/article.html#The­

Skribe­evaluator
[7] scribble: http://docs.racket­
lang.org/scribble/
[8] SXML: https://en.wikipedia.org/wiki/SXML
[9] LAML:
http://people.cs.aau.dk/~normark/laml/papers/web­
programming­laml.pdf
[10] Pollen: http://docs.racket­lang.org/pollen/
[11] A Tutorial Introduction to the Lambda
Calculus (Raul Rojas): http://www.inf.fu­
berlin.de/lehre/WS03/alpi/lambda.pdf
[12] Turing
http://epsilonwiki.free.fr/lambdaway/?
view=turing
[13] Lisp:
http://www.cs.utexas.edu/~cannata/cs345/Class%20Notes/06%20Lisp.pdf

[14] Scheme: https://mitpress.mit.edu/sicp/full­
text/book/book.html
[15] Regular Expressions:
http://blog.stevenlevithan.com/archives/reverse­
recursive­pattern
[16] Ward_Cunningham:
https://en.wikipedia.org/wiki/Ward_Cunningham
[17] Collected Lambda Calculus Functions:
http://jwodder.freeshell.org/lambda.html
[18] De_Casteljau's_algorithm:
https://en.wikipedia.org/wiki/De_Casteljau's_algorithm

[19] Simon_Peyton_Jones:
https://en.wikipedia.org/wiki/Simon_Peyton_Jones
[20] google­subtracts­mathml­from­chrome:
https://www.cnet.com/news/google­subtracts­
mathml­from­chrome­and­anger­multiplies/
[21] raytracing:
http://epsilonwiki.free.fr/lambdaway/?
view=raytracing
[22] pForms:
http://epsilonwiki.free.fr/lambdaway/?
view=pforms
[23] fractal:
http://epsilonwiki.free.fr/lambdaway/?
view=mandel
[24] turtle:
http://epsilonwiki.free.fr/lambdaway/?
view=lambdatree
[25] dwarf:
http://www.phrases.org.uk/meanings/268025.html
[26] download:
http://epsilonwiki.free.fr/lambdaway/?
view=download
[27] wiki page:
http://epsilonwiki.free.fr/lambdaway/?
view=brussels
[28] PDF document:
http://epsilonwiki.free.fr/lambdaway/data/lambdaway_20170127.pdf
 (2.8Mb)

{λ way} v.20160608

ELS 2017 97

Writing a best-effort portable code walker in Common Lisp

Michael Raskin∗

LaBRI, University of Bordeaux
raskin@mccme.ru

ABSTRACT

One of the powerful features of the Lisp language family is
possibility to extend the language using macros. Some of
possible extensions would benefit from a code walker, i.e. a
library for processing code that keeps track of the status
of different part of code, for their implementation. But in
practice code walking is generally avoided.

In this paper, we study facilities useful to code walkers
provided by “Common Lisp: the Language” (2nd edition)
and the Common Lisp standard. We will show that the
features described in the standard are not sufficient to write
a fully portable code walker.

One of the problems is related to a powerful but rarely
discussed feature. The macrolet special form allows a macro
function to pass information easily to other macro invocations
inside the lexical scope of the expansion.

Another problem for code analysis is related to the usage of
non-standard special forms in expansions of standard macros.
We review the handling of defun by popular free software
Common Lisp implementations.

We also survey the abilities and limitations of the avail-
able code walking and recursive macro expansion libraries.
Some examples of apparently-conforming code that exhibit
avoidable limitations of the portable code walking tools are
provided.

We present a new attempt to implement a portable best-
effort code walker for Common Lisp called Agnostic Lizard.

CCS CONCEPTS

•Software and its engineering→Macro languages; Soft-
ware testing and debugging;

KEYWORDS

code walker, macro expansion, code transformation

∗The author acknowledges support from the Danish National Research
Foundation and The National Science Foundation of China (under
the grant 61361136003) for the Sino-Danish Center for the Theory
of Interactive Computation. This work was supported by the French
National Research Agency (ANR project GraphEn / ANR-15-CE40-
0009).

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS2017, Vrije Universiteit Brussel, Belgium

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-
x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Reference format:

Michael Raskin. 2017. Writing a best-effort portable code walker

in Common Lisp. In Proceedings of 10th European Lisp Simpo-
sium, Vrije Universiteit Brussel, Belgium, April 2017 (ELS2017),

8 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Much of the power of Common Lisp comes from its extensibil-
ity. Abstractions that cannot be expressed by functions can
still be expressed by macros; actually, many of the features
described in the standard must be implemented as macros.

Whilst macros are powerful on their own, some ways of
extending Lisp would benefit from using higher-level code
transformation abstractions. For many such abstractions the
most natural way to implement them includes code walk-
ing, i.e. enumeration of all the subforms of a piece of code,
identification of function calls, variable bindings etc. among
these subforms, and application of some code transforma-
tions. Unfortunately, code walking is complicated and the
libraries to perform it are non-portable. Even portable im-
plementations of recursive macro expansion, also known as
macroexpand-all, are missing.

Guy Steele writes (in the second edition of the book “Com-
mon Lisp: the Language” [3]) that Common Lisp implemen-
tations are expected to provide all the functionality needed
for code walking code analysis tools. The version of the
language described in the book includes support for changing
and inspecting the lexical environment objects; the book
explicitly recommends to use macroexpand on the macros in
the language core.

Lexical environment objects are defined by the Common
Lisp standard [2] are more opaque. Many Common Lisp
implementations do include some functions for environment
inspection and manipulation, and even some code walking
function. Unfortunately, both the naming and the feature
set vary between implementations.

We will show that (unlike CL:tL2) the Common Lisp stan-
dard does not allow to implement a portable code walker cor-
rectly. We suggest an approach that approximates the desired
functionality fairly well and remains implementation-agnostic
even when doing the implementation-specific workarounds.
We present an implementation of this approach, a library
called Agnostic Lizard.

2 RELATED WORK

2.1 Portable tools

The iterate library [4] provides an alternative iteration
construct also called iterate. It is more flexible than the

98 ELS 2017

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

standard loop macro, and it uses code walking for implemen-
tation. It doesn’t work exactly as expected for some code,
though. The code snippet

(iterate:iterate

(for x :from 1 :to 3)

(flet

((f (y) (collect y)))

(f x)))

works the same as

(iterate:iterate

(for x :from 1 :to 3)

(collect x))

But the following version with a local macro definition will
not work

(iterate:iterate

(for x :from 1 :to 3)

(macrolet

((f (y) ‘(collect ,y)))

(f x)))

The macroexpand-dammit library [7] is an attempt to pro-
vide implementation of the full recursive macro expansion
functionality (macroexpand-all) including an optional lexi-
cal environment parameter, but it has some bugs. It is not
clear if these bugs can be fixed without major changes. For
example, both the original version and the freshest known
fork [8] return 1 instead of 2 in the following case:

(defmacro f () 1)

(defmacro macroexpand-dammit-here

(form &environment env)

‘(quote

,(macroexpand-dammit:macroexpand-dammit

form env)))

(macrolet ((f () 2))

(macroexpand-dammit-here

(macrolet () (f))))

Additionally, the macroexpand-dammit library includes the
macroexpand-dammit-as-macro macro that the environment
handling system of the Common Lisp implementation. Both
the function and the macro versions of the recursive macro
expander remove macrolet and symbol-macrolet forms from
the code (replacing them with progn if necessary).

As SICL [14] aims to be a modular and portable con-
forming implementation of Common Lisp in Common Lisp,
and the standard requires compile to do an equivalent of
macroexpand-all, there probably will be a usable code walker
in SICL at some point; to the best of our knowledge, there is
currently none.

2.2 Implementation-specific tools

Unfortunately, implementation-specific tools often check the
name of the Common Lisp implementation to choose the code
path (for example, using #+ reader conditionals to check for

the implementation name). Even if two Common Lisp imple-
mentations are closely related and have the same names for
the environment processing functions, support for these two
implementations has to be added separately. This limitation
makes some of the implementation-dependent tools not work
on some newer implementations (such as Clasp [15]) even
when the tool contains all the code needed for supporting
the implementation.

On the other hand, if different versions of the same Com-
mon Lisp implementation behave in a different way, such
checks can lead to breakage on some of the relatively recent
versions of a supported Common Lisp implementation.

Richards Waters has described [5, 6] a clean, almost portable
implementation of macroexpand-all that needs only a single
environment-related function to be implemented separately
for each of the Common Lisp implementations.

CLWEB [9] by Alex Plotnick follows a similar approach for
its custom code walker, and the same approach is described
as a “proper code walker” in an essay [10] by Christophe
Rhodes.

hu.dwim.walker [11] is a comprehensive code walking li-
brary that uses a lot of implementation-specific functions for
inspecting lexical environments etc. Unfortunately, the cur-
rent versions of some previously supported Common Lisp im-
plementations are not supported because of relatively recent
changes in environment handling. Also macroexpand-dammit

is implemented in such a way that it removes macrolet and
symbol-macrolet from the code completely after expanding
the local macros and the local symbol macros.

The trivial-macroexpand-all library [13] provides the
macroexpand-all functionality by wrapping the best func-
tion provided by each Common Lisp implementation. Un-
fortunately, some implementations don’t support the lexical
environment argument (for example, CLISP [16]). The same
approach is used by SLIME (Common Lisp editing and debug-
ging support for Emacs) [12]. Apparently, no more generic
code walking functionality is provided in a consistent way by
multiple implementations.

3 PROBLEMS

In this section we present a brief overview of the problems
that the portable code walkers face.

3.1 Interpretations and violations of the
standard

The Common Lisp standard allows Common Lisp imple-
mentations to implement some standard-defined macros as
additional special operators. But all special operators added
instead of macros must also have a macro definition avail-
able. This requirement seems to imply that the standard
expects the code walkers to succeed if they implement special
handling only for the special operators listed in the standard.

ELS 2017 99

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

In practice many Common Lisp implementations violate
this expectation and implement standard macros using non-
standard implementation-specific special operators. For ex-
ample, the iterate library contains workarounds for such
macros as handler-bind and cond.

Fortunately, for most macros the current versions of the
major implementations provide usable expansions.

3.1.1 Named lambda expressions. A particular macro that
is almost always expanded to code with non-standard special
forms is defun. We have checked six free software Com-
mon Lisp implementations (SBCL, ECL, CCL, ABCL, GCL,
CLISP); we have found that only GCL expands the defun

macro into portable code. SBCL and ABCL pass a form
starting with named-lambda to function, ECL does the same
but calls the special symbol lambda-block, CLISP passes
two arguments (the name and the definition) to function

and CCL does the same but replaces function with special
form nfunction. For example, the expansion produced by
SBCL is as follows.

(progn

(eval-when (:compile-toplevel)

(sb-c:%compiler-defun ’f nil t))

(sb-impl::%defun ’f

(sb-int:named-lambda f

(x y)

(block f (* x (1+ y))))

(sb-c:source-location)))

3.1.2 Theoretical worst-case defun implementation. It seems
that an implementation of the defun macro that compiles the
code at expansion time and puts a literal compiled function
object into the expansion does not violate neither the Com-
mon Lisp standard nor the description in the “Common Lisp:
the Language”. While such an implementation could be com-
pliant, it would make code-walking of entire file meaningless
without handling the defun macro in a special way.

3.2 Environment handling

The Common Lisp standard provides no functions for in-
specting or modifying environments. On the other hand,
macro functions can receive environment parameters and
request macro expansion of arbitrary code using the envi-
ronment they receive. Unfortunately, sometimes there is no
way to construct an environment that would make the macro
expansion would work exactly as desired.

Although *macroexpand-hook* is described as an expan-
sion interface hook to macroexpand-1, the retrieval of the
macro function from the environment is done by the standard
rules and cannot be overridden.

4 PASSING INFORMATION VIA
MACROLET AND MACROEXPAND-1, AND
TWO KINDS OF THE LEXICAL
SCOPE FOR MACROS

In this section we will discuss the available options for passing
information between the macro expansion functions, the

scopes and extents relevant to the different ways of passing
information and implications for portable code walkers. The
aim of this section is to provide some context and explanation
for the technique used in the next section. This technique will
be used to construct an example of impossibility of a correct
portable recursive macro expansion function that accepts a
lexical environment parameter.

The environment handling issue is related to a useful
feature of Common Lisp macros. Let’s consider a macro
function that needs to pass some information to another
macro function or another invocation of the same macro
function.

Ordinary functions can pass information via the arguments
and the return values, or via global variables. A macro
function has an extra option. A macro function can wrap
its expansion in a macrolet form or a symbol-macrolet

form that defines a macro (symbol macro) not intended
to be used directly. This definition will be accessible to
all the macro function invocations corresponding to macro
invocations inside the lexical scope of the definition. Such a
macro function can use the macroexpand-1 function to access
the definition.

It is a bit awkward to describe the scope of such a definition
because there are two kinds of lexical scope relevant for
macros. There is the normal lexical scope of the macro
function when it is defined and there is the lexical scope of
the expansion output in terms of expanded code.

Such approach allows, for example, to define a macro that
can be nested but limits the depth of its own nesting without
code walking:

(defmacro depth-limited-macro

(n-max &body body &environment env)

(let*

((depth-value

(macroexpand-1

(quote (depth-counter-virtual-macro))

env))

(depth (if (numberp depth-value)

depth-value 0)))

(if

(> depth n-max)

(progn

(format *error-output*

"Maximum macro depth reached.~%")

nil)

(progn

‘(macrolet

((depth-counter-virtual-macro ()

,(1+ depth)))

,@body)))))

The following code will expand fine:

(depth-limited-macro 0

(depth-limited-macro 1

:test))

but after a small change it will print a warning and expand
to nil:

100 ELS 2017

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

(depth-limited-macro 0

(depth-limited-macro 0

:test))

This example is probably not very useful on its own except
as an illustration and as a test case for code walkers.

5 IMPOSSIBILITY OF A GENERAL
SOLUTION

In this chapter we present an example where a portable recur-
sive macro expansion cannot guarantee correct expansion and
explain why this code is problematic for macro expansion.

Consider the following code

(macrolet

((with-gensym ((name) &body body)

‘(macrolet ((,name () ’’,(gensym))) ,@body)))

(with-gensym (f1)

(with-gensym (f2)

(defmacro set-x1 (value &body body)

‘(macrolet ((,(f1) () ,value))

,@body))

(defmacro set-x2 (value &body body)

‘(macrolet ((,(f2) () ,value))

,@body))

(defmacro read-x1-x2 (&environment env)

‘(list ’,(macroexpand-1 ‘(,(f1)) env)

’,(macroexpand-1 ‘(,(f2)) env))))))

(defmacro expand-via-function

(form &environment e)

‘’,(macroexpand-all (quote ,form) ,e))

(set-x1 1

(set-x2 2

(expand-via-function

(set-x2 3

(read-x1-x2)))))

If we replace the expand-via-function invocation with
an identity function call, this code will return (1 3). If
macroexpand-all worked correctly, the unmodified code snip-
pet would return (list 1 3), because the macros named
by the symbols returned by (f1) and (f2) would expand
to 1 as defined by (set-x1 1 ...) and 3 as defined by the
innermost (set-x2 3 ...). Evaluating this expansion will
provide (1 3), as expected. Unfortunately, a portable im-
plementation of a macroxepand-all function cannot expand
such code correctly.

Note that the symbol naming the local macros defined by
set-x1 is not accessible to the macroexpand-all function.
The do-all-symbols function iterates only on the symbols
in the registered packages, and gensym produces symbols not
accessible in any package; and the scope where the symbol
was available does not contain the macroexpand-all function
or even its call. It is also impossible to observe the internals of
execution of the macro expansion function for the read-x1-x2
macro.

But the macroexpand-all function needs to call the macro
expansion function for (read-x1-x2) and pass it some en-
vironment. The Common Lisp standard does not provide
any way of obtaining the environment except getting the
current environment at the call position. We need the lex-
ical environment to depend on the run-time input of the
macroexpand-all function, so we need to use eval. The
eval function evaluates in the null lexical environment, so
the new environment will contain only the entries that the
macroexpand-all function can name explicitly while con-
structing the form to evaluate.

Therefore we can either pass the initial environment (which
contains the definition set by set-x1 but also contains an
obsolete definition set by set-x2), or construct a new envi-
ronment, which can take into account the innermost set-x2

invocation but cannot include any macro definition for the
macro name defined by set-x1. Both options will cause
(read-x1-x2) to expand to a wrong result.

6 PARTIAL SOLUTIONS

In this section we describe partial solutions that allow to
provide macroexpand-all and code walking functionality for
the simple cases and many of the most complicated ones.

6.1 Hardwiring specific macros

Given that defun is expanded into something non-walkable
in most Common Lisp implementations, the walker can treat
this macro as a special form and implement special logic
to handle it. The same approach can be applied to all the
macros as soon as an unwalkable expansion is observed in
some Common Lisp implementation.

Note that while hardwiring macros can make some appli-
cations of a code walker less convenient, it doesn’t sacrifice
portability. The resulting code will still be legal even on the
implementations where the workaround was not needed.

This workaround doesn’t fully solve the problem of im-
plementations expanding standard macros to non-compliant
code, because a portable program could ask for an expansion
of a standard macro and use it in a macro function for some
user-defined macro. The following code fragment illustrates
the problem:

(defmacro my-defun (&rest args)

(macroexpand ‘(defun &rest args)))

(macroexpand-all ‘(my-defun f (x) x))

There is also a risk that an implementation would expand
a standard macro to some code including a non-standard
invocation of another standard macro; if only the second
macro is hardcoded, the code walker will fail.

6.2 Recognizing named lambda by name

The most popular approach to the expansion of defun in-
cludes passing a non-standard argument to function. As
a list starting with anything but lambda and setf is a non-
standard argument, trying to interpret the symbol name

ELS 2017 101

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

won’t break compatibility with an implementation that im-
plements function without extensions. Apparently the forms
with the first symbol being named-lambda or lambda-block

are handled by the function special form in the same way
in all the Common Lisp implementations using them.

This workaround relies on extrapolating behaviour of non-
standardized forms based on unwritten traditions. The code
walker has no way to know whether

(function (named-lambda f (x) y))

is a function called f returning y or a function called y

returning f, but there are reasons to believe that the latter
interpretation doesn’t occur in practice. Here we have an
inherent conflict between detecting the walker’s failure and
portability.

6.3 Macro-only expansion

In most cases the lexical environment for code walking is the
lexical environment in the place of the call to the code walker.
This situation allows the code walker to be implemented
as a macro that does a single step of the expansion and
leaves the recursive calls to itself in the expansion. The
lexical environment will be handled by the Common Lisp
implementation.

A minor drawback of this approach is a necessity for addi-
tional processing when the result of code walking should be
put into a run-time variable. In other words, this approach
requires additional processing to produce a quoted result.

A more significant limitation is related to the use of code
walking with callbacks. Macro-only code walking is done in
a top down manner, so the callbacks don’t have access to the
result of processing the subforms.

If the implementation provides a macroexpand-all func-
tion with an environment parameter, combining a code trans-
formation implemented by a macro-based code walker and
the macroexpand-all function yields a code walker that can
be called as a function.

This approach fully solves the environment handling prob-
lem by asking the Common Lisp implementation to handle
the environment, but shares the problems related to non-
standard code in the expansions of standard macros.

In the following subsections we describe what can be done
in order to construct a portable code walking function.

6.4 Start with the top level

Whilst it is impossible to augment a lexical environment in
a portable way, it is easy to construct a lexical environment
with given entries. So when a form is walked in the null
lexical environment, the code walker can guarantee correct
environment arguments for all macro expansions.

The limitations related to the expansions of the standard
macros still apply in this case, but the environment handling
can be made fully correct.

6.5 Guessing which environment to pass

Despite the fact that it is sometimes impossible to construct
a correct environment for the call to macroexpand-1, there

are cases where it is clear which environment to use. In other
cases we can try to make a good guess.

If we have started from the null lexical environment, we can
always create the environment from scratch. If we haven’t yet
collected any lexical environment entries that add or shadow
any macro (or symbol macro) definitions, we can use the
lexical environment initially provided by the caller of the
code walker.

In the remaining case any guess can be wrong. We can try
to improve our track record by using the initial environment
if and only if we expand a macro defined locally in the initial
environment. Otherwise we construct a lexical environment
using the entries collected while processing the containing
forms.

There is no way to check whether a guess is correct, and
in some cases like the example presented in the section 5
both options are wrong. Moreover, there is no way for a code
walker to check whether a macro expansion function defined
outside of the form being walked uses macroexpand.

7 POSSIBLE APPLICATIONS OF
CURRENTLY
IMPLEMENTATION-SPECIFIC
FUNCTIONALITY

7.1 Environment-augmenting functions

Having a macro with-augmented-environment that creates
a lexical-scope dynamic-extent variable with an environment
with specified additions with respect to an initial one would
be enough for implementing a code walker following the
standard approach currently taken by the implementation-
specific walkers.

7.2 Using a recursive macroexpander to
build a code walker

If a code walker has access to the macroexpand-all function
which accepts an environment argument, there are two natu-
ral strategies. The first one is to call macroexpand-all be-
fore code walking, and code walk the expanded code without
needing to expand any macros. The second one is to build
with-augmented-environment using macroexpand-all. It
can be done using code similar to the following example.

(defmacro with-current-environment

(f &environment env)

(funcall f env))

(macroexpand-all

‘(let ((new-x nil))

(macrolet ((new-f (x) ‘(1+ ,x)))

(with-current-environment ,(lambda (e)))))

env)

7.3 Using environment inspection for
constructing augmented environments

Just having a list of all locally defined and shadowed names
is enough to construct an augmented environment in a way

102 ELS 2017

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

that indistinguishable using only the standard facilities. The
idea of the construction is to use a macro that obtains its
environment, passes it to the function we want to call, quotes
the result and returns the quoted result as the result of
the macro expansion. An invocation of such a macro can
be wrapped in to set up the correct environment, and the
wrapped code can be evaluated using eval. We do the
wrapping related to the desired changes first so that these
forms are the innermost forms altering the environment. The
evaluated code would be similar to the following example.

(defmacro with-current-environment

(f &environment env)

(funcall f env))

(eval

‘(let ((y-from-environment nil))

(let ((new-x nil))

(macrolet ((new-f (x) ‘(1+ ,x)))

(with-current-environment

,(lambda (e) ...)))))

For each symbol we can query whether it defines a lo-
cal macro (using macro-function) or a local symbol-macro
(using macroexpand as the macro expansion of a symbol
macro does not depend on anything). Having a name and a
macro expansion function is enough to construct a wrapping
macrolet form; having a name and an expansion is enough
to construct a wrapping symbol-macrolet form. If it doesn’t
define a local macro or a local symbol macro we can use let

or flet to ensure that global definitions are shadowed. Tags
and block names cannot be inspected by macros. The list of
names in the lexical environment will also be preserved.

Of course, it would be even better to have access to listing
all the variable-like names, all the function-like (operator)
names, all the tag names and all the block names. Distin-
guishing variables and symbol macros, and functions and
macros can be done in the same way as before.

8 THE AGNOSTIC LIZARD LIBRARY

We present a new library for code walking, Agnostic Lizard.
It implements all of the described workarounds.

For code walking and macro expansion it exports two
functions and two macros.

The macroexpand-all function accepts two arguments, a
form and an optional lexical environment object. It tries to
perform recursive macroe xpansions and usually succeeds.
The macro-macroexpand-all macro accepts a form, and ex-
pands it in the current lexical environment. The expansion
is quoted, i.e. the runtime value of the generated code is the
expansion of the initial form.

The walk-form function accepts a form, a lexical envi-
ronment object (required argument, can be nil), and the
callbacks as the keywords arguments. The callbacks can be:
:on-every-form-pre — called before processing each form
in an executable position;
:on-macroexpanded-form — called for each form after pos-
sibly expanding its top operation, the hardwired macros are

passed unexpanded;
:on-special-form-pre — called before processing a special
form or a hardwired macro;
:on-function-form-pre — called before processing a func-
tion call;
:on-special-form — called after processing a special form
or a hardwired macro;
:on-function-form — called after processing a function call;
:on-every-atom — called after processing a form expanded
to an atom;
:on-every-form — called after expanding each form in an
executable position.

The macro-walk-form macro accepts the form as a re-
quired argument, and the callbacks as keyword arguments.
The callbacks have the same semantics as for walk-form. The
expansion is the result of walking the form in the current
lexical environment with the specified callbacks.

8.1 Implementation details

Agnostic Lizard mostly follows the design of the walkers us-
ing the implementation-specific environment inspection and
manipulation functions. In other words, it starts at the top
and recursively calls itself for the subforms, passing the up-
dated environment information. It keeps track of the lexical
environment changes in an object, and uses the initial envi-
ronment only as a fallback. Agnostic Lizard always identifies
macro invocations correctly, but it has to use heuristics for
choosing what environment to pass. The code walker also
tries to guess how to handle non-standard special forms in
the expansions.

Agnostic Lizard defines three classes to handle code walk-
ing. The metaenv class contains the data directly describing
the current walking context. It contains the list of defined
functions and macros, variables and symbol-macros, blocks,
and tags. It also keeps a reference to the Common Lisp
implementation specific lexical environment object which has
been initially passed by the caller.

This class stores just enough data to implement the basic
recursive macro expansion. The metaenv-macroexpand-all

generic function is used for dispatching the expansion logic.
For the forms that are not cons forms with a hardwired
operator the function calls metaenv-macroexpand first. The
metaenv-macroexpand generic function contains all the deci-
sions about the environment construction used at that step.
Then the metaenv-macroexpand-all generic function passes
the result of macro expansion or the original form to the
metaenv-macroexpand-all-special-form generic function
with the operator of the form as the first parameter. The
methods of this generic function contain all the handling of
the special operators and the hardwired macros These meth-
ods call metaenv-macroexpand-all for recursive processing
of the subforms. Actually, the methods do little else: they
clone create a new metaenv object with extra entries for the
child forms (if needed), call metaenv-macroexpand-all and
build the expanded form out of expansions of the subforms.

ELS 2017 103

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

The class implementing the callbacks for code walking is
walker-metaenv. It is a subclass of metaenv. Objects of
the walker-metaenv class additionally store the callbacks
to allow replacing the form in various stages of expansion.
The only non-trivial method defined for this class is for the
metaenv-macroexpand-all generic function. The method
does the same operations as the method for the metaenv

class, but optionally invokes the callback functions.
The class for macro-only walking is macro-walker-metaenv.

It extends walker-metaenv with the data needed for macro-
based walking: a boolean to alternate between creating a
macro wrapper for capturing the updated environment and
actually expanding the form using the captured environment;
a callback for the macro creation step; and a label for letting
the callbacks distinguish the parts of the code wrapped for
further walking.

The macro-based recursive macro expansion that returns
the code evaluated to the expanded form is done using the
callbacks provided by the walkers. The callbacks walk the
already walked part of the code and perform a transform
similar to quasiquotation; they also make sure that the code
that has not yet been expanded will be expanded in the
correct environment despite such rewrite of the containing
code.

8.2 Portability testing

We have tested Agnostic Lizard by checking that various
forms return the same value before and after the expansion.
We have written a small test suite to check the handling
of local macros, and we have used the iterate library test
suite to get special form coverage. Agnostic Lizard passed
these tests when loaded under SBCL, ECL, CCL, ABCL and
CLISP.

8.3 Reimplementing access to local
variables

As a demonstration of the code walking interface we provide
a partial portable reimplementation of the wrappers ensuring
access to local variables during debugging [17]. Currently
Agnostic Lizard does not provide an interface that would
allow a callback to check if the processed form has the same
environment as the parent one, so the wrapper saves the
references to the lexical environment entries for every form.
On the other hand, the macro code walker in the Agnostic
Lizard library allows to get the same code-walking based
functionality on a wider range of implementations.

The implementation of the wrapper presented in [17] uses
hu.dwim.walker [11], which is the only implementation of a
generic code walker we could find that was compatible with
at least two implementations. Unfortunately, it has limited
portability because of changes in some of the previously sup-
ported Common Lisp implementations, and it removes macro
definitions completely. Agnostic Lizard lacks environment
object handling features relying on implementation specific
functions, but has better portability and preserves macro
definitions.

9 CONCLUSION

We have shown that although a portable code walker for
Common Lisp is impossible, it is possible to create an incor-
rect code walker that is wrong less often than the currently
available ones.

9.1 Benefits for portable code walkers
from hypothetical consensus changes
in implementations

Portable code walkers suffer from two issues: non-standard
expansions of standard macros and opaqueness of the lexical
environment objects.

For most macros we hope that all the implementations
with a release in the last couple of years already expand
them to code using only standard invocations of macros
and special forms. The only currently exceptional macros
are defun, defmacro and defmethod that typically use non-
standard named-lambda forms as arguments to function (or
something very similar). There are benefits for storing the
name of the function, and adopting Alexandria solution of
using labels and saving the form definition would probably
have some implementation cost. It is possible that the current
practice goes against the intent of some parts of the Common
Lisp standard, but there are non-trivial costs to changing it.
It would be convenient to have at least a consensus symbol
name and package name for named-lambda and nfunction

without requiring neither to be present. It would also be nice
to have an agreement that the expansions of standard macros
should only use the special forms that have consensus names.

Opaqueness of lexical environments can be solved by hav-
ing a consensus name for either augmenting the lexical envi-
ronments or listing their entries. Listing the entries seems
preferable because of the additional applications of such func-
tionality, but using environment modification functions would
probably provide better performance.

The macroexpand-all function has a recognizable name
(although some Common Lisp implementations use different
names, and of course there is no consensus package name),
and its interface is clear and natural. It also allows imple-
menting environment augmentation. It would still be useful
to support listing the names in the lexical environment, but
having portable access to a macroexpand-all implementation
does allow implementing a portable generic code walker.

We believe that a good interface for a more general code
walker requires some period of experimentation and evolution
of alternative implementations. Therefore it is too early to
promote a consensus name and interface for a generic code
walker.

9.2 Further related issues that could
benefit from consensus naming

In general it would be nice to have all a consensus package
name for CLtL2 functionality not included in the ANSI
Common Lisp standard in order to have a portable way to
check which parts of this functionality are provided by an

104 ELS 2017

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

implementation. Many implementations de facto provide a
large part of the difference, but they use different package
names and sometimes also change function names.

Having a consensus name for a type for the lexical environ-
ment objects would make using generic functions more com-
fortable. This would allow writing portable generic functions
handling both implementation defined lexical environment
objects and library-defined enriched environments. This type
can coincide with some other predefined type.

9.3 Future directions

Some interesting uses of code walking require processing large
amounts of code. For such applications, performance of a
code walker can be important. We haven’t benchmarked
Agnostic Lizard. It seems likely that some optimisations may
be needed.

We have mentioned that most implementations expand
defun to code containing non-standard special operators or
non-standard uses of the function special form. In most
cases such code is easy to analyze by using a few predeter-
mined heuristics. It may be possible to further reduce the
impact of this problem by expanding a defun form with the
function name and argument names obtained by gensym, and
analyzing where these names get mentioned.

It would be interesting to see how much of the code avail-
able via QuickLisp breaks after expansion by Agnostic Lizard.
We haven’t tried doing it yet.

Different tasks solved by code walking require different
interfaces to be provided by the code walker. The callback
interface of Agnostic Lizard is currently pretty minimalistic
and should be expanded. Any advice and feedback are very
welcome.

10 ACKNOWLEDGEMENTS

We would like to thank Irène Durand and the anonymous
reviewers for their comments and advice.

REFERENCES
[1] Agnostic Lizard homepage. Retrieved on 30 January 2017

https://gitlab.common-lisp.net/mraskin/agnostic-lizard
[2] American National Standards Institute, 1994. ANSI Common

Lisp Specification, ANSI/X3.226-1994.
A hypertext version (converted by Kent Pitman for LispWorks)
retrieved on 24 January 2017 from
http://www.lispworks.com/documentation/HyperSpec/
Front/index.htm

[3] Guy L. Steele. 1990. Common Lisp the Language, 2nd Edition.
Also retrieved on 24 January 2017 from
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

[4] Jonathan Amsterdam. Don’t Loop, Iterate. Working Paper 324,
MIT AI Lab. Also retrieved on 24 January 2017 from
https://common-lisp.net/project/iterate/doc/

Don 0027t-Loop-Iterate.html
Project homepage: https://common-lisp.net/project/iterate/

[5] Richard C. Waters. 1993. Some Useful Lisp Algorithms: Part 2.
Tech. Rep. TR93-17, Mitsubishi Electric Research Laboratories.
Also retrieved on 24 January 2017 from
http://www.merl.com/publications/TR93-17

[6] Richard C. Waters. 1993. Macroexpand-All: an example of a
simple lisp code walker. Newsletter ACM SIGPLAN Lisp Pointers.
Volume VI Issue 1, Jan.-March 1993.

[7] John Fremlin. 2009. Macroexpand-dammit. Web Archive copy.
Retrieved on 24 January 2017.

https://web.archive.org/web/20160309032415/
http://john.freml.in/macroexpand-dammit

[8] The freshest macroexpand-dammit fork repository. Retrieved on
24 January 2017.
https://github.com/guicho271828/macroexpand-dammit

[9] Alex Plotnick. 2013. CLWEB homepage.
Retrieved on 24 January 2017.
http://www.cs.brandeis.edu/∼plotnick/clweb/

[10] Christophe Rhodes. 2014. Naive vs proper code-walking.
Retrieved on 24 January 2017.
http://christophe.rhodes.io/notes/blog/posts/2014/
naive vs proper code-walking/

[11] hu.dwim.walker repository. Retrieved on 24 January 2017.
http://dwim.hu/darcsweb/darcsweb.cgi?
r=LIVE%20hu.dwim.walker;a=summary

[12] The Superior Lisp Interaction Mode for Emacs (SLIME) project
repository. Retrieved on 24 January 2017.
https://github.com/slime/slime

[13] trivial-macroexpand-all repository. Retrieved on 24 January 2017.
https://github.com/cbaggers/trivial-macroexpand-all

[14] SICL homepage. Retrieved on 24 January 2017.
https://github.com/robert-strandh/SICL

[15] Christian E. Schafmeister. 2015. Clasp - A Common Lisp that
Interoperates with C++ and Uses the LLVM Backend. In pro-
ceedings of ELS2015. Retrieved on 24 January 2017.
http://european-lisp-symposium.org/
editions/2015/ELS2015.pdf
Project repository: https://github.com/drmeister/clasp

[16] GNU CLISP homepage. Retrieved on 24 January 2017.
http://www.clisp.org/

[17] Michael Raskin, Nikita Mamardashvili. 2016. Accessing local
variables during debugging. In proceedings of ELS2016. Retrieved
on 30 January 2017.
http://european-lisp-symposium.org/
editions/2016/ELS2016.pdf

ELS 2017 105

Removing redundant tests by replicating control paths ∗

Irène Durand
Robert Strandh

University of Bordeaux
351, Cours de la Libération

Talence, France
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr

ABSTRACT
We describe a technique for removing redundant tests in
intermediate code by replicating the control paths between
two identical tests, the second of which is dominated by the
first. The two replicas encode different outcomes of the test,
making it possible to remove the second of the two. Our
technique uses local graph rewriting, making its correctness
easy to prove. We also present a proof that the rewriting
always terminates. This technique can be used to eliminate
multiple tests that occur naturally such as the test for cons-
ness when both car and cdr are applied to the same object,
but we also show how this technique can be used to automat-
ically create specialized versions of general code, for example
in order to create fast specialized versions of sequence func-
tions such as find depending on the type of the sequence
and the values of the keyword arguments supplied.

CCS Concepts
•Theory of computation→Rewrite systems; •Software
and its engineering → Compilers;

Keywords
Intermediate code, compiler optimization, local graph rewrit-
ing

1. INTRODUCTION
In a language such as Common Lisp [1], it is hard to

avoid redundant tests, even if the programmer goes to great
lengths to avoid such redundancies. The reason is that
even the lowest-level operators in Common Lisp require type
checks to determine the exact way to accomplish the oper-
ation, so that two or more calls to similar operators may
introduce redundant tests that are impossible to eliminate
manually.

∗This work was supported by the French National Research
Agency (ANR project GraphEn / ANR-15-CE40-0009).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

10th ELS April 3–4, 2017, Brussels, Belgium
c© 2017 Copyright held by the owner/author(s).

As an example of such an introduction of redundant tests,
consider the basic list operators car and cdr. We can think
of these operators to be defined1 in a way similar to the code
below:

(defun car (x)

(cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...))))

(defun cdr (x)

(cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...))))

where cons-car and cons-cdr are operations that assume
that the argument is of type cons. These operations are
implementation defined and not available to the application
programmer.

Now consider some typical2 use of car and cdr such as in
the following code:

(let ((a (car x))

(b (some-function)

(c (cdr x)))

...)

After the inlining of the car and cdr operations, the code
looks like this:

(let ((a (cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...)))

(b (some-function)

(c (cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...)))

...)

We notice that the test for consp occurs twice, and that
the second occurrence is dominated by the first one, i.e.,

1For these particular operators, an implementation may use
some tricks to avoid some of these tests, but such tricks are
not generally usable for other operators. We still prefer to
use car and cdr as examples, because their definitions are
easy to understand.
2In this case, the programmer might use the standard macro
destructuring-bind, but for reasons of simplicity, that
macro will very likely expand to calls to car and cdr, rather
than to some implementation-specific code that avoids the
redundant tests.

106 ELS 2017

I

start

consp

cons−car null

setq setq error

cons

cons

cons

(not cons)

null

null

(not list)

t

call

setq

consp

null

setq setq error

cons

cons

null

null
(not list)

list

list

cons−cdr

D

Figure 1: Control flow generated by a typical com-
piler.

every control path leading to the second occurrence must
pass by the first occurrence as well.

As a consequence, the outcome of the second test for consp
is always the exact same as the outcome of the first one. Un-
fortunately, this fact can not be easily exploited. To see why,
we need to study the intermediate code generated by a typ-
ical compiler as a result of compiling the example program.
The result is shown in Figure 1.

As Figure 1, shows, the intermediate code takes the form
of a control-flow graph in which the nodes are instructions
and the arcs represent the control flow. When we use the
terms predecessor and successor, they refer to the relation-
ship between two instructions in the control-flow graph, as
defined by the control arcs.

In Figure 1, we have omitted references to data so as to
simplify the presentation. In this intermediate representa-
tion, we have also eliminated scoping constructs, so that
liveness of a variable is defined to be between its first as-
signment and its last use. Each control arc is annotated by
a type descriptor, indicating the type of the variable x at
that point in the execution of the program.

After the first let binding has been executed, the control
arc with the type cons and that with the type null both
arrive at the instruction that calls some-function which is
the start of the second let binding. As a consequence, after
the second let binding has been established, the type infor-
mation available for x is (or cons null), which is the same
as list.

In order to avoid the second test for consp, we need to
replicate the instructions corresponding to the establishment
of the second let binding. In this paper, we introduce a
technique for accomplishing this replication using local graph
rewriting. The advantage of this technique is that it is very
simple to implement, and that its semantic soundness is triv-
ial to prove. We also prove that the technique always ter-
minates, no matter how complicated the intermediate com-
putation between the two tests.

2. PREVIOUS WORK
Mueller and Whalley [4] describe a technique for avoid-

ing conditional branches by path replication. Their work
includes heuristics for determining whether such replication
is worthwhile. However, their technique for replicating the
paths is not based on graph rewriting, and they do not sup-
ply a proof that their technique is correct.

To our knowledge, no existing research uses our technique
based on local graph rewriting, and we are unaware of any
existing Common Lisp compilers that implement it.

3. OUR TECHNIQUE

3.1 General description
Our technique consists of applying local graph rewriting

to the graph of instructions in intermediate code. Local
graph rewriting has the advantage of being simple, both to
implement and when it comes to proving correctness.

For the purpose of this paper, we assume that some ini-
tial phase has determined that the following conditions are
respected:

1. there are two instructions, D and I, in the program
that are identical tests,

2. the variable being tested is the same in D and I,

3. D dominates I, and

4. the variable being tested is not assigned to in any path
from D to I.

In a real compiler, such a phase probably does not exist.
Some conditions are easier to verify if the compiler translates
the intermediate code to SSA form [2, 3], and some condi-
tions can be verified during the execution of our technique,
avoiding the need to include them in a separate phase. The
last condition may require an analysis for detecting variables
that are assigned to in nested functions. Such a phase is
present in most optimizing compilers in order to determine
where to allocate space for such variables.

In Figure 1, the two test instructions labeled D and I
respectively verify the conditions listed above, and we will
use these two instructions to illustrate our technique.

During the execution of our algorithm, the instruction I
will be replicated, so that it is part of some set S in which
every replica remains dominated by D. Initially, S contains
I as its only element.

In our technique, we keep track of the outcome of the test
in the control arcs of the control-flow graph. We can think
of this information as being represented as labels associated
with control arcs:

• An arc is unlabeled if we have no information con-
cerning the outcome of the test at that point in the
program.

• An arc is labeled true if the outcome of the test at that
point in the program is known to be true.

• An arc is labeled false if the outcome of the test at
that point in the program is known to be false.

Initially, only the outgoing arcs of D and I have a label.
Our technique involves the repeated application of the first

applicable rewrite rule in the following list to some arbitrary
element of S, say s, that does not itself have an immediate
predecessor in the control-flow graph that is also an element
of S:

ELS 2017 107

rule 5 applies

start

consp

cons−car

setq

true false

call

setq

consp

null

setq error

falsetrue

setq

null

setq error

cons−cdr

Figure 2: Initial instruction graph.

1. If s has no predecessors, then remove it from S.

2. If s has an incoming arc labeled true, then change the
head of that arc so that it refers to the successor of s
referred to by the outgoing arc of s labeled true.

3. If s has an incoming arc labeled false, then change the
head of that arc so that it refers to the successor of s
referred to by the outgoing arc of s labeled false.

4. If s has n > 1 predecessors, then replicate s n times;
once for each predecessor. Every replica is inserted
into S. Labels of outgoing control arcs are preserved
in the replicas.

5. Let p be the (unique) predecessor of s. Remove p as a
predecessor of s so that existing immediate predeces-
sors of p instead become immediate predecessors of s.
Insert a replica of p in each outgoing control arc of s,
preserving the label of each arc.

Rewrite rules are applied until the set S is empty, or un-
til each element of S has an immediate predecessor in the
control-flow graph that is also a member of S. An element of
S could have an immediate predecessor like that if the dom-
inated instruction I were part of a loop. We need to exclude
such elements, or else our technique might not terminate in
all cases.

3.2 A simple example
Let us see how our technique works on the example in

Figure 1. The initial situation is shown in Figure 2. The
instructions that are members of S are drawn with a slightly
thicker box.

As Figure 2 shows, the second consp is dominated by the
first, so it becomes the only member of the set S. The last
rewrite rule applies to the second consp so that the setq is
replicated as its successors. The result of this first rewrite
is shown in Figure 3.

As we can see in Figure 3, the last rewrite rule applies
again resulting in the replication of the call. The result
after the second rewrite is shown in Figure 4.

rule 5 applies

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

setq setq

true false

cons−cdr

consp
falsetrue

call

Figure 3: Result after one rewrite.

false

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

consp
true

call

setq

true

true

false

false

cons−cdr

rule 4 applies

Figure 4: Result after two rewrites.

108 ELS 2017

applies

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

true falsetrue false

cons−cdr

consp consp

rule 5

Figure 5: Result after replicating the test.

applies

setq setq

start

consp

cons−car

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetrue

true false

true false

cons−cdr

consp

consp

rule 5

Figure 6: Result after replicating setq.

As we can see in Figure 4, the second consp now has two
predecessors, and both incoming arcs are unlabeled. There-
fore, rewrite rule number 4 applies and the consp is repli-
cated. As a result, S now has two members. The result of
applying this rule is shown in Figure 5.

We now choose the leftmost replica of the second consp

to apply our rules to. It has a single predecessor with an
unlabeled incoming control arc, so the last rewrite rule ap-
plies. We replicate the setq in both branches of the test,
giving us the result shown in Figure 6.

In Figure 6, the last rewrite rule applies again, and we
replicate the cons-car, giving us the situation shown in in
Figure 7.

As Figure 7 shows, the consp instruction now has a single
predecessor, but the incoming arc has a known outcome of
the test, namely true. Therefore, rewrite rule number 2
applies. The left outgoing arc of the first consp is redirected
to go directly to the cons-car instruction. The result of
applying this rule is shown in Figure 8.

At this point, the consp that we have been processing

applies

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

true false

setq

cons−car cons−car

true false

cons−cdr

consp

consp

rule 2

Figure 7: Result after replicating cons-car.

applies

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

setq

cons−car cons−car

true false

false

cons−cdr

consp

consp

rule 1

Figure 8: Result after short-circuit consp.

ELS 2017 109

applies

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue

setq

cons−car

true

cons−cdr

consp

rule 5

Figure 9: Result after removing unreachable in-
structions.

cons−cdr

call

setq

setq

start

consp

false

null

setq error

setq

call

setq

setq

cons−car

Figure 10: Final result.

has no predecessor. Therefore we apply rule number 1 and
remove it from S. Removing all instructions that can not be
reached from the start instruction gives the situation shown
in Figure 9.

Analyzing Figure 9, we can see that if the result of the first
consp yields true, then no second test is performed. Instead,
the variable a is set to the result of the instruction cons-car,
the variable b is set to the result of the call, and the variable
c is set to the result of the instruction cons-cdr. Applying
the same rules to the remaining consp instruction in S and
then to the second null instruction (which is now dominated
by the first), yields the final result shown in Figure 10.

This example represents a control graph that is particu-
larly simple, in that there are no loops between the first and
the second consp instructions. Our technique must obvi-
ously work no matter the complexity of the control graph,
as long as the first test dominates the second.

3.3 Proof of correctness and termination

The correctness of our technique is easy to prove, sim-
ply because each rewrite rule preserves the semantics of the
program. The last rewrite rule preserves the semantics only
under certain circumstances which are easy to verify:

• The predecessor does not assign to a lexical variable
that is read by the test instruction. This condition is
respected because we have assumed that the variable
being tested is not assigned to in any path between
the first and the second occurrences of the test, as
condition number 4 in Section 3.1 requires.

• The predecessor must not have any other side effect
that may alter the outcome of the test. By restrict-
ing the test to lexical variables, this restriction is also
respected.

Termination is a bit harder to prove. One way is to find
some non-negative metric that can be shown to strictly de-
crease as a result of the application of each rewrite rule. We
have not found any such metric. However, this conundrum
can be avoided by a simple grouping of the rewrite rules.
This grouping is not required to be present in the imple-
mentation of our technique, only in the termination proof.

To see how the rewrite rules can be grouped, consider a
general case where the test instruction has some arbitrary
number of labeled or unlabeled incoming control arcs. Rules
number 2 and 3 are first applied a finite number of times.
What happens next depends on the number n of unlabeled
incoming control arcs:

• If n = 0 the first rewrite rule applies, in which case the
instruction is removed from the set S.

• If n = 1, the last rewrite rule is applied. The cru-
cial characteristic of this rewrite rule is that the total
number of unlabeled control arcs decreases by one.

• If n > 1, rewrite rule number 4 is applied. Notice that
the number of unlabeled control arcs is not modified
by the application of this rule.

For the purpose of this proof, we assume that the individ-
ual rewrite steps in a group happen immediately after each
other, so that for a particular instruction, the labeled incom-
ing control arcs are first eliminated, the same instruction is
then potentially replicated, and finally, the last rewrite rule
is applied to one of the replicas. However, the implementa-
tion does not have to work that way in order for termination
to be certain.

In other words, we can create groups of rewrite steps,
where a group can be formed according to one of the follow-
ing group types:

A. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 1.

B. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 5.

C. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 4, followed by a
single application of rewrite rule number 5.

110 ELS 2017

With this information, we can create a metric consisting
of a pair (U,N), where U is the total number of unlabeled
control arcs of the program and N is the number of ele-
ments of the set S. Two pairs can now be compared us-
ing a lexicographic order, so that for two pairs (U1, N1) and
(U2, N2), (U1, N1) is strictly smaller than (U2, N2), written
(U1, N1) < (U2, N2), if and only if either U1 < U2 or U1 = U2

and N1 < N2.

Theorem 1. The rewrite algorithm terminates.

Proof. As a result of a rewrite according to a group of
type A, U remains the same, but N decreases by 1. As a
result of a rewrite according to a group of type B or C, U
decreases by 1 (but N may increase). Since U and N are
both non-negative integers, we must reach a normal form
after a finite number of rewrites.

The following table illustrates how the grouping technique
applies to our example:

Initial U N Group Final U N
Figure 2 11 2 B Figure 3 10 2
Figure 3 10 2 B Figure 4 9 2
Figure 4 9 2 C Figure 6 8 3
Figure 6 8 3 B Figure 7 7 3
Figure 7 7 3 A Figure 9 7 2

Each row in the table represents a group of rewrites. For
each rewrite group, we give the figure representing the initial
state with the values of U and N for that figure, followed
by the figure representing the final state with the values of
U and N after the application of the rewrite steps in the
group.

4. BENEFITS OF OUR TECHNIQUE
The main benefit of our technique is its simplicity. This

simplicity is important both in terms of its implementation
and in terms of ensuring termination for all possible control
graphs.

As the example in Section 3.2 shows, redundant tests can
be avoided in cases where it is not possible to express this re-
dundancy by the use of any portable lower-level constructs.
Situations similar to the one in the example occur naturally
in many programs:

• If the same variable is used in more than one consec-
utive numeric operation, then there will be redundant
tests to determine the exact numeric subtype of the
contents of that variable. An important special case
is to determine whether a particular value is of type
fixnum.

• If a variable holding an array is used in more than
one consecutive operation to access some element, then
there will be redundant tests to determine various as-
pects of the array that influence the way the indices
and the elements are handled, such as the upgraded
element type and whether the array is simple or not.

A particularly interesting special case of these situations
occurs when the dominated test is part of a loop. It is par-
ticularly interesting, because our technique will then elimi-
nate a test that would otherwise potentially be executed a

large number of times. This feature can be taken advan-
tage of in a highly portable version of some of the Common
Lisp sequence functions. By duplicating a very general loop
in every branch of a multiway test for keyword arguments
such as test, test-not, and end, each copy of the loop will
automatically be simplified differently according to the par-
ticular branch it occurs in.

Our technique has some disadvantages as well. First of
all, the size of the code may increase, which can have a neg-
ative influence on cache performance, especially when dif-
ferent invocations of the code result in different results of
the test. In fact, if several variables with overlapping re-
gions of liveness are processed by our technique, the result
may be an exponential blowup of the size of the code in the
overlapping region. It is hard to quantify the increase in
code size, because it requires precise definitions of overlap-
ping regions of liveness, and we have not yet defined such
metrics. For that reason, it is outside the scope of this paper
to discuss heuristics that will determine the conditions for
applying our technique, but such conditions are required to
avoid such problematic effects.

The increase of the size of the code automatically means
longer compilation times as well. Techniques that work
on global information about the program can avoid some
of these disadvantages, at the cost of increased complexity
compared to our simple local rewrite technique.

5. CONCLUSIONS AND FUTURE WORK
We have defined a technique for eliminating redundant

tests in intermediate code. The technique relies on replica-
tion of code paths between two identical tests. So far, our
technique only defines a mechanism for achieving the result.
It does not yet define a policy stating when the technique
should be applied.

The question of policy is an important one, because with
a large number of redundant tests in the intermediate code,
there is a possibility for exponential blowup of the code size.
Future work involves defining a reasonable policy to avoid
such pathological cases.

The technique described in this paper will become avail-
able as one of the optimization techniques provided by the
Cleavir compiler framework that is currently part of the
SICL project.3 Only then will it be possible to determine
the exact characteristics of our technique in terms of appli-
cability, computational cost, performance gain of compiled
code, and size increase of typical programs.

6. ACKNOWLEDGMENTS
We would like to thank Philipp Marek for providing valu-

able feedback on early versions of this paper.

7. REFERENCES
[1] INCITS 226-1994[S2008] Information Technology,

Programming Language, Common Lisp. American
National Standards Institute, 1994.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. An efficient method of computing
static single assignment form. In Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89,
pages 25–35, New York, NY, USA, 1989. ACM.

3See https://github.com/robert-strandh/SICL

ELS 2017 111

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct.
1991.

[4] F. Mueller and D. B. Whalley. Avoiding conditional
branches by code replication. In Proceedings of the
ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI ’95, pages
56–66, New York, NY, USA, 1995. ACM.

112 ELS 2017

	Preface
	Message from the Programme Chair
	Message from the Organizing Chair

	Organization
	Programme Chair
	Programme Committee
	Sponsors

	Invited Contributions
	Identity in a world of values – Hans Hübner
	How the strengths of Lisp-family languages facilitate building complex and flexible bioinformatics applications – Bohdan B. Khomtchouk

	Session I: Tools
	Common Lisp UltraSpec - A Project For Modern Common Lisp Documentation Michal Herda
	Loading Multiple Versions of an ASDF System in the Same Lisp Image Vsevolod Domkin

	Session II: Types
	A Lisp Way to Type Theory and Formal Proofs Frederic Peschanski
	Programmatic Manipulation of Common Lisp Type Specifiers Jim E. Newton, Didier Verna and Maximilien Colange
	Type Inference in Cleavir Alexander Wood

	Session III: Demonstrations
	Delivering Common Lisp Applications with ASDF 3.3 Robert Goldman, Elias Pipping and Francois-René Rideau
	Radiance – a Web Application Environment Nicolas Hafner
	Teaching Students of Engineering some Insights of the Internet of Things using Racket and the RaspberryPi Daniel Brunner and Stephan Brunner
	Interactive Functional Medical Image Analysis Benjamin Seppke and Leonie Dreschler-Fischer

	Session IV: Applications
	Parallelizing Femlisp Marco Heisig and Nicolas Neuss

	Tutorials
	General Game Playing in Common Lisp Steve Losh

	Session V: Languages and meta-languages (1)
	Fast, Maintainable, and Portable Sequence Functions Irène Anne Durand and Robert Strandh
	DIY Meta Languages with Common Lisp Alexander Lier, Kai Selgrad and Marc Stamminger
	Static Taint Analysis of Event-driven Scheme Programs Jonas De Bleser, Quentin Stiévenart, Jens Nicolay and Coen De Roover

	Session VI: Languages and meta-languages (2)
	on the {lambda way} Alain Marty
	Writing a portable code walker in Common Lisp Mikhail Raskin
	Removing redundant tests by replicating control paths Irène Anne Durand and Robert Strandh

